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Despite there being well-established meteorological and hydrometric monitoring networks in the UK,
many smaller catchments remain ungauged. This leaves a challenge for characterisation, modelling, fore-
casting and management activities. Here we demonstrate the value of community-based (‘citizen
science’) observations for modelling and understanding catchment response as a contribution to catch-
ment science. The scheme implemented within the 42 km2 Haltwhistle Burn catchment, a tributary of
the River Tyne in northeast England, has harvested and used quantitative and qualitative observations
from the public in a novel way to effectively capture spatial and temporal river response. Community-
based rainfall, river level and flood observations have been successfully collected and quality-checked,
and used to build and run a physically-based, spatially-distributed catchment model, SHETRAN. Model
performance using different combinations of observations is tested against traditionally-derived hydro-
graphs. Our results show how the local network of community-based observations alongside traditional
sources of hydro-information supports characterisation of catchment response more accurately than
using traditional observations alone over both spatial and temporal scales. We demonstrate that these
community-derived datasets are most valuable during local flash flood events, particularly towards peak
discharge. This information is often missed or poorly represented by ground-based gauges, or signifi-
cantly underestimated by rainfall radar, as this study clearly demonstrates. While community-based
observations are less valuable during prolonged and widespread floods, or over longer hydrological peri-
ods of interest, they can still ground-truth existing traditional sources of catchment data to increase con-
fidence during characterisation and management activities. Involvement of the public in data collection
activities also encourages wider community engagement, and provides important information for catch-
ment management.
� 2017 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Under future climate change scenarios, wetter winters and
more intense summer storms are expected to exacerbate already
complex catchment management issues throughout the UK and
western Europe (Chan et al., 2015; Forzieri et al., 2016; Kendon
et al., 2014). Empirical data is therefore required to characterise
catchment behaviour over time, model floods, improve forecasts
and subsequently enhance community resilience as part of the
wider catchment management process. The importance of mean-
ingful data is further emphasised when considering the perfor-
mance of new flood management interventions such as ‘natural
flood management’ (Nicholson et al., 2012; SEPA, 2015). The poten-
tial benefits of engaging, collaborating and actively involving local
communities within affected catchments is also rapidly being
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recognised as a vital component of an integrated catchment man-
agement toolkit (Bracken et al., 2014; Large et al., 2017).

Despite the UK having some of the world’s most reliable and
dense hydrometric and meteorological monitoring networks, data
remains scarce for many rural catchments (Buytaert et al., 2016;
Illingworth et al., 2014; UK Met Office, 2010). A variety of methods
are used for observing and/or estimating spatial rainfall patterns
(Bárdossy and Pegram, 2013; Durkee, 2010; Lanza et al., 2001;
Shaw et al., 2011) but data availability and accuracy issues still
persist on a local level. There are a number of issues; catchments
are spatially and temporally complex, and flash floods, while of
particular interest and importance to both hydrologists and com-
munities, are hard to characterise given that they are rare, spatially
localised, short lived and often occur in locations without formal
monitoring (Archer and Fowler, 2015; Archer et al., 2016; Perks
et al., 2016).

The absence of whole-catchment data can complicate the catch-
ment modelling process (Seibert and McDonnell, 2015), especially
when attempting to replicate or predict extreme events in unique
locations. While workers like Zhu et al. (2013, 2014) describe how
rainfall radar observations are becoming more readily available,
providing improved spatial and temporal coverage in hydrological
models, errors relating to timing and magnitude can propagate
through the modelling process (Harrison et al., 2000). Good quality
and detailed ground-based observations are therefore required to
create robust models (Beven, 2009; Beven and Westerberg, 2011;
Vidon, 2015). Through incorporation of such observations, the
improved predictive power of the model will then play a signifi-
cant role in influencing choices made by stakeholders in the catch-
ment characterisation and management process.

The co-production of ‘indigenous’ knowledge and the activity of
community-based monitoring (and related activities described in
the literature using a range of terminology including citizen
science, volunteered geographical information (VGI), crowd-
sourcing, citizen observatory and participatory monitoring) is
rapidly expanding (Follett and Strezov, 2015; Pocock et al., 2014;
Wentworth, 2014). The term used depends on the degree of
‘volunteer’ involvement and the specific techniques adopted, but
in general they all refer to the participation of the public (i.e.
non-professionals) in the generation of new knowledge about the
natural environment (Buytaert et al., 2014; Pocock et al., 2014;
Starkey and Parkin, 2015). Regardless of which term is used,
encouraging general engagement, participation and empowerment
on a local level means that the public have the potential to offer
timely and low-cost solutions to the data collection phase in catch-
ment science. Social benefits to the community are also valuable,
supporting policies and management frameworks which increas-
ingly request an integrated and bottom-up approach to catchment
management. A relevant example includes the emerging ‘Catch-
ment Based Approach’ (CaBA, 2016) which has surfaced from the
EU Water Framework Directive and is managed in the UK by Defra,
the Department of Environment, Food and Rural Affairs.

The growth in more readily available and low-cost technologies,
such as smartphones, social media and the internet itself, is allow-
ing community-based initiatives to grow rapidly. Areas include
biodiversity (Sutherland et al., 2015), weather and climate
(Burakowski et al., 2013; Muller et al., 2015) and disaster manage-
ment (Aulov and Halem, 2012). Across North America the public
are collecting regular rain, hail and snow observations and sharing
them with the national CoCoRaHS network (http://www.cocorahs.
org/), and a similar scheme is also active primarily across Europe,
North America and Australia through the UK Met Office ‘Weather
Observations Website’ (http://wow.metoffice.gov.uk/).

It is only recently that this type of data collection activity has
started to flourish in hydrology and hydrogeology, for example,
in Ethiopia (Walker et al., 2016). Only a few examples exist in
the UK which specifically collect river and flood observations with
some form of public involvement, for instance the Wesenseit
(http://wesenseit.eu/) and Oxford Flood Network (http://flood.net-
work/). Even fewer studies have explored the potential value of
this data to support real hydrological applications, including catch-
ment modelling, primarily due to data quality concerns or general
lack of recognition (Buytaert et al., 2014, 2016; Muller et al., 2015).
Only a small number of studies have made use of crowd-sourced
data to validate their models, but they frequently discarded multi-
ple observations as location, date and time stamps were absent
(Fohringer et al., 2015; Kutija et al., 2014; Mazzoleni et al., 2015;
Smith et al., 2015). In addition, these studies either involved ‘reac-
tive’ data collection methodologies following large floods or used
synthetic data to imitate citizen science, thus did not actually
involve or even engage with the public. Full engagement is essen-
tial if ongoing community-based monitoring schemes are to be
relied upon by professionals and regularly harnessed as an addi-
tional source of catchment information. Nevertheless, scientists
and engineers are still generally reluctant to integrate this type
of data into their work, which Barthel et al. (2016) attributes to
professionals not being experienced enough to actually carry out
the full range of participatory activities required. This includes
engagement, facilitation, training and dissemination activities
which are all prerequisites of successful community-based moni-
toring schemes.

This paper presents results from a catchment study which
demonstrates the value of community-based observations for
understanding and modelling spatial and temporal catchment
response, including the ability to capture the shape, timing and
magnitude of flood peaks for a sequence of flash flood events. Data
quality issues are a particular concern with ‘citizen science’ studies
and we take this into account by applying appropriate data quality
checks before allowing further use of the data in the modelling
process. The modelling results presented also infer additional
information about the quality of the observations used. Walker
et al. (2016) concluded that data quality from community-based
observations can be of high quality if they are properly managed.
Our study takes this approach a step further as it is one of the first
assessments which embeds real community-based observations
into a detailed catchment modelling study. To achieve this, work
has been carried out on the Haltwhistle Burn catchment, a tribu-
tary of the River Tyne in northeast England, where a physically-
based, spatially-distributed hydrological catchment model, SHE-
TRAN (Ewen et al., 2000), has been used. The findings will be of
interest to catchment managers, hydrologists, as well as commu-
nity and environmental groups who have a common interest in
holistic catchment management and who wish to expand their
management toolkits.
2. Study area & focus community

Known for being located in the ‘Centre of Britain’, the 42 km2

steep and low stream order Haltwhistle Burn catchment responds
rapidly to heavy rainfall. This predominantly rural catchment suf-
fers frommultiple pressures (Fig. 1) and in recent years it has expe-
rienced a number of floods, including 2007, 2012, 2014 and winter
2015/2016. Flood risk is exacerbated as the main impact zone (the
town of Haltwhistle) is located at a ‘pinch-point’ close to the outlet,
and just downstream of an incised gorge section. The elongated
shape of the catchment and resulting river network have also been
influenced by the igneous Whin Sill outcrop which intersects this
area.

Rivers Trusts exist across the UK and aim to enhance their local
river basin with the help of volunteers and communities through
their charitable objectives. Tyne Rivers Trust (TRT) led an

http://www.cocorahs.org/
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Fig. 1. (i) Location and elevation map of the Haltwhistle Burn catchment, (ii) Haltwhistle Burn at high flow and (iii) Sediment deposited under a culvert in the town following
high intensity rainfall. Photographs have been provided by members of the community.
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ambitious multi-partnership restoration project from 2012 to 2015
with the aim of improving the health of the Haltwhistle Burn and
its tributaries, using community engagement from the onset (Tyne
Rivers Trust, 2015). Although the project focused around headwa-
ter runoff and pollution, flooding was also included as an objective
given that these issues are closely aligned. While TRT required evi-
dence to characterise the catchment and assist with designing and
implementing a suite of catchment management measures, no
monitoring stations operated within the catchment before the pro-
ject started.

The Haltwhistle Burn catchment and the already engaged ‘Halt-
whistle Burn River Watch Group’ offered a good case study site and
focus community to trial a community-based monitoring and
modelling approach. Although findings are location- and
community-specific, this case study site has numerous characteris-
tics and issues which are common to many rural UK catchments.
We therefore designed, implemented and facilitated a low-cost
community-based monitoring programme within the catchment
to support TRT’s existing restoration project (Large et al., 2017 in
press), to further understand flash flooding and to allow appropri-
ate alleviation measures to be designed and implemented.

3. Methodology

3.1. Overview

The value of quantitative and qualitative observations collected
by the local community have been demonstrated here by using the
data alongside a traditional monitoring network to build and run a
physically-based, spatially-distributed (PBSD) catchment model,
SHETRAN. The community-based data includes rainfall, river level
and flood observations, all of which have been used to extract tim-
ing and magnitude information for the April 2014 high intensity
rainfall event which occurred in the catchment. The modelling
framework involved calibrating, validating and accepting a ‘base-
line’ model which consists of rainfall data integrated from the best
available gauge combination (in this case, both community-based
and traditional ground-based gauges). While keeping all other
model settings and datasets the same, a ‘leave-one-out’ methodol-
ogy allowed the effect of different combinations of these rainfall
observations to be tested. All modelled outputs were statistically
and visually compared with traditionally-derived hydrographs, as
well as to each other. These community-based observations were
also compared with the same SHETRAN model using UK Met Office
rainfall radar observations over the same period.

3.2. Community-based monitoring

Participatory projects involving members of the public contain
a number of stages, from initial engagement activities through to
feedback and ongoing facilitation. Fig. 2 summarises the stages
involved in initiating the community-based monitoring network
in Haltwhistle. Key guidance documents such as those produced
by Pocock et al. (2014), Science Communication Unit (2013) and
Tweddle et al. (2012) were consulted for best practice during this
process.

Using TRT as a ‘gatekeeper’, an initial workshop was held by the
research team, inviting the already established River Watch Group,
as well as key partners in the wider community (land owners and
residents). Other engagement techniques were adopted, including
social media (@HaltwhistleBurn), local newspaper articles, the pro-
ject website (http://research.ncl.ac.uk/haltwhistleburn/) and
leafleting. Many authors, including Tweddle et al. (2012) have
argued that ongoing feedback is essential. The project website
therefore acted as an ongoing community-hub and toolkit, where
information and observations could be hosted.

Following these initial (but vital) engagement activities, a vari-
ety of simple low-cost citizen science style monitoring and data
submission tools were sourced or developed for use. Maximising
participation levels and ensuring relevant and meaningful param-
eters were recorded was at the forefront of the design process.
Unlike many projects which strap micro-sensors to volunteers or
their belongings (e.g. Castell et al., 2015; Hut et al., 2014), activities
were designed here to encourage long-term monitoring beyond
the lifetime of the project and for citizen scientists to physically
observe and learn about their weather and water environment
themselves, rather than simply distributing automatic sensors. In
order to maximise the usefulness of observations and improve

https://twitter.com/haltwhistleburn
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Fig. 2. Key stages involved during the community-based monitoring process to capture observations ready for the modelling activities.
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their quality, a ‘pro-active’ monitoring approach was adopted. This
involved training participants in advance so that they were confi-
dent to participate and collect good quality observations relevant
to the management process. It also meant that they knew what
to look out for both during and immediately after flash floods. Lam-
inated training cards were created to ensure this awareness, and
also to standardise monitoring methods (see examples in the Sup-
plementary Material).

Although a wide range of monitoring activities were trialled,
efforts ultimately focussed on rainfall, river levels and flood-
related evidence (Table 1). These were the most popular and fre-
quently observed parameters across the full monitoring period of
October 2013 to February 2016. Depending on user preference,
web forms, Excel spreadsheets and email, paper and face-to-face
meetings, Twitter and an Android ‘River and Weather’ app devel-
oped in-house were all used by volunteers to submit observations.

Once observations had been submitted and shared, datasets
were anonymised and databases created. In many cases, the obser-
vations were either photographs or videos (river levels and flood
information) which were named and ordered by date and time. A
large quantity of flood observations obtained from multiple mem-
bers of the community during the events of interest were analysed;
they were generally found to be self-consistent, confirming their
validity as evidence of the intense rainfall and high flow impacts
experienced on the ground. Quantitative observations were manu-
ally extracted from river level photographs by the lead author in
order to minimise error. Quality control checks were also manually
carried out on the rainfall datasets to ensure valid observations
were available for use. This involved comparing daily totals against
each other, checking for gaps and outliers in the datasets, only
authenticating extreme rainfall values when photographs/videos
of impacts aligned, and comparing observations against average
annual rainfall totals.

After establishing a network of manual rain gauges for ongoing
24-hour community observations, data from both ‘Townfoot’ (data
quality accepted, representing the town and lower catchment) and
Table 1
Examples of community-based monitoring techniques used in Haltwhistle which are rele

Parameter 24-hour rainfall totals River (water

Method Plastic manual rain gauge in back gardens,
placed at ground level. Graduated scale in
millimetres for quantitative observations
taken at the same time, usually every day
in the same location.

Manual river
(fixed) locatio
Posts’ erected
consistency. P
quantitative

Example
‘Cawburn’ (poor quality data sourced from the mid-catchment
region) were then used within this modelling study. These two
gauges offer a good comparison between datasets to emphasise
the importance of good quality citizen science observations. They
also contain data for the full modelling period of interest (January
2014 to May 2015). The spatial and temporal availability of
community-based observations used in the SHETRAN modelling
study are presented in Fig. 3, along with statistics which were used
to rule out the Cawburn gauge during the quality control process.
The Cawburn gauge was rejected for valid use because rainfall
totals were considerably underestimated, particularly with respect
to extreme events; it was, however, used in this modelling study to
demonstrate the effect of a poor quality community dataset on
model performance. The Cawburn observer originally highlighted
that their gauge may be invalid due to lack of regular maintenance.

Flood observations provided by the community highlight three
interesting high flow (flash flood) events. This paper explores all
three events, focussing mainly on Event 1 (further outputs for
Events 2 and 3 are in the Supplementary Material):

1. 30th April 2014: an intense convective storm (described as a
‘cloud burst’) which was localised over the town of Haltwhistle;

2. 8th August 2014: a convective summer storm falling on dry
ground and mainly in the upper catchment;

3. 22nd/23rd December 2014: an intense and prolonged period of
winter rainfall over a saturated catchment, causing widespread
flooding, and morphological response comprising mass trans-
portation and deposition of sediment.

3.3. Traditional hydrometric monitoring network

Prior to the project, there were no traditional ground-based
hydrometric monitoring networks in operation within the catch-
ment boundary. A traditional hydrometric monitoring network
was therefore set up alongside the community-based scheme to fill
the data gaps, capture local response and offer scientifically robust
vant to this modelling study.

) levels (sporadic/daily) Flood-related information

level gauge boards at key
ns. ‘River Watch Photo
to provide instructions and
hotographs or direct

measurements taken.

� Anecdotes/eye-witness descriptions;
� Photographs;
� Videos;
� Extra river levels.
All provided with date, time and locational
information.



Fig. 3. Spatial (i) and temporal (ii) availability of community-based observations used to model, along with a summary of the quality control checks used to accept or reject
individual rain gauges (iii). The Townfoot rain gauge has also been compared with traditional gauges (see Supplementary Material). Note that Cawburn rainfall totals are
significantly lower than expected, hence it was rejected. (See above-mentioned references for further information.)

E. Starkey et al. / Journal of Hydrology 548 (2017) 801–817 805
hydrological data. Rainfall and discharge datasets were necessary
to calibrate and validate SHETRAN, but also to demonstrate the
value of community-based input data (as rainfall influences
runoff).

An aerodynamic tipping bucket rain gauge and six pressure
transducers for water level recording were installed between Jan-
uary and May 2014. Flow gauging was required to convert water
level into discharge (Q) using stage-velocity-area derived rating
curves (see Supplementary Material for detail). Data from a nearby
UK Met Office daily rain gauge at Blenkinsopp Hall (west of the
catchment boundary) was also sourced from the British Atmo-
spheric Data Centre (BADC). The spatial and temporal availability
of traditional data used in SHETRAN are shown in Fig. 4. A few gaps
exist in the time series because of equipment failure, including bat-
tery failure, network issues, data storage capacities and damage
caused by cattle.
Met Office 1 km NIMROD rainfall radar data was also sourced
from the BADC and represents an alternate source of traditional
data. It was only feasible to study the three flood events listed
above due to the large the amount of processing required to extract
and prepare the data, as well as run SHETRAN.

3.4. Hydrological modelling using SHETRAN

SHETRAN (Système Hydrologique Européen TRANsport) is a
PBSD hydrological model which is capable of simulating
spatially-distributed hydrological processes at a catchment scale
(Newcastle University, 2016). Catchments are represented by a
three-dimensional discretised grid and a simplified river network
(known in this model as ‘channel links’), thus the model can repre-
sent both surface and subsurface processes. SHETRAN is well-
established and researched in the literature, with modellers utilis-



Fig. 4. Spatial (i) and temporal (ii) availability of traditional datasets used in this study. Colours correspond to each individual gauge on the map.
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ing it to obtain discharge information for a variety of applications
(Birkinshaw et al., 2011, 2014; Mourato et al., 2015; Parkin et al.,
2007). However, SHETRAN has not yet been used to demonstrate
the value of community-based observations. Being a PBSD model,
it provides an opportunity to use observed data from various
sources and locations, and integrate them into the hydrological
cycle.

The most recent version of SHETRAN was sourced from
Newcastle University (2016). Table 2 summarises the input data
sourced and prepared for the Haltwhistle Burn catchment, along
with other relevant model settings required. SHETRAN was set up
to run between 26/01/2014 00:00 and 01/06/2015 00:00 GMT, a
period of 491 days whichmakes use of the best available data when
both community-based and traditional datasets overlap.

Based on the input layers, SHETRAN represents the Haltwhistle
Burn catchment using the river network and catchment grid pre-
sented in Fig. 5. Output locations (Qsim) corresponding to each
gauging station (Qobs) are also highlighted. The model described
in this section is referred to as ‘Model A’. Where changes have been
made to input rainfall, a new model name is used.

SHETRAN has been manually calibrated using an iterative
approach by systematically changing the values of input parame-
ters. The parameters are those which are reported to be hydrolog-
ically sensitive in the literature and in SHETRAN (Birkinshaw et al.,
2011, 2014; Ðukić and Radić, 2016; Mourato et al., 2015), including
the Strickler overland flow (SOF) roughness coefficient, soil depth
(SD), saturated hydraulic conductivity (Ks) and the ratio of actual
to potential evapotranspiration (AE/PE). These parameters can be
adjusted within the soil and land cover layers and therefore allow
the model to account for local variability in surface and subsurface
properties. The aim of the calibration phase is to alter the model
parameters in order to minimise the error between Qobs (the
benchmark) and Qsim, whilst still being physically acceptable
(Beven, 2009). The validation phase involved running the model
for an independent set of data to check that the model settings still
produced an acceptable simulation. A split sample test was used to
divide the calibration and validation periods (see Table 3); both
periods contain an adequate range of hydrological conditions.

Alongside graphical and visual inspection, it is good practice to
use a combination of statistical performance indicators to assess
model performance (e.g. Hall, 2001; Krause et al., 2005; Moriasi
et al., 2007). The following tests, which are frequently used to
assess hydrographs, were used. The acceptable performance values
listed for each were chosen based on limits reported in the litera-
ture as providing reliable modelled outputs (Moriasi et al., 2007;
Mourato et al., 2015):

� Coefficient of determination (R2), with 0.7 being used as the
minimum acceptable value;

� Root mean square error (RMSE), to provide an indication of
performance in the same units as Q;

� Percentage bias (PBIAS), with ±25% being reported as the
maximum acceptable error;

� Nash-Sutcliffe Efficiency (NSE) coefficient, with anything above
+0.5 reported to provide at least a ‘good’ fit.

In order to demonstrate the value of community-based observa-
tions, a ‘leave-one-out’ methodology was adopted. The leave-one-



Table 2
Input data sourced and prepared ready for the Haltwhistle Burn SHETRAN model. Additional information is given in the text.

Item/setting
required

Data source Preparation for SHETRAN

Model
resolution

100 m chosen – maximum resolution feasible (when considering model stability and simulation time).

Mask Outline derived using EDINA Digimap 5 m Panorama elevation data. Aggregated to 100 m (4110 active cells in plan view available for simulation).

Minimum &
mean filled
DEM

50 m panorama elevation data supplied by EDINA Digimap. Elevation ranges from 101 m to 344 m AOD. Resampled to 100 m resolution grid using minimum and mean aggregation techniques.

Precipitation
(P)

Combination of data from Figs. 3 and 4 and rainfall radar used in the main modelling framework. Refer to the Thiessen polygons in Fig. 6 for spatial interpolation and distribution. Gibbs Hill, Blenkinsopp
Hall and Townfoot gauges were initially used to set up the model.

Potential
evaporation
(PE)

No automatic weather stations (AWS) available within catchment boundary.
Met Office Spadeadam AWS used from the BADC (located 10 km north west from the catchment):
� Maximum and minimum temperature;
� Wind speed;
� Relative humidity.
Spadeadam did not contain any sunshine data. Brampton manual weather station run by a Met Office
volunteer (located 21 km west from the catchment) used instead for ‘total sunshine hours’. No gaps
found in datasets used.

PE calculated using five weather parameters and the UN Food and Agriculture
Organization recommended Penman-Monteith approach (Raes, 2012). This approach
represents evaporation from a vegetated surface with an unlimited supply of water, which
was considered sufficient for this study site and land cover. An open access tool described
by Raes (2012) was used to calculate PE automatically. Final PE dataset was aggregated to
a 24-hour resolution and used uniformly across the catchment.

Soil & geology Peaty (upper catchment) and loamy (mid/lower catchment) soils with a moderately productive aquifer
dominate.
The EU soils database and British Geological Survey hydrogeology layers (1 km resolution) initially used to
obtain realistic properties and set up the model.

Resampled to 100 m resolution grid. Calibration activities later refined the soil and
geology datasets to allow for local variations in runoff.

Land cover 25 m Land Cover Map 2007 supplied by EDINA Digimap. Catchment is dominated by grassland (64%),
evergreen forest (18%) and Shrub (11%).

Land cover codes reclassified to fit SHETRAN (arable, bare ground, grass, deciduous forest,
evergreen forest, shrub and urban). Aggregated to 100 m grid. Calibration activities later
refined land cover properties to allow for local variations in runoff.

Lakes Ordnance Survey 1:10,000 Master Map shapefiles. Includes Greenlee (0.51 km2) and Broomlee (0.30 km2)
Loughs in the upper catchment.

Converted to 100 m raster grid.

Max & min
temperature

Temperatures are used directly in SHETRAN only for simulating snowpack development and snowmelt; there were no snow events during the simulation period.

Output
resolution &
locations

SHETRAN was set to produce simulated discharge (Qsim) every 5 min for the six gauging stations which contain observed discharge (Qobs).
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Fig. 5. SHETRAN 100 m grid and river network used to represent the Haltwhistle Burn catchment. Coloured dots represent locations where modelled discharge (Qsim) have
been extracted. Watercourse abbreviations are referred to in later sections.

Table 3
Defining the calibration and validation periods within the full simulation period of
interest.

Simulation
period

Time period (from – to) (GMT) Number of
days

Calibration 28/09/2014 00:00 to 01/06/2015
00:00

246

Validation 26/01/2014 00:00 to 27/09/2014
23:55

245
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out procedure involved re-running the already calibrated, there-
fore accepted, SHETRAN model multiple times. On each occasion
different elements of information were excluded from the simula-
tion to test how well the model performs without it. Beven (2009)
and Otieno et al. (2014) advocate leaving observations out of the
rainfall interpolation and modelling process as a way of demon-
strating their value. Such an approach has allowed different
sources (therefore combinations) of rainfall data to be used and
assessed against the ‘baseline’ (Model A). This approach was feasi-
ble as precipitation is SHETRAN’s main temporal and spatial driv-
ing variable. Making use of a ‘patchwork’ of heterogeneous
information, combinations used were dictated by the spatial and
temporal availability of input precipitation data previously
described. SHETRAN was not recalibrated before each combina-
tion; other than the rainfall data, all parameters and datasets
remained constant throughout. The performance of Model A was
expected to degrade with diminished rainfall information, offering
an opportunity to test model performance in relation to each other.

Point rainfall measurements were spatially interpolated across
the catchment to create a 100 m resolution grid using conventional
Thiessen polygons (Fig. 6). Although there are many other interpo-
lation techniques available (e.g. Shaw et al., 2011), Thiessen poly-
gons, which assign areas of the catchment to the nearest point
measurement, are able to represent localised storms well if enough
rain gauges are present (therefore providing a good test here).
Interpolation methods, such as arithmetic mean, cannot achieve
this and more advanced geostatistical techniques were not
expected to yield better results. Alongside catchment-wide rainfall
radar data, traditional, community-based and a combination of
both data sources were used to create these spatial maps. It should
be noted that the Cawburn gauge data was also incorporated into
some scenarios to demonstrate potential implications when ‘re-
jected’ observations are used. Since community-based rainfall
observations and the UK Met Office Blenkinsopp Hall gauge have
coarser temporal resolutions, these data have been disaggregated
into 5-min timesteps by imposing the same rainfall pattern from
a traditional 5-min resolution rain gauge (Gibbs Hill), in model sce-
narios where this detail is available (Models A, B and E). Where this
detail is not available (Models C, D, F and G), they have kept their
original resolution to allow model performance to be evaluated
whilst using these temporally coarser observations. The statistical
performance indicators were then utilised to quantitatively assess
the effects of each rainfall combination.
4. Results & discussion

4.1. Enhancing SHETRAN’s inputs using quantitative and qualitative
observations

Analysis of different sources of rainfall has highlighted the
importance of spatial and temporal observations, particularly dur-
ing the period of intense localised rainfall experienced on the 30th
April 2014 (Event 1). Fig. 7 displays a set of 48-hour cumulative
rainfall plots which represent Event 1 for each of the three gauges
used to initially build Model A. It is clear that the traditional gauges
observed much lower rainfall totals (17.6 mm and 17.9 mm) com-
pared with community-based (41 mm), despite being only a few
kilometres apart. If the community-based observations had not
been available, the traditional gauges would have completely
missed these larger totals observed over the lower catchment
and the impact zone. However, Fig. 7 also confirms that while rain-
fall radar totals were significantly lower than those observed by
the community, the radar observations did show the spatial loca-
tion and extent of the storm and provided detailed temporal reso-
lution, thus have captured steeper cumulative trends, hence
implying a more intense, short-lived storm.

One obvious drawback with community-based rainfall observa-
tions is that they are usually reported on a 24-hour basis. If used in
isolation at this resolution, only rainfall totals can be extracted.
However, the full range of qualitative and quantitative
community-based observations displayed in Fig. 8 (photographs,
videos, tweets and anecdotes) illustrate how the wider community
can contribute to the generation of an ‘event timeline’ which



Fig. 6. Combination of rain gauges and resulting Thiessen polygons used to spatially estimate precipitation across the catchment in Models B-G (includes original Model A), as
well as a 1 km resolution grid which utilises Met Office rainfall radar data (Model H). Original rainfall datasets have been directly fed into these models, rather than
calculating areal rainfall, in order to capture spatial variability.

Fig. 7. Left: 48-hour cumulative rainfall plots for Event 1 (30/04/2014 00:00 to 02/05/2014 00:00 GMT) for each gauge initially used in Model A, and rainfall radar where each
gauge overlaps. Right: Rainfall radar accumulations for the same period across the catchment. Ground-based gauges are overlaid onto the radar grid. Plots relating to Events 2
and 3 can be found in the Supplementary Material.
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Fig. 8. A timeline of Event 1 (30th April 2014) created by harnessing a range of community-based quantitative and qualitative observations collected on the ground. Note
quotes such as ‘‘Monsoon alert. Heaviest rain I’ve seen in ages!”, and early warnings submitted and then crowd-sourced using Twitter.
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specifically highlights when the storm started and finished.
Together with the quantitative rainfall totals, this simple source
of ground-based evidence allows duration, magnitude and inten-
sity information to be inferred on a local scale. For Event 1, after
observations were captured and shared by the public, it was clear
that the event was extremely intense with 41 mm falling in just
30 min in the lower Haltwhistle Burn catchment. This was derived
by assessing the timeline of observations presented in Fig. 8, which
visually and anecdotally confirms that heavy rain was experienced
locally on the ground between 15:20 and 15:50 (BST). An event as
intense as this would also be required to generate the flood and
debris-related impacts witnessed on the ground by the commu-
nity. Rainfall totals can thus be disaggregated across the specific
time period when it was physically observed (in this case,
41 mm of rain disaggregated evenly across 30 min), rather than
24 hours, to realistically replicate a high intensity storm. SHE-
TRAN’s precipitation time series were therefore updated to reflect
the nature of Event 1 before Model A was calibrated.

This heterogeneous data integration process has only been pos-
sible due to the number of community-based observations being
available and because the rainfall event hit the town where people
live and walk past the Haltwhistle Burn. Event 2 (8th August 2014)
provides an example where the storm was centred higher up in the
catchment, meaning the downstream community were unable to
provide information to help interpret quantitative rainfall totals.
Event 3 (in December 2014) was more widespread with saturated
antecedent conditions, so observations captured by the community
were useful for highlighting downstream impacts. The value of the
community-based rainfall observations for Event 1 have therefore
been enriched as it was possible to extract important hydro-
information from the patchwork of informal and heterogenic
community-based observations, and utilise them within SHETRAN
to characterise the high intensity storm. These sub-hourly and
highly localised hydrological events, which are still poorly moni-
tored and understood by professionals, require this level of detail
in order to better characterise them and their impacts (Archer
and Fowler, 2015; Archer et al., 2016; Perks et al., 2016).
4.2. Final calibration and validation results (Model A)

Initial calibration simulations for Model A reproduced the over-
all shape and timing of each hydrograph reasonably well. In order
to improve SHETRAN’s ability to reproduce Qobs at Gibbs Hill, the
SOF values of the actual channel links of the loughs (links which
overlapped the lake layer) needed to be reduced from 3.0 to 0.1.
These results have subsequently highlighted the importance of
the two lakes (Greenlee and Broomlee Lough – shallow water
and wetland nature reserves) in the upper catchment and their
ability to naturally attenuate high flows during and after rainfall.
Final model settings adopted are listed in the Supplementary
Material.

Final calibration and validation results are presented in Table 4.
Fig. 9 also contains graphical comparisons of Qobs and Qsim (using
Gibbs Hill, Sheep Dip and Broomshaw as examples) as well as Qsim
for each gauging station. All of the statistics fall within acceptable
limits, except for the Pont Gallon Burn at Sheep Dip during the val-
idation period. This has been attributed to the Pont Gallon Burn
sub-catchment not containing its own rain gauge, which would
have been necessary to fully capture the localised rainfall experi-
enced during Event 2. Despite this, the model’s overall average
(catchment-wide) performance is still well above the acceptance
levels across the multiple indicators, so this SHETRAN model was
accepted for its intended use. The multi-location and
multi-response approach has highlighted the importance of sub-
catchment information and catchment connectivity to the



Table 4
Final statistical results for the calibration and validation periods. Results relate to Model A using best available data, including quantitative and qualitative community-based
observations (watercourse acronyms: Caw Burn, CB; Haltwhistle Burn, HB; Pont Gallon Burn, PGB).

Gauge/Output Location R2 RMSE (m3/s) PBIAS (%) NSE

Calibration period: 28/09/2014 00:00 to 01/06/2015 00:00 (where observed data is available)

CB at Gibbs Hill 0.92 0.26 �5.56 0.85

PGB at Sheep Dip 0.83 0.04 3.33 0.78

PGB at Cleughfoot 0.89 0.11 �13.29 0.88

CB at Cleughfoot 0.92 0.35 �9.31 0.90

CB at Cawfields 0.84 0.36 �6.71 0.86

HB at Broomshaw 0.88 0.47 0.48 0.77

Average 0.88 0.27 �5.18 0.84

Validation period: 26/01/2014 00:00 to 27/09/2014 23:55 (where observed data is available)

CB at Gibbs Hill 0.90 0.10 10.47 0.88

PGB at Sheep Dip 0.52 0.04 �47.63 0.21

PGB at Cleughfoot 0.77 0.09 �12.20 0.76

CB at Cleughfoot 0.89 0.19 �8.34 0.86

CB at Cawfields 0.86 0.24 �4.77 0.85

HB at Broomshaw 0.87 0.14 14.86 0.72

Average 0.80 0.13 �7.94 0.71
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calibration process as the Haltwhistle Burn catchment does not
respond in a uniform way.

4.3. Performance of SHETRAN using different combinations of rainfall
data

Models B-G have been assessed across the full modelling period
to determine the change in SHETRAN’s performance in relation
to the calibrated and validated (therefore accepted) baseline
model, A.

Table 5 (i) presents the statistical results (averaged across all six
gauging stations) for each model simulated i.e. rain gauge combi-
nation tested. The most notable trends exposed are that model per-
formance progressively deteriorates from Model A to G and, as
expected, A continues to be the most acceptable model for use.
These trends are strengthened by the fact that multiple statistical
performance indicators express the same trends, as well as overall
discharge error (as PBIAS results, which relate to mass balance,
illustrate). A more pronounced case for these trends is exemplified
in Table 5 (ii) which present the same set of statistics, but only for
the Haltwhistle Burn at Broomshaw, where the bulk of
community-based observations exist. For instance, the NSE coeffi-
cient falls by 1.30 when comparing Model G against A, whereas the
difference between the same two models is only 1.09 when assess-
ing all six gauging stations at the same time. Note that this trend is
still apparent despite the Broomshaw gauge analysis excluding
Event 1 (i.e. missing Qobs).

The following points can also be noted when assessing the full
modelling period (rather than individual peaks):

� The performance of Model A is only marginally better than B,
implying both should be acceptable for wider use. The use of
community-based observations has not therefore degraded
SHETRAN’s predictive power, but similar results would have
been obtained for the full modelling period if only two tradi-
tional gauges (Model B) were available. Nevertheless, this com-
parison emphasises that it is feasible to create an acceptable
model containing community-based observations and achieve
statistical results similar to those obtained in other SHETRAN
studies (Birkinshaw et al., 2011, 2014);
� ‘Rejected’ community-based rainfall observations have signifi-
cantly affected (degraded) model performance, particularly
the mass balance aspect. Comparisons between Model A and E
show this most clearly;

� Use of community-based observations alone significantly
degrades model performance. However, the use of one good
quality community-based rain gauge (Model D) produces statis-
tical results which are similar to the outputs obtained when
using one traditional rain gauge (Model C). However, this is
not the case for the ‘rejected’ community-based data when used
in isolation (Model G);

� Models containing two or three rain gauges, for which it has been
possible to disaggregate time series into 5 min intervals, have pro-
duced reliable outputs. This is also true for models containing
input data which had not been rejected during the quality control
process. Models using only one rain gauge at a 24-hour resolution
(Models C and D) would be rejected here. Nevertheless, some
modelling studies regularly use these coarser resolutions.

Overall, these findings confirm that the resolution of the input
data, the data quality and the total number of rain gauges used
override the importance of whether or not community-based
observations are used alongside traditional sources. These are
obvious and important factors which modellers traditionally
consider (Beven, 2009; Beven and Westerberg, 2011; Montanari
and Di Baldassarre, 2013). This suggests that there is potential
for integrating community-based observations with traditional
sources to fill monitoring gaps, to support the modelling process
and to characterise catchments on a local scale meaningful to res-
ident communities. Findings here also complement results
obtained by Mazzoleni et al. (2015) who found that synthetic inter-
mittent observations improved model performance for streamflow.
It is also important to remember that traditional observations are
not free from error and can still provide incorrect information
(Beven and Westerberg, 2011).

4.4. Importance of community-based observations during flood events

Event 1 (30th April 2014) has been isolated here for analysis to
determine how SHETRAN performs during a localised flash flood



Fig. 9. Qobs and Qsim results for the Caw Burn at Gibbs Hill, the Pont Gallon Burn at Sheep Dip and the Haltwhistle Burn at Broomshaw, plotted (i-iii) for Model A over the
calibration and validation periods. Qsim for all gauging stations are also presented together, which emphasises variation in sub-catchment response (iv).
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event when a patchwork of community-based observations are
most abundant, as well as rainfall radar.

Table 6 (i) contains the statistical results relating to Event 1,
comprising an analysis covering four days to capture the rise and
recession of a single event-based hydrograph. The dominant pat-
tern generally involves a degradation in model performance when
rain gauges are removed or rainfall radar is used. Performance
diminishes when community-based observations are completely
absent or when the Thiessen polygon over-exaggerates the spatial
scale of the convective storm (in this case the 41 mm captured by



Table 5
Average (i) and Broomshaw only (ii) SHETRAN results for Models A-G across the full modelling period (rain gauge combinations: � traditional and community-based, * traditional
only, r community-based only and e rejected).

Model, rain gauge combination & total number of rain gauges used (brackets) R2 RMSE (m3/s) PBIAS (%) NSE

Full modelling period: 26/01/2014 00:00 to 01/06/2015 00:00 (where observed data is available)
(i) Average results across all six gauging stations:

A � (3) 0.86 0.22 �5.17 0.83

B * (2) 0.85 0.23 �4.90 0.82

C * (1) 0.61 0.33 2.98 0.61

D r (1) 0.55 0.36 �5.10 0.48

E �e (4) 0.58 0.30 25.09 0.53

F re (2) 0.11 0.63 59.98 �0.23

G e (1) 0.05 0.64 61.08 �0.26

Full modelling period: 26/01/2014 00:00 to 01/06/2015 00:00 (where observed data is available)
(ii) Results for the Haltwhistle Burn at Broomshaw only:

A � (3) 0.90 0.39 2.42 0.81

B * (2) 0.89 0.40 2.71 0.80

C * (1) 0.80 0.42 12.01 0.77

D r (1) 0.79 0.41 6.56 0.78

E �e (4) 0.93 0.32 23.48 0.86

F re (2) 0.46 0.99 74.21 �0.26

G e (1) 0.09 1.07 80.34 �0.49

Table 6
Average (i) and Cawfields only (ii) SHETRAN results for Models A-H across Event 1 (rain gauge combinations: � traditional and community-based, * traditional only,
r community-based only and e rejected). � Assessment excludes any Broomshaw observations.

Model, rain gauge combination & total number of rain gauges used (brackets) R2 RMSE (m3/s) PBIAS (%) NSE

Event 1 (30th April): 29/04/2014 00:00 to 03/05/2014 00:00 (� where observed data is available)
(i) Average results across five gauging stations:

A � (3) 0.76 0.44 13.94 0.49

B * (2) 0.43 0.60 21.55 0.22

C * (1) 0.32 0.64 36.01 0.03

D r (1) 0.53 1.55 �189.92 �134.82

E �e (4) 0.80 0.24 �19.10 �4.72

F re (2) 0.65 0.82 �148.71 �50.24

G e (1) 0.58 0.74 �122.50 �47.17

H Rainfall radar � 0.52 0.56 13.55 0.09

Event 1 (30th April): 29/04/2014 00:00 to 03/05/2014 00:00
(ii) Results for the Caw Burn at Cawfields only:

A � (3) 0.75 1.03 28.67 0.54

B * (2) 0.09 1.50 42.53 0.02

C * (1) 0.03 1.57 52.64 �0.08

D r (1) 0.92 2.46 �82.72 �1.65

E �e (4) 0.96 0.55 18.78 0.87

F re (2) 0.96 1.09 �69.08 0.48

G e (1) 0.95 0.99 �43.65 0.57

H Rainfall radar � 0.23 1.40 38.68 0.14
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the community). Analysis confirms that the community-based
observations have helped to capture river response following the
storm but the spatial extent of the event is not accurately repre-
sented, even by Model A. Table 6 (ii) contains SHETRAN’s response
for the Caw Burn at Cawfields. This gauging station is used to rep-
resent river response upstream of the town because observed
water level (therefore discharge) was not recorded at Broomshaw
for this period (see data gap in Fig. 4). Compared to the catchment’s
average response, model performance at the Cawfields gauge is
significantly enhanced when community-based observations are
incorporated.

Fig. 10 presents discharge plots for each model at each gauging
station, along with observed data for comparison. Manual river
levels observed by the community (subsequently converted to



Fig. 10. Hydrograph shape: final simulated discharge obtained from SHETRANModels A-H for all relevant gauging stations during the April 2014 event. Includes manual river
level gauge board (RLGB) observations collected by the community which have been converted into discharge. Note that discharge has been plotted using a logarithmic
scale.

Fig. 11. A comparison between observed Q (Qobs) and modelled discharge (Qsim) for Models A-H at Cawfields Caw Burn during the 30th April 2014 event: peak discharge
(left) and timing of the peak discharge (right).
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discharge using the site’s rating curve) have also been added to
the Broomshaw comparison. Graphs help to interpret model per-
formance relating to the shape of the hydrographs, and more
specifically, the rapid rise which is only reproduced when
community-based observations are integrated. Use of rainfall
radar appears to improve the response of the model compared
with use of only the two traditional rain gauges, but a flashy
response is still absent. Although the community failed to record
a river level (therefore river level gauge board (RLGB) Qobs, once
converted to discharge) as the burn peaked at Broomshaw, the
modelled hydrographs did correlate well with the six spot
readings that they did manage to observe. This is true for all
but the ‘traditional only’ models. A variety of quantitative and
qualitative community-based observations have therefore been
beneficially incorporated into SHETRAN and used to validate the
model. However, the value of these observations are governed
by a number of factors, for instance, when the peak exactly occurs
(time of day, week and season) and proximity of monitoring sites
to residents’ homes.

Fig. 11 quantifies the impacts of each rain gauge combination
on timing and magnitude of the flood peak for the Caw Burn at
Cawfields. For this particular case, the following findings are high-
lighted when compared with observed peak discharge:

� Models B and C (traditional only combination) underestimate
the flood peak by 84% and 87% respectively. Rainfall radar clo-
sely follows with 81%;

� Model D, which used a uniform grid of community-based obser-
vations, overestimates the flood peak by 156%;

� The best representation of magnitude comes from Model E, a
combination of four gauges which underestimates the flood
peak by 32%. This is better than Model A, and despite containing
the rejected rain gauge, Model E is likely to have created a bet-
ter representation of the rainfall extent;



Fig. 12. NSE coefficients obtained from three key models of interest (Model A, B and Rainfall radar), each shown for the full modelling period (Jan 2014 – May 2015) and
Events 1, 2 and 3. Graphs display average NSE results across all six gauging stations.
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� All models containing community-based observations produce
peaks which arrive within 55 min of the observed, with Model
E being the closest at 35 min. Extra rain gauges above the town
would have captured the extent of this intense storm more pre-
cisely, which in turn would generate a more accurate time lag;

� The timing of the traditional only combinations were consider-
ably delayed because the hydrographs were too attenuated. The
peak of the flood was over 9 h (Model B), 10 h (rainfall radar)
and even as delayed as 17 h (Model C).

Event 1 has also been compared here against Event 2 (August)
and 3 (December) to determine how far the value of community-
based observations varies depending on the nature and length of
the hydrological event (the same set of statistics and plots as those
in this section are available in the Supplementary Material for
these two additional events). Fig. 12 highlights the key differences
between Events 1, 2, and 3, and the full 491 days modelled. The
comparison uses NSE coefficients obtained, on average across the
six gauging stations, from Model A and also B and H (radar) as
these models alone present practical combinations which stake-
holders would typically use (i.e. the best combination of traditional
ground-based gauges (B) or rainfall radar (H) data which would
normally be available) if the community-based observations did
not exist to create Model A. Based on these plots, it is clear that
the inclusion of community-based observations alongside tradi-
tional data (Model A) adds most value (higher NSE) to the localised
flash flood event in April. Very little value is added during the
longer modelling period and the prolonged winter storm, meaning
that the traditional gauges alone were sufficient. Little value is also
added to Event 2, a short-lived storm which was concentrated over
the upper catchment. Nevertheless, the outcome obtained from
Event 2 was significantly governed by the location of this particular
storm and the fact that there were no community-based rain
observations to represent it. Models containing rainfall radar
observations consistently reduced model performance, thus has
not been affected by the nature or length of the storm.

The patchwork of quantitative and qualitative community-
based observations used here were required to help capture the
intense rainfall and flash flood response during Event 1. Smith
et al. (2015) and Kutija et al. (2014) also emphasise the value of
community-based observations during these hydrologically impor-
tant events given that they are short-lived. Accurate coverage of
the rainfall extent is also required, however, as it can cause signif-
icant over- or under-estimation if incorrect. Timing and magnitude
are important factors which affect public response on the ground,
response by organisations responsible for flood forecasting and
warning, as well as catchment managers designing intervention
measures to withstand or relieve short-lived floods. Community-
based observations can therefore make a difference; they have
the potential to increase the spatial resolution of ground-based
gauges, as well as ground-truth rainfall radar observations which
are routinely adjusted using gauge-based factors (Wang et al.,
2015). Our findings also compliment Seibert and McDonnell
(2015), who found that a small number of ‘soft’ and ‘fuzzy’ qualita-
tive (knowledge-based) observations are extremely useful for
understanding and modelling how catchments work, particularly
under high flow conditions. Seibert and McDonnell (2015) also
suggest combining these informal observations with the often lim-
ited network of traditional gauges. However, such an approach
relies on unpaid members of the public to be physically present,
actively monitoring and collecting good quality observations,
which cannot always be guaranteed.

In this case study, seven manual rain gauges were originally dis-
tributed within the Haltwhistle Burn catchment ready for
community-based monitoring, but only two of these (Townfoot
and Cawburn) returned data covering the full modelling period.
Due to the nature of citizen science and the practicality of getting
volunteers to observe parameters manually over time, it is to be
expected that datasets may be missing or incomplete from some
monitoring sites. If the community were to be informed that their
observations are most useful during localised flash flood events,
then they can prioritise their monitoring efforts and pinpoint these
specific occasions. In turn, the most valuable observations are more
likely to be captured for a greater number of monitoring sites, and
with an increased temporal resolution. There are obvious health
and safety implications for members of the general public with this
regard and the engagement, training and facilitation activities
required to activate community-based monitoring schemes should
be prioritised.

5. Conclusions

The Haltwhistle Burn catchment and focus community have
been used to demonstrate the value of real community-based
observations using a PBSD catchment model (SHETRAN) under a
range of scenarios. It is clear that the wider public can provide
valuable inputs via citizen science style data collection activities
pertinent to catchment characterisation, modelling and manage-
ment. Community-based activities are less complicated, signifi-
cantly cheaper and less demanding (e.g. for power and
processing) than their traditional counterparts, yet results here
highlight how effective and valuable they can be. Examples pre-
sented here emphasise the importance of spatial and temporal
information at a sub-catchment scale. Two key conclusions can
be drawn from this work:

1. Our modelling results illustrate how a patchwork of quantita-
tive and qualitative community-based observations (which
together yield information relating to rainfall totals, timing,
duration, and therefore intensity) are required alongside tradi-
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tional sources of hydro-information in order to fill spatial and
temporal data gaps, and to characterise local catchment
response more accurately than using traditional data alone. This
includes the behaviour, timing and magnitude of river response
during and after floods;

2. Evidence presented here confirms that community-based rain-
fall observations are most valuable during local flash flood
events. This information would otherwise often be missed, be
under-unrecorded by existing ground-based gauges, or else be
significantly underestimated by rainfall radar. Community-
based observations are less valuable during prolonged and
widespread floods, or over longer hydrological periods of
interest.

Community-based observations have the potential to add spa-
tial detail and to ground-truth existing traditional sources of catch-
ment data, providing accurate information to support monitoring
applications nationally, including weather and flood forecasting,
modelling and longer-term catchment management initiatives. If
community-based monitoring efforts are to be prioritised or
streamlined, then, as with any hydrological monitoring, this poten-
tial can only be realised if appropriate procedures for quality con-
trol checking are established and followed. If the public recognise
which of their observations are most valuable, and they are prop-
erly trained, then they are more likely to continue monitoring and
providing good quality datasets which can contribute to the catch-
ment management toolkit in the longer term.

It is acknowledged that the results presented here are location-,
community-, event- and equipment-specific. However, this case
study provides an early insight into what can be achieved and
the value that is added when public participation is integrated into
the catchment characterisation and management process. Data
outcomes will evolve and improve over time given that citizen
science is flourishing in line with technological advances, but will
be naturally limited by participation levels. Overall, we conclude
that a citizen science approach offers local communities an excit-
ing way to learn about their local water environment, engage with
professional stakeholders, and be actively part of the catchment
management process.
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