Home
Introduction
Case Studies
Documentation
Publications
Downloads
FAQ
User Group

SHETRAN Publications

Main SHETRAN Version 4 references:

Ewen, J., Parkin, G. and O'Connell, P.E. (2000). SHETRAN: Distributed River Basin Flow and Transport Modelling System. ASCE J. Hydrologic Eng., 5, 250-258. (0.3 MB)

Birkinshaw, S.J., James, P. and Ewen, J. (2010). Graphical User Interface for Rapid Set-up of SHETRAN Physically-Based River Catchment Model. Environmental Modelling & Software, 25, 609-610. (0.05 MB)

Peer reviewed journal papers, conference proceedings, reports and book chapters (chronological order) - citations from October 2018

1986-1989    1990-1994    1995-1996    1997-1998    1999-2000    2001-2002    2003-2004    2005-2006    2007-2008   2009-2010    2011-2012     2013-2014     2015-2016     2017-

1.      Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell. P.E. and Rasmussen J. (1986). An introduction to the European hydrological system - Systeme Hydrologique Europeen, "SHE", 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87, 45-49. Google Scholar citations = 1535

2.      Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell. P.E. and Rasmussen J. (1986). An introduction to the European hydrological system - Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology, 87, 61-77. Google Scholar citations = 1381

3.      Bathurst, J.C. (1986). Physically‑based distributed modelling of an upland catchment using the Systeme Hydrologique Europeen. Journal of Hydrology, 87, 79‑102. Google Scholar citations = 242

4.      Bathurst, J.C. (1986). Sensitivity analysis of the Systeme Hydrologique Europeen for an upland catchment. Journal of Hydrology, 87, 103‑123. Google Scholar citations = 126  

5.      Wicks, J.M., Bathurst, J.C., Johnson, C.W. and Ward T.J. (1988). Application of two physically-based sediment yield models at plot and field scales. In: Sediment Budgets, Proc. Intl. Ass. Hydrol. Sci., Porto Alegre Symp., IAHS Publ. No. 174, 583-591. Google Scholar citations = 18

6.      Ewen, J. (1990). Basis for the subsurface contaminant migration components of the catchment water flow, sediment transport, and contaminant migration modelling system SHETRAN-UK. NSS/R229, UK Nirex Limited.

7.      Bathurst, J.C. and Purnama, A. (1991). Design and application of a sediment and contaminant transport modelling system. In: Sediment and Stream Water Quality in a Changing Environment: Trends and Explanations, Proc. Intl. Ass. Hydrol. Sci., Vienna Symp., IAHS Publ. No. 203, 305-313. Google Scholar citations = 13

8.      Bathurst, J.C., and Wicks, J.M. (1991). Framework for erosion and sediment yield modelling. In Recent Advances in the Modeling of Hydrologic Systems, D.S. Bowles and P.E. O'Connell (eds.), Kluwer Academic Publishers, Dordrecht, Netherlands, 269-288. Google Scholar citations = 13

9.      Bathurst, J.C. and O'Connell, P.E. (1992). Future of distributed modelling: the Systeme Hydrologique Europeen. Hydrological Processes, 6, 265-277. Google Scholar citations = 128

10.  Dunn, S., Savage, D. and Mackay, R. (1992). Hydrological simulation of the Rede catchment using the Systeme Hydrologique Europeen (SHE). In Land Use Change: the Causes and Consequences, M.C. Whitby (Ed), HMSO, London 137-146.

11.  Jain, S.K., Storm, B., Bathurst, J.C., Refsgaard, J.C. and Singh, R.D. (1992). Application of the SHE to catchments in India Part 2. Field experiments and simulation studies with the SHE on the Kolar subcatchment of the Narmada River. Journal of Hydrology, 140, 25‑47. Google Scholar citations = 93

12.  Lunn, R.J., Younger, P.L. and Mackay, R. (1992). Development of a methodology for hydrological simulation at the basin scale using SHE. In Land Use Change : the Causes and Consequences, M.C. Whitby (Ed) HMSO, London, 147-158.

13.  Refsgaard, J.C., Seth, S.M., Bathurst, J.C., Erlich, M., Storm, B., Jorgensen, G.H. and Chandra, S. (1992). Application of the SHE to catchments in India Part 1. General Results. Journal of Hydrology, 140, 1‑23. Google Scholar citations = 97

14.  Wicks, J.M., Bathurst, J.C. and Johnson, C.W. (1992). Calibrating SHE soil‑erosion model for different land covers. ASCE Journal of Irrigation and Drainage Engineering, 118, 708‑723. Google Scholar citations = 43  

15.  Burton, A. and Bathurst, J.C. (1994). Modelling shallow landslide erosion and sediment yield at the basin scale. Proc. Intl. Ass. Hydraul. Res. Intl. Workshop on Floods and Inundations Related to Large Earth Movements, University of Trento, Italy, B7.1-B7.13.

16.  Lunn, R.J. and Mackay, R. (1994). An integrated modelling system for nitrogen transport. In Transport and Reactive Processes in Aquifers, T.H. Dracos and F. Stauffer (Eds) Balkema, Rotterdam, Netherlands, 397-403.

17.  Adams, R. (1995). The integration of a physically based hydrological model within a decision support system to modelling the hydrological impacts of land use change. In Scenario Studies for the Rural Environment, J.F.Th. Schoute et al. (eds), Kluwer, Dordrecht, Netherlands, 209-219.

18.  Adams, R., Dunn, S.M., Lunn, R., Mackay, R. and O'Callaghan, J.R. (1995). Assessing the performance of the NELUP hydrological models for river basin planning. J. Environmental Planning & Management, 38, 53-76. Google Scholar citations = 56

19.  Bathurst, J.C., Wicks, J.M. and O'Connell, P.E. (1995). The SHE/SHESED basin scale water flow and sediment transport modelling system. In Computer Models of Watershed Hydrology, 563-594. Google Scholar citations = 128

20.  Burton, A. and Bathurst, J. (1995). Modelling shallow landslide erosion and sediment yield at the basin scale. In IAHR International Workshop on Floods and Innundations Related to Large Earth Movements, University of Trento, 4‑7 Oct., 1994.

21.  Dunn, S.M. and Mackay, R. (1995). Spatial variation in evapotranspiration and the influence of land use on catchment hydrology. Journal of Hydrolog., 171, 49-73. Google Scholar citations = 204

22.  Ewen, J. (1995). Contaminant transport component of the catchment modelling system SHETRAN. In Solute Modelling in Catchment Systems, S.T. Trudgill (ed), Wiley, Chichester, 417-441. Google Scholar citations = 46

23.  Fawcett, K.R., Anderson, M.G., Bates, P.D., Jordan, J.P. and Bathurst, J.C. (1995). The importance of internal validation in the assessment of physically based distributed models. Trans. Inst. Br. Geogr., NS 20, 248-265.

24.  Lukey, B.T., Bathurst, J.C., Hiley, R.A. and Ewen, J. (1995). SHETRAN sediment transport component: equations and algorithms. WRSRU/TR/60, Water Resource Systems Research Unit, Department of Civil Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.

25.  Lukey, B.T., Sheffield, J., Bathurst, J.C., Lavabre, J., Mathys, N. and Martin, C. (1995). Simulating the effect of vegetation cover on the sediment yield of Mediterranean catchments using SHETRAN. Phys. Chem. Earth, 20, 427-432. Google Scholar citations = 11

26.  O'Connell, P.E. (1995). Capabilities and limitations of regional hydrological models. In Scenario Studies for the Rural Environment, J.F.Th. Schoute et al. (eds), Kluwer, Dordrecht, Netherlands, 143-156.

27.  Anderton, S.P. and Ewen, J. (1996) A cold region capability for SHETRAN: literature review and model synthesis. WRSRU/TR/9604/55.3.

28.  Bathurst, J.C. and Cooley, K.R. (1996). Use of the SHE hydrological modelling system to investigate basin response to snowmelt at Reynolds Creek, Idaho. Journal of Hydrology, 175, 181-212. Google Scholar citations = 55

29.  Bathurst, J. C., C. Kilsby, and White, S. (1996). Modelling the impacts of climate and land use change on basin hydrology and soil erosion in Mediterranean Europe. Mediterranean Desertification and Land Use. C. J. Brandt and J. B. Thornes (eds.). Chichester , John Wiley and Sons Ltd. 355-387. Google Scholar citations = 59

30.  Dunn, S., Adams, R., Lunn, R. and Mackay, R. (1996). Hydrological modelling. In Review of Land Use: The Interactions of Economics, Ecology and Hydrology. J.R. O�Callaghan (Ed.), Chapman and Hall, London.

31.  Dunn, S. M., R. Mackay, Adams, R. and Oglethorpe, D.R. (1996). The hydrological component of the NELUP decision support system : an appraisal. Journal of Hydrology, 177 : 213-235. Google Scholar citations = 57

32.  Ewen, J., and Parkin G. (1996). Validation of catchment models for predicting land-use and climate change impacts. 1. Method. Journal of Hydrology, 175, 583-594. Google Scholar citations = 169

33.  Lunn, R.J., Adams, R., Mackay, R. and Dunn, S.M. (1996). Development and application of a nitrogen modelling system for large catchments. Journal of Hydrology, 174, 285-304. Google Scholar citations = 56

34.  Parkin, G. (1996). A three-dimensional variably-saturated subsurface modelling system for river basins. Ph.D. thesis, Dept. of Civil Engineering, University of Newcastle upon Tyne.

35.  Parkin, G., O'Donnell, G., Ewen, J., Bathurst, J.C., O'Connell, P.E. and Lavabre, J. (1996). Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment. Journal of Hydrology, 175, 595. Google Scholar citations = 127

36.  Shah, S.M.S., O'Connell, P.E. and Hosking, J.R.M. (1996). Modelling the effects of spatial variability in rainfall on catchment response. 2. Experiments with distributed and lumped models. Journal of Hydrology, 175, 89-112. Google Scholar citations = 142

37.  Wicks, J.M. and Bathurst, J.C. (1996). SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system. Journal of Hydrology, 175, 213-238. Google Scholar citations = 244

38.  Adams, R. and P. L. Younger (1997). Simulation of groundwater rebound in abandoned mines using a physically based modelling approach. In Minewater and the Environment, Proc. 6th International Mine Water Association Congress, Bled, Slovenia.

39.  Bathurst, J.C., Burton, A. and Ward, T. (1997). Debris flow run-out and landslide sediment delivery model test. Proc. Am. Soc. Civ. Engrs., J. Hydraul. Eng., 123, 410-419. Google Scholar citations = 83

40.  Ewen, J. (1997) 'Blueprint' for the UP modelling system for large scale hydrology. Hydrology and Earth System Sciences, 1, 55-69. Google Scholar citations = 37

41.  Bathurst, J.C., Birkinshaw, S.J., Evans, J. and Franke, S. (1998). Modelo de bases fisicas para la prediccion de los impactos hydrologicos y la erosion de los suelos provocados por opciones de la gestion forestal en Chile. (Physically based modelling for predicting hydrological and soil erosion impacts of forest management in Chile). Technical Document 120, Published with Chile Forestal, No. 265.

42.  Bathurst, J. C., Gonzalez, E., and Salgado, R. (1998) Physically based modelling of gully erosion and sediment yield at the basin scale. In Hydrology in a Changing Environment, Vol III, H. Wheater and C. Kirby (eds.), John Wiley and Sons Ltd., Chichester, UK, 253-259.

43.  Bathurst, J.C., Lukey, B., Sheffield, J., Hiley, R.A., and Mathys, N. (1998) Modelling badlands erosion with SHETRAN at Draix, southeast France. In Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes, Proc. Intl. Ass. Hydrol. Sci. Vienna Symposium, IAHS Publ. No. 249, 129-136. Google Scholar citations = 19

44.  Birkinshaw, S.J., Ewen, J. and Parkin, G. (1998). Modelling nitrate transport using SHETRAN in the Slapton Wood catchment, South Devon. In Hydrology in a Changing Environment, Vol II, H. Wheater and C. Kirby (eds.), John Wiley and Sons Ltd., Chichester, UK, 109-120

45.  Burton, A., Arkell, T. J., and Bathurst, J.C. 1998. Field variability of landslide model parameters. Environmental Geology, 35, 100-114 Google Scholar citations = 44 .

46.  Burton, A. and J. C. Bathurst, (1998). Physically based modelling of shallow landslide sediment yield at a catchment scale. Environmental Geology, 35, 89-99. Google Scholar citations = 196

47.  Parkin, G. and Adams, R. (1998). Using catchment models for groundwater problems: evaluating the impacts of mine dewatering and groundwater abstraction. In Hydrology in a Changing Environment, Vol II, H. Wheater and C. Kirby (eds.), John Wiley and Sons Ltd., Chichester, UK, 269-280.

48.  Sheffield, J., Mulcahy, C., Bathurst, J.C., and Kilsby, C.G. (1998). Decision support system for land management in a Mediterranean catchment. In Hydrology in a Changing Environment, Vol II, H. Wheater and C. Kirby (eds.), John Wiley and Sons Ltd., Chichester, UK, 571-578.

49.  Adams, R. and Younger, P.L. (1999). The application of groundwater and surface water modelling systems to the simulation of groundwater rebound in abandoned coalfields. In Calibration and Reliability in Groundwater Modelling, Proc. Intl. Conf., Modelcare 99, Zurich.

50.  Gallart, F., White, S. and Lorens, P. (Eds.) (1999). Validating Hydrological Models using Process Studies and Internal Data from Research Basins: Tools for Assessing Hydrological Impacts of Environmental Change. Final Report. EC Contract No. ENV4-CT95-0134.

51.  Parkin, G., Anderton, S.P., Ewen, J., O'Donnell, G.M., Thorne, M.C. and Crossland, I.G. (1999). A physically-based approach to modelling radionuclide transport in the biosphere. J Radiological Protection, 19, 319-331. Google Scholar citations = 8

52.  Ewen, J., Parkin, G., Sheffield, J., Chappell, N.A. and Vaughan, M.D. (1999) Validation Testing of Solute Transport Modelling using SHETRAN: The Calder Hollow Experiments. Report N/003 for Nirex UK

53.  Parkin, G. and O'Connell, P.E. (1999). Integration of the SHETRAN catchment modelling system within a DSS framework. In Emerging Technologies for Sustainable Land Use and Water Management, 2nd Inter-Regional Conference on Environment-Water, Lausanne, Sept. 1999.

54.  Sloan, W.T. and Ewen, J. (1999) Modelling long-term contaminant migration in a catchment at fine spatial and temporal scales using the UP system. Hydrological Processes, 13, 823-846. Google Scholar citations = 12

55.  Younger, P.L. and Adams, R. (1999). Predicting Mine Water Rebound. Environment Agency R&D technical Report W179.

56.  Birkinshaw, S.J. and Ewen, J. (2000) Nitrogen transformation component for SHETRAN catchment nitrate transport modelling. Journal of Hydrology, 230, 1-17. Google Scholar citations = 147

57.  Birkinshaw, S.J. and Ewen, J. (2000) Modelling nitrate transport in the Slapton Wood catchment using SHETRAN. Journal of Hydrology, 230, 18-33. Google Scholar citations = 44

58.  Birkinshaw, S.J., Hashemi, A.M., Kuntner, R., Burton, A. and Kilsby, C.G. (2000) Annex 8: Simulation of the impact of land use change and climate change upon flood frequency curves in the Murg catchment. In final report by partner 4 of the FRAMEWORK project, Burton A, O'Connell PE (Eds), a project of the EU Environment and Climate Research programme, project number ENV4-CT97-0529, p71-85

59.  Burton, A., Birkinshaw, S.J., Hashemi, A.M., Kuntner, R., Kilsby C.G. and O'Connell, P.E. (2000) An advanced distributed hydrologogical modelling system for sensitivity analysis of catchment response in lowland and hilly basins, Deliverable 4.1 of the FRAMEWORK project a project of the EU Environment and Climate Research programme, project number ENV4-CT97-0529, 14pp

60.  Ewen, J., Parkin, G. and O'Connell, P.E. (2000). SHETRAN: Distributed River Basin Flow and Transport Modelling System. ASCE J. Hydrologic Eng., 5, 250-258. Google Scholar citations = 315

61.  Kilsby, C.G., Burton, A., Birkinshaw, S.J., Hashemi, A.M. and O'Connell, P.E. (2000) Extreme rainfall and flood frequency distribution modelling for present and future climates. In Seventh National Hydrological Symposium, British Hydrological Society, University of Newcastle Upon Tyne, 4-6 September 2000.pp 3.51-3.56

62.  Lukey, B.T., Sheffield, J., Bathurst, J.C., Hiley, R.A. and Mathys, N. (2000) Test of the SHETRAN technology for modeling the impact of restoration on badlands runoff and sediment yield at Draix, France. Journal of Hydrology, 235, 44-62. Google Scholar citations = 76

63.  Mellor, D., Sheffield, J., O'Connell, P.E. and Metcalfe, A.V. (2000) A stochastic space-time rainfall forecasting system for real time flow forecasting II: Application of SHETRAN and ARNO rainfall runoff models to the Brue catchment, Hydrology and Earth System Sciences, 4, 617-626. Google Scholar citations = 14

64.  Sheffield, J., Mulcahy, C., Bathurst, J.C., and Kilsby, C.G. (2000) Decision Support System for the Agri basin, Italy. In Mediterranean Desertification : Research Results and Policy Implications, EUR 19303, Vol 2, P. Balabanis, D. Peter, A. Ghazi and M. Tsogas (eds.), Office for Official Publications of the European Communities, Luxembourg, 539-548.

65.  Thorne, M.C., Degnan, P., Ewen, J. and Parkin, G. (2000). Validation of a Physically Based Catchment Model for Application in Post-closure Radiological Safety Assessments of Deep Geological Repositories for Solid Radioactive Wastes. J. Radiological Protection, 20, 403-421. Google Scholar citations = 7

66.  Adams, R and Parkin, G (2001) Development of a coupled surface-groundwater-pipe network model for the sustainable management of karstic groundwater. In Geotechnical and Environmental Applications of Karst Geology and Hydrology, A. A. Balkema Publishers, Rotterdam, 195-199.

67.  Ewen, J. (2001) SHETRAN user manual for Version 5. WRSRL_2001_1, Water Resource Systems Research Laboratory, School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, UK.

68.  Adams, R. and Parkin, G. (2002) Development of a coupled surface-groundwater-pipe network model for the sustainable management of karstic groundwater, Environmental Geology, 42, 513-517. Google Scholar citations = 20

69.  Anderton, S. P., Latron, J., White, S.M., Llorens, P., Gallart, F., Salvany, C. and O'Connell, P.E. (2002) Internal Evaluation of a physically-based distributed model using data from a Mediterranean mountain catchment. Hydrology and Earth System Sciences, 6, 67-83. Google Scholar citations = 45

70.  Anderton, S. P., Latron, J. and Gallart, F. (2002) Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrological Processes, 16, 333-353. Google Scholar citations = 108

71.  Bathurst, J.C. (2002) DAMOCLES: Debrisfall Assessment in Mountain Catchments for Local End-users. Proc. First EU-MEDIN Workshop on Natural and Technological Hazards (15-17 Nov. 2000), EUR 20199, K. Fabbri and M. Yeroyanni (eds.), Office for Official Publications of the European Communities, Luxembourg, 106-115.

72.  Bathurst, J.C. (2002) Physically-based erosion and sediment yield modelling: the SHETRAN concept. In Modelling Erosion, Sediment Transport and Sediment Yield, W. Summer and D.E. Walling (eds.), International Hydrological Programme, IHP-VI, Technical Documents in Hydrology, No 60, UNESCO, Paris, 47-67.

73.  Bathurst, J.C., Sheffield, J., Vicente, C., White, S.M., and Romano, N. (2002) Modelling large basin hydrology and sediment yield with sparse data: the Agri basin, southern Italy. In Mediterranean Desertification : A Mosaic of Processes and Responses, Geeson, N.A., Brandt, C.J., and Thornes, J.B. (eds.), Wiley, Chichester, UK, 397-415. Google Scholar citations = 20

74.  Birkinshaw, S.J., Parkin, G., Nisbet, T. Calder, I.R., and Reid, I. (2002). Modelling the effect of a Corsican pine forest on nitrate pollution. Third International Conference on Water Resources and Environment Research (ICWRER), 22nd - 26th of July 2002, Dresden, Germany.

75.  Birkinshaw, S.J., Rao, Z., and Parkin, G. (2002) Neural networks and numerical models - a hybrid approach for predicting groundwater abstraction impacts Hydroinformatics 2002: Proc. 5th Intl. Conf. on Hydroinformatics, 1-5 July, Cardiff, 679-686.

76.  Ewen, J. (2002) Coupling physically-based spatially-distributed models. Hydroinformatics 2002: Proc. 5th Intl. Conf. on Hydroinformatics, 1-5 July, Cardiff, 1227-1232.

77.  Ewen, J., Bathurst, J.C., Parkin, G., O'Connell, E., Birkinshaw, S., Adams, R., Hiley, R., Kilsby, C. & Burton, A. (2002) SHETRAN physically-based distributed river basin modelling system. In: Mathematical Modeling of Small Watershed Hydrology, V.P. Singh, D.K. Frevert & S.P. Meyer (eds.), Water Resources Publications, Englewood, Colorado, USA, 43-68. Google Scholar citations = 13

78.  Ewen, J. and Birkinshaw, S.J. (2002) SHETRAN user port model for nitrate. WRSRL/2002_1, Water Resource Systems Research Laboratory, School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, UK.

79.  Figueiredo, E.E. de, and Bathurst, J.C. (2002) Sediment yield modelling at various basin scales in a semiarid region of Brazil using SHETRAN. Hydroinformatics 2002: Proc. 5th Intl. Conf. on Hydroinformatics, 1-5 July, Cardiff, 316-321.

80.  Bathurst, J.C. (2003) DAMOCLES: Debrisfall Assessment in Mountain Catchments for Local End-users. Proc. Workshop on Seismic and Landslide Risk in the European Union (12-13 Nov. 2002), EUR 20592, M. Yeroyanni (ed.), Office for Official Publications of the European Communities, Luxembourg, 23-33.

81.  Bathurst, J.C., Crosta, G., Garcia-Ruiz, J.M., Guzzetti, F., Lenzi, M., and Rios Aragues, S. (2003) DAMOCLES: Debrisfall Assessment in Mountain Catchments for Local End-users. Proc 3rd Intl. Conf. Debris-flow Hazards Mitigation, Davos, Switzerland, 10-12 Sept., Vol. 2, 1073-1083.

82.   Bathurst, J.C., Sheffield, J., Leng, X., and Quaranta, G. (2003) Decision support system for desertification mitigation in the Agri basin, southern Italy. Phys. Chem. Earth, 28, 579-587. Google Scholar citations = 25 .

83.  Latron, J., Anderton, S., White, S.M., Llorens, P. and Gallart, F., (2003) seasonal characteristics of the hydrological response in a Mediterranean mountain research catchment (Vallcebre, Catalan, Pyrenees): field investigations and modeling. Hydrology of Mediterranean and Semiarid Regions, Int. Assoc. Hydrological Sciences, Wallingford, 106-110.

84.  Nasr, A., Bruen, M., Parkin, G., Birkinshaw, S.J., Moles,R. and Byrne,P. (2003) Modelling phosphorous loss from agriculture catchments: a comparison of the performance of SWAT, HSPF and SHETRAN for the Clarianna catchment. Proc. of IWA DipCom 2003, 7th Special Conf. on Diffuse Pollution and Basin Management, Dublin, 17-22 Aug.

85.  O'Donnell, G.M. and Ewen, J. (2003) Application of SHETRAN Version 5 in generic performance assessments., Report WRSRL/2003_4 for Nirex UK, www.nirex.co.uk

86.  Norouzi Banis, Y., Bathurst, J.C., and Walling, D.E. (2004) Use of caesium-137 data to evaluate SHETRAN simulated long-term erosion patterns in arable lands. Hydrological Processes, 18, 1795-1809. Google Scholar citations = 11

87.  Bathurst J C, Ewen J, Parkin G, O'Connell P E and Cooper J D (2004) Validation of catchment models for predicting land-use and climate change impacts. 3. Blind validation for internal and outlet responses Journal of Hydrology, 287, 74-94. Google Scholar citations = 89

88.  Birkinshaw, S. J. (2004) Intercomparison of SHETRAN and BIOMASS simulations, Report WRSRL/2004_1 for Nirex UK, www.nirex.co.uk

89.  Birkinshaw, S.J. and Ewen, J. (2004a) Cold Region Evaluation of SHETRAN Version 5. Report WRSRL/2004_2 for Nirex UK, www.nirex.co.uk

90.  Birkinshaw, S.J. and Ewen, J. (2004b) SHETRAN Version 5 Evaluation Modelling for Water Flow and Nitrate Transport in the Slapton Wood Catchment. Report WRSRL/2004_4 for Nirex UK,

91.  Ewen, J., O'Donnell, G. and Butler, A. (2004) Modelling Freezing-Induced Moisture redistribution using SHETRAN. Report WRSRL/2004_3 for Nirex UK,

92.  Figueiredo, E.E. de, and Bathurst, J.C. (2004) Uncertainty analysis in up-scaling the SHETRAN model parameters. Hydroinformatics 2004: Proc. 6th Intl. Conf. on Hydroinformatics, Brazil.

93.  Adams, R., Parkin, G., Elliott, A.E. and Rutherford, J.C. (2004). Modelling of hillslope erosion from New Zealand pasture using a rainfall simulator. Proc. British Hydrological Society Intl. Conf. Hydrology: Science and Practice for the 21st Century, Vol. 1, 415-420

94. Adams, R., Parkin, G., Ibbitt, R.P., Elliott, A.E. and Rutherford, J.C. (2005). Using a rainfall simulator and a physically-based hydrological model to investigate runoff processes in a hillslope. Hydrological Processes, 19, 2209-2223 Google Scholar citations = 25

95.  Bathurst, J.C., Moretti, G., El-Hames, A., Moaven-Hashemi, A., and Burton, A. (2005). Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian pre-Alps. Natural Hazards and Earth System Sciences, 5, 189-202. Google Scholar citations = 48 .

96. Birkinshaw, S.J., Thorne, M.C. and Younger, P.L (2005) Reference biospheres for post-closure performance assessment: inter-comparison of SHETRAN simulations and BIOMASS results. J. Radiological Protection,25, 33-49. Google Scholar citations = 8

97. Adams, R. and Elliot, S. (2006) Physically based modelling of sediment generation and transport under a large rainfall simulator, Hydrological Processes, 20, 2253-2270. Google Scholar citations = 30

98. Bathurst, J.C., Burton, A., Clarke, B.G. and Gallart, F. (2006). Application of the SHETRAN basin-scale, landslide sediment yield model to the Llobregat basin, Spanish Pyrenees.  Hydrological Processes, 20, 3119-3138. Google Scholar citations = 34

99.  Bathurst, J.C., Amezaga, J.M., Birkinshaw, S.J., Calder, I.R. (2006). Forests and floods in Latin America: Physical Processes, policy Implications and the EPICFORCE project. Proceedings of the British Hydrological Society 9th National Hydrology Symposium, Durham, 11-13th September 2006

100. Birkinshaw, S.J. and Bathurst, J.C. (2006). Model study of the relationship between sediment yield and river basin area, Earth Surface Processes and Landforms, 31, 750-761. . Google Scholar citations = 57

101. Koo, B.K. and O'Connell, P.E. (2006) An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England, Science of the Total Environment, 358,1-20. Google Scholar citations = 61

102. Bathurst, J.C., Moretti, G., El-Hames, A, Begueria, S, Garcia-Ruiz, J. M. (2007). Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees. Hydrology and Earth System Sciences, 11, 569-583. http://www.hydrol-earth-syst-sci.net/11/issue1.html Google Scholar citations = 71

103. Ewen, J, O'Donnell, G., Burton, A. and O'Connell, P.E. (2007) Errors and uncertainty in physically-based rainfall-runoff modelling of catchment change effects. Journal of Hydrology, 330, 641-650. Google Scholar citations = 49

104. Nasr, A, Bruen, M, Jordan, P., Moles, R., Kiely, G. and Byrne, P. (2007) A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water Research, 41, 1065-1073. Google Scholar citations = 100

105. Parkin, G., Birkinshaw, S.J., Younger, P.L., Rao, Z. and Kirk, S. (2007) A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows. Journal of Hydrology, 339, 15-28. Google Scholar citations = 42

106. Walsh, C.L. and Kilsby, C.G. (2007) Implications of climate change on flow regime affecting Atlantic Salmon. Hydrology and Earth System Sciences, 11, 1125-1141. http://www.hydrol-earth-syst-sci.net/11/issue3.html Google Scholar citations = 48

107. Birkinshaw, S.J. (2008) Physically-based modelling of double-peak discharge responses at Slapton Wood catchment. Hydrological Processes, 22, 1419-1430. Google Scholar citations = 13

108. Birkinshaw, S.j., Parkin, G. and Rao, Z (2008). A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts. Journal of Hydroinformatics, 10, 113-126. http://www.iwaponline.com/jh/010/2/default.htm Google Scholar citations = 15

109. Schmidt J., Elliott S., McKergow L.(2008) Land-use impacts on catchment erosion for the Waitetuna catchment, New Zealand. IAHS-AISH Publication, (325), pp. 453-457. Google Scholar citations = 1

110. De Figueiredo E.E. (2008) Sediment yield modelling at micro-basin and basin scales in semi-arid regions of Brazil.  IAHS-AISH Publication, (325), pp. 157-166.   Google Scholar citations = 1

111. Bovolo C. I. Abele S. J., Bathurst J. C., Caballero D., Ciglan M., Eftichidis G., Simo B. A distributed framework for multi-risk assessment of natural hazards used to model the effects of forest fire on hydrology and sediment yield . Computers & Geosciences 2009, 35 , 924-945. DOI: 10.1016/j.cageo.2007.10.010. Google Scholar citations = 19

 112. Bovolo, C.I., Bathurst, J.C. and Cisneros, F. (2009) Modelling the effect of forest cover on shallow landslides at the river basin scale. Ecological Engineering, 36, 317-327 doi:10.1016/j.ecoleng.2009.05.001 Google Scholar citations = 61

 113. Bathurst, J. C. (2010) Predicting Impacts of Land Use and Climate Change on Erosion and Sediment Yield in River Basins Using SHETRAN, in Handbook of Erosion Modelling (eds R. P. C. Morgan and M. A. Nearing), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781444328455.ch14

 114. Birkinshaw, S.J., James, P. and Ewen, J. (2010). Graphical User Interface for Rapid Set-up of SHETRAN Physically-Based River Catchment Model. Environmental Modelling & Software, 25, 609-610. Google Scholar citations = 26

 115. Birkinshaw, S.J. and Webb, B. (2010). Flow pathways in the Slapton Wood catchment using temperature as a tracer. Journal of Hydrology, 383, 269-279. Google Scholar citations = 26

 116. Birkinshaw, S. J. (2010) Technical Note: Automatic river network generation for a physically-based river catchment model, Hydrol. Earth Syst. Sci., 14, 1767-1771 Google Scholar citations = 5

 117. Chiang GT, White T.O.H, Dove M.T., Bovolo C. I., Ewen J. Geo-visualization Fortran library. (2010) Geo-visualization Fortran library, Computers & Geosciences, Volume 37, Issue 1, Pages 65-74, ISSN 0098-3004, 10.1016/j.cageo.2010.04.012. Google Scholar citations = 9

 118. Birkinshaw, S.J. and Webb, B (2010). Using temperature as a tracer to understand flow pathways in the Slapton Wood and Dunsop catchments.  In: Role of Hydrology in Managing Consequences of a Changing Global Environment, BHS 3rd International Symposium, Newcastle, 19-23 July.

 119. Refsgaard, J. C., Storm, B., & Clausen, T. (2010). Systeme Hydrologique Europeen (SHE): review and perspectives after 30 years development in distributed physically-based hydrological modelling Hydrology Research, 41(5), 355-377. doi:10.2166/nh.2010.009 Google Scholar citations = 70

120. Wilkinson, M. , Bathurst, J., and Kilsby, C. (2010) Measuring and modelling storm rainfall and flood response behaviour in a densely instrumented multi-scale catchment experiment. EGU General Assembly, Vienna, Vol. 12, EGU2010-14141.

121. Birkinshaw, S.J., Bathurst J.C., Iroume, A., Palacios, H.,(2011) The effect of forest cover on peak flow and sediment discharge - an integrated field and modelling study in Central-Southern Chile, Hydrological Processes, DOI: 10.1002/hyp.7900. Google Scholar citations = 50

 122. Bathurst, James C., Birkinshaw, S. J. et al. (2011) Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 2: model analysis. Journal of Hydrology, Volume 400, Issues 3-4, Pages 292-304 DOI:10.1016/j.jhydrol.2010.09.001 Google Scholar citations = 43

 123. Chiang, Gen-Tao, Dove, Martin T., Bovolo, C. Isabella, Ewen, John, Yang, Xiaoyu (2011) Implementing a Grid/Cloud eScience Infrastructure for Hydrological Sciences pp3-28. In: Guide to e-Science. Eds: Wang, Lizhe, Jie, Wei. Springer London. Doi: 10.1007/978-0-85729-439-5_1. Google Scholar citations = 9

 124. Elliott, A., & Basher, L. (2011). Modelling sediment flux: A review of New Zealand catchment-scale approaches. Journal of Hydrology (New Zealand), 50(1), 143-160. Google Scholar citations = 6

 135. Bathurst, J. C. (2011). 14. Predicting Impacts of Land Use and Climate Change on Erosion and Sediment Yield in River Basins using SHETRAN. Handbook of Erosion Modelling, 263. Google Scholar citations = 12

 126. Baroni, G., Graff, T., Reinstorf, F., & Oswald, S. E. (2012, April). Monitoring and modeling as a continuing learning process: the use of hydrological models in a general probabilistic framework. In EGU General Assembly Conference Abstracts (Vol. 14, p. 10338).

 127. Bovolo, C. I. and Bathurst, J. C. (2012), Modelling catchment-scale shallow landslide occurrence and sediment yield as a function of rainfall return period. Hydrol. Process., 26: 579-596. doi: 10.1002/hyp.8158. Google Scholar citations = 13

 128. Elliott, A. H., Oehler, F., Schmidt, J. and Ekanayake, J. C. (2012), Sediment modelling with fine temporal and spatial resolution for a hilly catchment. Hydrol. Process.. doi: 10.1002/hyp.8445. Google Scholar citations = 13

 129. Ewen, J., O'Connell, E., Bathurst, J., Birkinshaw, S. J., Kilsby, C., Parkin, G., & O'Donnell, G. (2012). Physically-based modelling, uncertainty, and pragmatism. Comment on:Systeme Hydrologique Europeen (SHE): review and perspectives after 30 years development in distributed physically-based hydrological modelling by Jens Christian Refsgaard, Borge Storm and Thomas Clausen. Hydrology Research, 43(6), 945-947.doi:10.2166/nh.2012.138 Google Scholar citations = 2

 130. Mills, J. P. ;  Barr, S. L. ;  Birkinshaw, S. J. ;  Hardy, A. J. ;  Parkin, G. ;  Hall, S. J. (2012) A Remote Sensing Approach for Landslide Hazard Assessment on Engineered Slopes. IEEE Transactions on Geosciences and Remote Sensing, 50, 1048 - 1056. doi: 10.1109/TGRS.2011.2165547 Google Scholar citations = 23

 131. Refsgaard, J. C., Storm, B., & Clausen, T. (2012). Physically-based modelling, good modelling practice including uncertainty reply to comment by Ewen et al.(2012). Hydrology Research, 43(6), 948-950. doi:10.2166/nh.2012.001. Google Scholar citations = 1

 132. Zhang, R., Santos, C. A., Moreira, M., Freire, P. K., & Corte-Real, J. (2013). Automatic Calibration of the SHETRAN Hydrological Modelling System Using MSCE. Water resources management, 1-16. doi:10.1007/s11269-013-0395-z Google Scholar citations = 21

 133. Mourato, S., Moreira, M., & Corte-Real, J. (2014). Water availability in southern Portugal for different climate change scenarios subjected to bias correction. Journal of Urban and Environmental Engineering (JUEE), 8(1). Google Scholar citations = 9

 134. Dukic, V., and Radic, Z. (2014). GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia. Water Resources Management, 28(13), 4567-4581. Google Scholar citations = 6

 135. Villa Alvarado, C. J., Delgadillo-Ruiz, E., Mastachi-Loza, C. A., Gonzalez-Sosa, E., & Norma Maricela, R. S. (2014). A physically based runoff model analysis of the queretaro river basin. Journal of Applied Mathematics, 2014. Google Scholar citations = 2

 136. Davies, O., Rouainia, M., Glendinning, S., Cash, M., & Trento, V. (2014). Investigation of a pore pressure driven slope failure using a coupled hydro-mechanical model. Engineering Geology, 178, 70-81. Google Scholar citations = 10

 137. Birkinshaw, S. J., Bathurst, J. C., & Robinson, M. (2014). 45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn catchment, Northern England. Journal of Hydrology, 519, 559-573. Google Scholar citations = 20

 138. Mourato, S., Moreira, M., & Corte-Real, J. (2015). Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds. Water Resources Management, 29(7), 2377-2391. Google Scholar citations = 19

 139. Naseela, E. K., Dodamani, B. M., & Chandran, C. (2015) Estimation of Runoff Using NRCS-CN Method and SHETRAN Model. International Advanced Research Journal in Science, Engineering and Technology, 2, 23-28. Google Scholar citations = 5

 140. Zhang, R., Moreira, M., & Corte-Real, J. (2015). Multi-objective calibration of the physically based, spatially distributed SHETRAN hydrological model. Journal of Hydroinformatics, jh2015219. Google Scholar citations = 5

 141. Glendinning, S., Helm, P. R., Rouainia, M., Stirling, R. A., Asquith, J. D., Hughes, P. N., ... & Hughes, D. (2015). Research-informed design, management and maintenance of infrastructure slopes: development of a multi-scalar approach. In IOP Conference Series: Earth and Environmental Science (Vol. 26, No. 1, p. 012005). IOP Publishing Google Scholar citations = 7

 142. Beven, K., Bathurst, J., O'Connell, E., Littlewood, I., Blackie, J. and Robinson, M. (2015) Hydrological Modelling, in Progress in Modern Hydrology: Past, Present and Future (eds J. C. Rodda and M. Robinson), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781119074304.ch7 Google Scholar citations = 1

 143. Dukic, V., & Radic, Z. (2016). Sensitivity Analysis of a Physically Based Distributed Model. Water Resources Management, 30(5), 1669-1684. Google Scholar citations = 5

 144. Azim, F., ShAzim, F., Shakir, A. S., & Kanwal, A. (2016). Impact of climate change on sediment yield for Naran watershed, Pakistan. International Journal of Sediment Research, 31(3), 212-219. Google Scholar citations = 4

 145. Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. Catena, 147, 595-620 Google Scholar citations = 32

 146. Petrovic, A. M., Kovacevic-Majkic, J., & Miloevic, M. V. (2016). Application of run-off model as a contribution to the torrential flood risk management in Topciderska Reka watershed, Serbia. Natural Hazards, 82(3), 1743-1753 Google Scholar citations = 1

 147. Zhang, R., Moreira, M., & Corte-Real, J. (2016). Multi-objective calibration of the physically based, spatially distributed SHETRAN hydrological model. Journal of Hydroinformatics, 18(3), 428-445. Google Scholar citations = 5

 148. Bathurst, J. C., Birkinshaw, S. J., Espinosa, F. C., & Iroum, A. (2017). Forest Impact on Flood Peak Discharge and Sediment Yield in Streamflow. In River System Analysis and Management (pp. 15-29). Springer, Singapore Google Scholar citations = 0

 149. Birkinshaw, S. J., Guerreiro, S. B., Nicholson, A., Liang, Q., Quinn, P., Zhang, L., ... & Fowler, H. J. (2017). Climate change impacts on Yangtze River discharge at the Three Gorges Dam. Hydrology & Earth System Sciences, 21(4). Google Scholar citations = 10

 150. Guerreiro, S. B., Birkinshaw, S., Kilsby, C., Fowler, H. J., & Lewis, E. (2017). Dry getting drierThe future of transnational river basins in Iberia. Journal of Hydrology: Regional Studies, 12, 238-252. Google Scholar citations = 3

 151. Op de Hipt, F., Diekkrger, B., Steup, G., Yira, Y., Hoffmann, T., & Rode, M. (2017). Applying SHETRAN in a Tropical West African Catchment (Dano, Burkina Faso)Calibration, Validation, Uncertainty Assessment. Water, 9(2), 101 Google Scholar citations = 8

 152. Starkey, E., Parkin, G., Birkinshaw, S., Large, A., Quinn, P., & Gibson, C. (2017). Demonstrating the value of community-based (citizen science) observations for catchment modelling and characterisation. Journal of hydrology, 548, 801-817 Google Scholar citations = 10

 153. Zhang, J., & Han, D. (2017). Catchment Morphing (CM): A novel approach for runoff modeling in ungauged catchments. Water Resources Research, 53(12), 10899-10907 Google Scholar citations = 0

 154. Janes, V., Holman, I., Birkinshaw, S., O'donnell, G., & Kilsby, C. (2018). Improving bank erosion modelling at catchment scale by incorporating temporal and spatial variability. Earth Surface Processes and Landforms, 43(1), 124-133. Google Scholar citations = 2

 155. Lewis, E., Birkinshaw, S., Kilsby, C., & Fowler, H. J. (2018). Development of a system for automated setup of a physically-based, spatially-distributed hydrological model for catchments in Great Britain. Environmental Modelling & Software, 108, 102-110. Google Scholar citations = 0

 156. Op de Hipt, F., Diekkrger, B., Steup, G., Yira, Y., Hoffmann, T., & Rode, M. (2018). Modeling the impact of climate change on water resources and soil erosion in a tropical catchment in Burkina Faso, West Africa. Catena, 163, 63-77. Google Scholar citations = 5

 157. Rangecroft, S., Birkinshaw, S., Rohse, M., Day, R., McEwen, L., Makaya, E., & Van Loon, A. F. (2018). Hydrological modelling as a tool for interdisciplinary workshops on future drought. Progress in Physical Geography: Earth and Environment, 42(2), 237-256. Google Scholar citations = 0

 158. Seibert, J., Vis, M. J., Lewis, E., & van Meerveld, H. J. (2018). Upper and lower benchmarks in hydrological modelling. Hydrological Processes, 32(8), 1120-1125. Google Scholar citations = 1

 159. Walker, D., Parkin, G., Schmitter, P., Gowing, J., Tilahun, S. A., Haile, A. T., & Yimam, A. Y. (2018). Insights from a multi-method recharge estimation comparison study. Groundwater. Google Scholar citations = 0

 

Send mail to s.j.birkinshaw@ncl.ac.uk with questions or comments about this web site.
Last modified: 01/03/2016