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Abstract 

  This study investigates the potential of temperature as a tracer to provide 

insights into flow pathways. The approach couples fieldwork and modelling 

experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South 

Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil 

temperature, spring temperature, and the stream temperature and use was made of an 

existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant 

flow in this hollow is a result of subsurface stormflow, and previous work has 

suggested that the water flows vertically down through the soil and then subsurface 

stormflow occurs at the soil/bedrock interface where the water is deflected laterally. 

The depth of the subsurface stormflow was previously thought to be around 2.2m. 

However, analysis of the new spring, stream and soil temperature data suggests a 

deeper pathway for the subsurface stormflow. Modelling of water flow and heat 

transport was carried out using SHETRAN and this was calibrated to reproduce the 

water flow in the entire Slapton Wood catchment and soil temperatures in the 

Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow 

with two different soil depths. A depth of 2.2m, based on previous knowledge, was 

unable to reproduce the Eastergrounds spring temperature. A depth of 3.7m produced 

an excellent comparison between measured and simulated stream and spring 
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temperatures in the Eastergrounds Hollow. This work suggests that the depth of the 

flow pathways that produce the subsurface stormflow are deeper than previously 

thought. It also provides a demonstration on the use of temperature as a tracer to 

understand flow pathways. 

Introduction 

The understanding of flow pathways in the subsurface has improved greatly in 

recent years. It is now accepted that in many catchments the hydrograph is dominated 

by the displacement of pre-event water (McDonnell, 2003; Beven, 2006). As Kirchner 

(2003) notes, catchments store water for considerable periods of time but then release 

it promptly during storm events. The mechanisms of infiltration-excess overland flow 

and saturation excess do not help to explain the prompt release of ‘old’ water within a 

flashy hydrograph. One explanation for displacement of pre-event water is the 

difference between the celerity of the discharge response and the velocity of the water 

(and conservative tracer) particles. The storage-discharge response is governed mainly 

by the celerities with which pressure effects are transmitted through the system 

(Beven, 2006). However, underlying the celerity by which water is transmitted 

through the subsurface is the flow of the water particles. As Beven (2006) points out, 

we still have much to learn about the velocity distributions and residence time 

characteristics of the water particles.  

Catchments are extremely complex with great heterogeneity at small spatial 

scales. At the larger catchment scale, some of the complexity collapses but other 

processes such as macropore flow become important (Blöschl, 2001). One approach 

to understand the complexity of the processes that are occurring at the catchment scale 

is to use tracer experiments (Kirchner et al. 2001; Uhlenbrook et al. 2004; Soulsby et 

al. 2006). For example, Soulsby et al. (2006) argues that tracers, when combined with 



 

Page 3 of 42 

modelling, can aid the identification of runoff sources and provide a means of 

estimating catchment residence times and help to infer processes that are taking place 

at the catchment scale. The problem with many tracer experiments is the poor 

resolution of the data and the expense of analysing the water samples. Kirchner et al. 

(2004) found that daily or monthly data miss much information and argued that high-

frequency measurements of chemical behaviour will provide new insights into the 

subsurface storage of water within catchments and the flowpaths by which water 

reaches the stream.  The use of high frequency temperature, instead of chemical, 

measurements has the potential as a means of improving understanding of subsurface 

hydrology. Stream temperature can be measured cheaply and simply at a resolution of 

15 minutes or less. Soil temperature at shallow depths can also be measured easily by 

digging pits and installing monitors.  

The objective of this work, therefore, is to use temperature as a natural tracer 

to investigate if stream and soil temperature measurements will yield insights into 

catchment flow pathways. The aim is to achieve this through a combination of data 

analysis and modelling in the Slapton wood catchment. The modelling uses the 

SHETRAN model, which is physically-based spatially-distributed water flow and heat 

transport model. 1-D vertical column and catchment scale water flow and heat 

transport simulations are run to constrain the model and so provide insights into the 

flow pathways. Testing of this approach at Slapton Wood will indicate the potential 

for application in other catchments. 

Temperature is already used regularly as a tracer in several aspects of 

hydrology. Recently, measuring and modelling of stream-bed temperatures have 

become a very useful tool for investigating river-aquifer flow paths (USGS, 2003; 

Anderson, 2005). The reasons it is such a useful tool is because groundwater 



 

Page 4 of 42 

temperature at a sufficient depth remains nearly constant throughout the year while 

stream water temperatures vary seasonally and diurnally. Analysing stream-bed 

temperatures therefore supplies information on flow pathways between the 

groundwater and the surface water, and is especially well suited for delineating small-

scale flow paths. The standard modelling approach is to couple heat flow and water 

flow modelling using a finite difference representation. The heat is modelled using an 

advection term (for the flow of heat with water) and a conduction term (for the flow 

of heat through the soil-water matrix). Examples of using heat as a tracer include 

Hoehn and Cirpka (2006), Cox et al. (2007), Kalbus et al. (2007) and Lowry et al. 

(2007). The use of temperature in studying groundwater problems is also fairly 

widespread. For example, Woodbury and Smith (1988) and Bravo et al. (2002) have 

used temperature and head data jointly to estimate groundwater velocity and hydraulic 

conductivity, by attempting formal inversion of a coupled groundwater flow and heat 

transport model. James et al. (2000) and Manga and Kirchner (2004) have used large-

volume cold-spring temperatures to interpret the pattern of groundwater flow in the 

Cascade mountains, USA. The most similar work to that considered here is by 

Shanley and Peters (1988), who used water temperature measurements to investigate 

streamflow generation during storms in a forested Piedmont watershed in Georgia, 

USA, and by Kobayashi et al. (1999), who used stream and soil temperatures (and 

specific conductance) to study flow pathways in an experimental site in Japan. 

The signal associated with the water pathways is a temperature difference 

between the water and its surroundings.  For example, water arriving from the deeper 

subsurface tends (in the UK) to be at around 10
o
C in both summer and winter.  This 

signal decays as the water naturally comes into thermal equilibrium with its 

surroundings.  One important difficulty with using temperature to trace flow pathways 
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is therefore that, as soon as water reaches the river channel, its temperature is subject 

to modification by atmospheric and other heat fluxes associated, for example, with net 

radiation, sensible and latent heat transfer, bed conduction and friction (Webb and 

Zhang, 2004). Air temperature can be used as a surrogate measure for the net heat 

exchange affecting water courses, and has a first-order effect on river temperature 

(Smith, 1981; Erickson and Stefan, 2000). Second-order effects on water temperature 

include riparian vegetation cover and channel morphology which affect shading, and 

differences in substratum e.g. rock or gravel which influence heat transfers at the 

water-bed interface (e.g. Ward, 1985). Separating these effects from the influence of 

the flow pathways by which soil water reaches the streams is difficult and has 

previously limited the use of temperature as a catchment tracer. However, there are 

two factors which now make it feasible. Firstly, temperature sensors have become 

cheap, accurate, and easy to install at many points throughout a catchment. Secondly, 

physically-based models for the full energy and water cycle are available to help 

unravel the complexities of the system. 

There is a wide variety of physically-based spatially-distributed models for 

water flow in a catchment. Examples include MIKE SHE (Graham and Butts, 2006), 

SWAT (Arnold et al., 1998) and WATFLOOD (Bingeman et al., 2006), MODHMS 

(Panday and Huyakorn, 2004), and a review of the mathematical basis of eleven of 

these models can be found in Borah and Bera (2003).  There are considerably fewer 

models which also consider the full energy balance, and these include SHETRAN 

(Ewen, 2001) and HydroGeoSphere (Sudicky et al., 2006). In this work SHETRAN 

will be used. SHETRAN will not be used to make predictions but rather to aid 

understanding of catchment flowpaths by making use of stream and soil temperature 

data. It might be thought that a requirement for good correspondence between 
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simulated and observed temperatures data would introduce additional parameters to a 

type of model which has already been criticised for being over parameterized (Beven, 

2001). However, the velocities required to calibrate the heat-flow model must also 

calibrate the groundwater flow model and the thermal properties including thermal 

conductivity vary over a much smaller range than hydraulic conductivity (Constantz 

and Stonestrom, 2003).  

Slapton Wood Catchment and monitoring 

The Slapton Wood (0.94 km
2
) is located in South Devon, UK.  The catchment 

has a long history as a research catchment (Burt and Butcher, 1985; Burt and 

Heathwaite, 1996; Burt and Horton, 2001). The catchment is probably best known for 

its double-peak hydrographs. The first peak has been attributed to a combination of 

infiltration-excess and saturation-excess overland flow in the hillslope hollows. The 

second (delayed) peak is regarded as the product of subsurface stormflow. Most of the 

stream-flow within the catchment occurs during the delayed peak (Burt and Butcher, 

1985).  

Figure 1 shows that 60% of the catchment lies above the 90m contour.  Above 

90m, the slopes are gentle, generally less than 5%, and the land is intensively farmed, 

mainly as grassland and for cereal and root crops.  Below 90m, the slopes are steeper, 

up to 25%, and there is permanent grassland and a wood (which covers 13.5% of the 

catchment).  The soils are mainly freely-draining acid brown soils with a clay-loam 

texture (Trudgill, 1983). Solifluction head deposits have been found below the soils 

(Chappell and Franks, 1996), mainly on the western side of the catchment, and were 

observed to produce a saturated layer, above the unsaturated slate below. Percolation 

is impeded because of the fine matrix and the presence of local ‘fragipan’ layers. The 

head deposits are underlain by extensively folded slates (Chappell and Franks, 1996) 
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with a dip of 70° to the south. Figure 1 shows that the stream is fed by three large 

hillslope hollows on the western side. The work here is focused on the Eastergrounds 

Hollow, which is highlighted in Figure 1. The Eastergrounds Hollow was monitored 

thoroughly during 1981 and 1982 (Butcher, 1985), and this included the measurement 

of discharge in the Eastergrounds stream, where a very similar response to that seen at 

the Slapton Wood outlet, was found. In particular, delayed hydrographs of a similar 

shape occurred at both sites as a result of subsurface stormflow.  

The present study is based on data collected in two separate periods. Firstly, 

intensive water flow monitoring was carried out during 1989-1991 for the entire 

Slapton Wood catchment and, secondly, soil and stream temperature measurements 

were undertaken during 2006-2008 in the Eastergrounds Hollow. In the first phase of 

data collection, precipitation, net radiation, wind speed, air temperature and vapour 

pressure deficit data were available from an automatic weather station for the period 

16/11/1989 to 31/3/1991. Three ground-level storage gauges were read manually on a 

weekly basis and the data used to calculate the spatial variation of precipitation. A V-

notch weir installed in 1971 provided 15-minute discharge data for the period from 

13/9/1989 to 31/3/1991. Soil water potential was measured using mercury manometer 

tensiometers at arable, grassland and woodland plots from 6/9/1989 to 31/3/1991, 

approximately twice a week at depths from 0.2m to 1.2m. In order to record potentials 

for dry conditions, gypsum blocks were installed at the grassland plot in September 

1990. The second phase of data collection occurred from November 2006-April 2007 

and from October 2007-July 2008 and involved monitoring of stream temperatures 

(every 15 minutes) in the ephemeral Eastergrounds spring and stream and stage 

measurements in the Eastergrounds stream. The latter were carried out using a 

pressure transducer which, because of instability in the stream-bed, provided only an 
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indication of the timings of stream rises and falls, rather than a time series of stage.  

Soil temperatures were also measured every 15 minutes on the side of the spur above 

Eastergrounds Hollow at 4 depths down to 80cm below the surface. This was 

achieved by digging a pit and inserting the probes into the side of the pit (at 8. 20, 40, 

60 and 80cm below ground) and then back filling. Air temperature (every 15 minutes) 

was measured at the same site as the soil measurements. Hourly precipitation data 

were collected at the nearby Slapton Ley Field Centre and hourly measurements of 

other meteorological data were obtained from the Meteorological Office for nearby 

sites. 

Considerable modelling work has been carried out at Slapton Wood 

(Birkinshaw and Ewen, 2000; Beven and Freer 2001; Bathurst et al. 2004; Ewen and 

Birkinshaw, 2007). Most recently Birkinshaw (2008) undertook modelling to 

elucidate the flow pathways by which the delayed peak is produced. This work 

suggested that lateral subsurface stormflow was occurring along the soil/bedrock 

interface, which was thought to be located at ca. 2.2m below the ground surface.  

SHETRAN Model 

SHETRAN Version 5 (Ewen, 2001) is a finite-difference model for water flow 

and heat and solute transport in river catchments in which the physics-based 

governing partial differential equations for flow and transport are solved on a three-

dimensional grid. It is usually described as a physically-based spatially-distributed 

modelling system, to distinguish it from, simpler, and less-flexible, conceptual and 

lumped models.  The advantage of using a physically-based spatially-distributed 

model in this work is that it gives a direct, three-dimensional, representation of the 

catchment and direct representations of physical processes.   
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The grid used for Slapton Wood has a 50 m square mesh when viewed in plan 

(Figure 1).  The columns associated with mesh squares are called sub-units (Figure 2).  

These are divided into many cells, by horizontal slicing, varying in thickness from 

0.02m at the ground surface to 0.5m at the bottom of the column. Physical properties 

can vary from sub-unit to sub-unit and cell to cell, and the state of the catchment at 

any time is simply represented by the states (e.g. head, moisture content and 

temperature) of the cells.  

SHETRAN Version 5 has previously been used to simulate water flow in 

catchments (Birkinshaw et al., 2005; Birkinshaw, 2008). The heat transport 

component was also tested and verified on the data set from the Boreal Ecosystem 

Atmosphere Study (BOREAS) in central Canada. The verification was against point 

measurements of soil temperature, soil moisture content, soil heat flux, sensible and 

latent heat and snow temperatures and depths.  Water flow in an entire catchment fed 

by snow melt was also simulated (Birkinshaw and Ewen, 2004). This paper uses 

SHETRAN Version 5 to simulate the flow of water and temperature in the Slapton 

Wood catchment, focusing on the Eastergrounds Hollow. 

 

Data Analysis 

The primary mechanism for runoff in the Slapton Wood catchment is a result 

of subsurface stormflow. The water is thought to flow vertically through the soil until 

the soil-bedrock interface is reached. It is then deflected laterally along the interface 

before flowing up into the stream. However, despite 20 years research at Slapton 

Wood, the depth of these flow pathways is still unknown. Analysis of the temperature 

data provides some insight into this.  



 

Page 10 of 42 

The Eastergrounds spring produces significant flows only during subsurface 

stormflow events. The measured mean temperatures for six major events in 2007 and 

2008 and occurring in the months from December to June (it is unusual to find a 

subsurface stormflow event in June but the Spring of 2008 was very wet) are 

presented in Table 1. The spring temperatures show relatively little variation between 

the different events. The temperature was lowest at 10.6ºC from 13/3/2008 to 

23/03/2008 and highest at 11.5ºC from 30/5/2008 to 8/6/2008. Considering the events 

from 15/2/2007 to 12/3/2007 and 30/5/2008 to 8/6/2008 in more detail, stage data 

(Figure 3), which is high during, and low before and after, the events, suggest that 

subsurface stormflow occurred. Spring temperature was nearly constant at 11.2ºC 

from 15/2/2007 to 12/3/2007 and at 11.5ºC from 30/5/2008 to 8/6/2008. The 

Eastergrounds stream temperature is similar to the spring temperature but exhibited 

slight rises and falls at a corresponding time to the changes in air temperature. From 

15/2/2007 to 12/3/2007, the stream temperature was generally slightly lower than the 

spring temperature, reflecting air temperatures that were lower than the spring 

temperatures, whereas from 30/5/2008 to 8/6/2008 stream temperature was generally 

higher than the spring temperature as air temperatures were higher than the spring 

temperatures. Table 1 and Figure 3 show the spring temperature varies very little 

throughout the year and is not affected by the air temperature (or radiation affects). 

This suggests the water in the spring is flowing from deep within the soil and can be 

considered to be ‘old water’ generated by the celerity of the pressure wave. 

The soil temperature measurements provide information on the depth of the 

flow pathways. Soil temperatures for 6/3/2007 (Figure 4a) varied between 8ºC and 

8.5ºC in the measured profile down to 80cm, while the spring temperature was 

11.2ºC, which clearly indicates the water in the 15/2/2007 to 12/3/2007 event came 
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from a depth much greater than 80cm. Soil temperatures recorded on 2/6/2008 (Figure 

4a) varied between 17ºC and 14ºC at 8 cm and 80cm depth, respectively, while the 

spring temperature was 11.5ºC, suggesting again that water in 30/5/2008 to 8/6/2008 

event was coming from much deeper than 80cm. Profiles of the soil temperature every 

10 days throughout the measured period (Figure 4a), which excluded the months of 

August to October, shows a considerable range of temperatures for the shallow soils 

and a smaller range for deeper soils. The range is about 16ºC and 8ºC at 8 cm and 

80cm depth, respectively. The temperature range seen in the spring is 10.6ºC to 

11.5ºC in the measured period but may be slightly higher outside of this period.  

It is possible to fit a simple sinusoidal curve to the measured data which has 

decreasing amplitude and increasing time lag with depth. Hillel (1998) shows that: 

 

T(z,t) = Tave + Ao [ sin(ωt –φo – z/d)]/ e
z/d

    (Eqn. 1) 

 

where T (ºC) is the soil temperature at each depth z (m) and time t (day). Tave 

is the average temperature at the soil surface. A0 (ºC) is the amplitude of the annual 

change in soil surface temperature (i.e half the difference between the maximum and 

minimum soil surface temperatures). ω is the radial frequency of the annual cycle = 

2 π / (365 x 86400) s
-1

 . φo is the phase constant, which can be altered to change the 

time of the minimum soil surface temperature. d (m) is the damping depth which is 

equal to (2 Dh / ω)
1/2

 where Dh (m
2
 s

-1
) is the soil diffusivity. With Tave set at 11.5 ºC 

and Ao set at 8 ºC the soil diffusivity was fitted (1.3 x 10
-7 

m
2 

s
-1

) to give the best fit 

for the measured data down to 80cm below ground.  The curve was then extended 

down to 5m below ground. The annual maximum and minimum values for the curve 

can be seen in Figure 4b. This shows the measured values were well constrained by 
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the fitted curve down to 80cm below ground. At 2.2m, the seasonal range of 

temperatures is 2.3 ºC whereas at 5m it is 0.2 ºC. This suggests the depth of the flow 

pathways is between 2.2m and 5m. However, this method makes a variety of 

simplifications, in particular, that the diffusivity remains constant in time and depth 

when the type of material, its density and its soil moisture content are all known to 

affect the value.  

Measured soil temperature data at a range of depths from the soil surface to 

over 5m have been carried out at a number of other sites. Taniguchi (1993) measured 

soil temperatures in Japan and found that seasonal ranges in temperature became less 

than 2ºC at a depth of around 7m. Measurements of a soil temperature profile at a site 

in the Netherlands (Bense and Kooi, 2004) showed that the seasonal range in 

temperature was less than 2ºC at a depth of around 5m. The climate of Devon, UK is 

more equitable than at the sites measured in Japan and the Netherlands, which 

suggests that the range in spring temperatures similar to that seen at Slapton Wood 

(0.9 ºC in the period from December to June) might be produced by water originating 

at less than, but approaching, 5m depth. In the absence of sufficient measured data to 

determine the depth of the flow pathways supplying the spring, further modelling 

work was carried out. 

 

Model calibration 

The aim of the model calibration was to produce a model of the Eastergrounds 

Hollow that is able to reproduce the soil and stream temperatures and the likely water 

flow pathways supplying the spring. Two different scenarios (Table 2) were 

considered to provide insights into the depth of the flow that produces the subsurface 

stormflow. The standard soils correspond to those used in the previous model of 
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Slapton Wood using SHETRAN (Birkinshaw 2008). The deeper soils have a thicker 

head deposit (2.3m deep but with a total depth of 3.7m above the slate bedrock layer) 

and so produce deeper flow pathways. Three models were calibrated for both 

scenarios (although the vertical 1-D models are identical in both scenarios as they 

only simulate to a depth of 2m). 

1. Vertical one-dimensional (1-D) water flow in columns, at each of the three 

representative plots in the Slapton Wood catchment (arable, grassland and woodland) 

using 1989-1991 data. The model was calibrated against a time series of soil water 

potentials at each site and against annual estimates of total evaporation. 

2. 3-D water flow of the entire Slapton Wood catchment using 1989-1991 

data. The model was calibrated against the outlet discharge. 

3. Vertical one-dimensional (1-D) flow in columns at the Eastergrounds 

Hollow site using 2006-2008 data. The model was calibrated against the measured 

soil temperatures. 

Each calibrated model uses the same parameter values which as far as possible 

are based on measurements. The process to achieve the best calibration for all three 

models was an iterative one. The starting point for the 1-D and 3-D water flow models 

using 1989-1991 data was the model from Birkinshaw (2008). However, the 

parameters were modified so that a good comparison was also achieved for 1-D model 

for the Eastergrounds Hollow using 2006-2008 data.  

The final soil and bedrock parameters used in the model are presented in Table 

3, which indicates that the saturated hydraulic conductivity for all the soil layers was 

calibrated. The van Genuchten parameters for the soil and head deposits were 

calibrated to give a better fit between the measured and simulated heads for the 1-D 

water flow simulation. It is important to note the parameters for the head deposits. A 
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wide variety of different residual moisture contents, saturated hydraulic conductivities 

and van Genuchten parameters were tested in order to reproduce the fast lateral flow 

that appears to be taking place within this layer. The final calibrated parameters have 

a saturated moisture content of 0.4, a residual moisture content of 0.38 and a saturated 

hydraulic conductivity of 864 m/day. It is thought this layer is close to saturation most 

of the time (hence the high residual soil moisture) and a small increase in moisture 

content will produce a very large increase in hydraulic conductivity (hence the high 

saturated hydraulic conductivity). The same values for the thermal conductivity were 

selected for each layer based on published data (Anderson, 2005). These are a dry 

thermal conductivity of 0.2 W/mK, and a thermal conductivity for saturated 

soils/bedrock of 2.5 W/mK. Soil thermal conductivity parameters vary over a much 

smaller range than hydraulic conductivity and in this case, the parameters were not 

calibrated. Hence the requirement to also calibrate the 1-D model against soil 

temperatures provides a further constraint on the existing parameters.  

The vegetation parameters used in the model are presented in Tables 4 and 5. 

The values in Table 4 are similar to those used in Birkinshaw (2008). However, in 

Birkinshaw (2008) a constant value was used for the fraction of energy absorbed by 

the canopy (the rest of the energy is absorbed by the soil surface). This value is 

important in simulating how much of the net radiation is used to warm up the 

vegetation and soil (sensible heat) and how much to evaporate the water (latent heat). 

The parameter was calibrated for each month based on the monthly variations in leaf 

area index. 

The simulated and measured soil water potential for the grassland plot in the1-

D water flow simulation using 1989-1991 data can be seen in Figure 5. Similar results 

exist for the woodland and arable sites.  Figure 5 shows good agreement between the 
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simulated and observed potentials at both 0.2m and 1.2m. In particular, the timings of 

the drying in the spring and wetting up in the autumn are accurate. Annual 

evaporation was estimated by the Institute of Hydrology (1993) and Table 6 shows the 

comparison between these estimated values and simulated annual evaporation for the 

three vegetation types. There is excellent correspondence between the measured and 

simulated totals with the woodland plot having the largest annual evaporation 

followed by the grassland and the arable plots. The simulated and measured outlet 

discharge for the 3-D water flow simulation using 1989-1991 data can be seen in 

Figure 6 (for the deeper soils). This shows results for the winter of 1989/1990 and 

there is excellent correspondence between the measured and simulated discharges. In 

particular, the peaks that occur as a result of the subsurface stormflow are well 

captured. The comparison for the rest of the data is also good with an overall r
2
 

efficiency (Nash and Sutcliffe, 1970) of 0.93. The 3-D water flow simulation was 

carried out for both soil depths (Table 2). Due to the very high hydraulic conductivity 

in the head deposits, the simulated discharge produced almost identical results in the 

two cases.  

The simulated and measured soil temperatures for the 1-D plot using 2006-

2008 data is shown in Figure 7. The comparison is for the shallowest measured depth 

(8cm) and the deepest measured depth (80cm). As expected, the temperatures at 8cm 

respond quickly to change in the meteorological data whereas at 80cm the response is 

much smoother and slightly lagged. During the spring months, the soil temperatures at 

8cm depth show a diurnal variation which is not seen at 80cm. Overall, the 

comparison is excellent for both the 2006/2007 and the 2007/2008 data. The poorest 

correspondence is during March 2007 when the simulated temperatures are too low at 
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both 8cm and 80cm. It is not clear why this occurs since comparisons are good for 

March 2008. 

 

Model Testing 

The calibrated model of Slapton Wood was tested for two different soil depths 

(Table 2) – the “standard soils” and the “deeper soils”. It should be noted that as well 

as using the “deeper soils” additional tests were carried with other different depths of 

head deposits but these produced less good results and are not shown. 

The test was carried out on the Eastergrounds Hollow by selecting part of the 

Slapton Wood catchment (Figure 1). The 50m grid resolution and the cell depth in 

each column were kept unaltered from the 3-D Slapton wood catchment simulation. 

For both tests, the first check was that the simulated discharges in the Eastergrounds 

Hollow stream produce the expected response. There are no measured discharge data 

but some stage measurements were carried out at the Eastergrounds stream. This was 

not at a stable site and so the stage at different times cannot be compared but it does 

provide an indication as to whether the simulated discharge rises and falls and at the 

correct time.  Figure 8 for the deep soils shows the measured and simulated discharge 

for the February and March 2007 period (a very similar figure can be seen for the 

standard soil depths). This shows that the simulated discharge does indeed rise and 

fall at the same time as the measurements. Despite there being no calibration of the 

Eastergrounds Hollow model, this good comparison between the simulated and 

measured response is expected. This is because a similar measured response in the 

Eastergrounds Hollow compared to that seen in the entire Slapton Wood catchment 

has been found (Butcher, 1985) and a similar simulated response in the two cases can 
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be expected, as there is no spatial distribution of soil types incorporated in the 

modelling.  

A comparison of the measured and simulated Eastergrounds spring 

temperature for the standard and deep soils is presented in Figure 9. As discussed 

previously, there is little variation in the measured spring temperature. However, the 

standard soils show a lower simulated value than the measured values for events from 

December to March and higher simulated values than measured values for the 

30/5/2008 to 8/6/2008 event. This suggests a subsurface stormflow pathway that is 

too shallow. The simulated temperature is showing too much variation throughout the 

year and follows the air temperature time series too closely. The deeper soils show a 

much improved comparison, although the simulated temperature for the event from 

30/5/2008 to 8/6/2008 is too high. Thus the inclusion of deeper flow pathways in the 

model (3.7m of soil and head deposits above the bedrock) produced much better 

simulations. For the deep soil, the modelled and measured Eastergrounds stream 

temperatures were compared and generally showed an excellent correspondence 

(Figure 10). The worst comparison (as for the soil temperatures) is in the spring 2007 

when the simulated temperatures are lower than the measured temperatures.   

An analysis of simulated soil temperature at different depths in the 

Eastergrounds Hollow for 22/2/2007 is presented in Figure 11. This day was during 

the subsurface stormflow event of 15/2/2007 to 12/3/2007 when the Eastergrounds 

spring temperature was 11.2ºC. The simulation shows that for most of the hollow at a 

depths of 0.1m and 1.5m, the soil temperature is around 8.5-9ºC. It is only at 3.5m 

depth that the temperature increases to 10.5-11ºC. The water in the Eastergrounds 

spring and stream appears to be coming from this depth flowing laterally along the 
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soil/bedrock interface. It then flows up into the stream (and the area around the 

stream) hence the higher temperatures found in these areas at shallower depths.  

Both the data analysis and the modelling suggest that the flow pathways which 

produce the subsurface stormflow are deeper than previously thought. Butcher (1985) 

suggest subsurface lateral flow pathways of less than 1m depth in some parts of the 

Eastergrounds hollows and Chappell and Franks (1996) give the maximum measured 

depth to the slate bedrock of 2.5m (compared to 3.7m in the model used here). This 

discrepancy probably reflects the few physical determinations of the depth of soil and 

head that have been made in the Slapton catchments, and the spatial variability in soil 

and head depths. For example, head deposits are generally shallower over most of the 

Eastergrounds Hollow and the Slapton Wood catchment but deeper along the axis of 

the hollow and around the Slapton Wood Stream. It is also possible that the 

subsurface stormflow is occurring in the much deeper slate bedrock. However, the 

low hydraulic conductivities in the slate bedrock and other measurements suggest that 

this is unlikely. For example, measurement of nitrate concentrations over many years 

(Burt and Arkell, 1987) revealed high nitrate concentrations during subsurface 

stormflow events when water was flowing along the soil/bedrock interface and low 

nitrate concentration in the summer when the stream is largely supplied from the slate 

bedrock. Further progress in understanding the flow pathways would be gained by 

two methods. Firstly, by augmenting existing stream and spring temperature 

monitoring with more soil temperatures measurements at different locations within 

the Eastergrounds Hollow and to greater depths. Secondly, by detailed borehole 

investigations of the subsurface structures and properties (e.g. thickness and depths of 

the different layers and their hydraulic conductivity at various locations in the 

catchment).  
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Summary and conclusions 

The predominant flow in the Eastergrounds Hollow within the Slapton Wood 

catchment is a result of subsurface stormflow. This produces delayed peaks in the 

hydrograph after a rainfall event with the peak discharge occurring between 12 and 48 

hours after the rainfall event. It is thought that rainfall flows vertically down through 

the soil and head deposits before being displaced laterally along the soil/bedrock 

interface. The depth at which this lateral flow takes place is unknown but in previous 

modelling work (based on 20 years of data analysis and modelling) a depth of 2.2m 

was used (Birkinshaw, 2008). In this study, soil and stream temperatures were 

measured in the Eastergrounds Hollow to provide more insights into the depth of the 

flow pathways that cause the subsurface flow. Analysis of the ephemeral 

Eastergrounds spring temperature during subsurface stormflow events showed very 

little variation in temperature, with a range from 10.6ºC to 11.5ºC. A comparison of 

the measured soil temperature with the spring temperature suggests that the depth of 

the subsurface flow pathways deeper than originally thought. 

The modelling work was carried out using SHETRAN Version 5, which is a 

physically-based distributed water flow and heat transport model. The model was 

calibrated using 1989-1991 data for the entire Slapton Wood catchment and for the 1-

D simulations of the Eastergrounds soil temperature. The model was then tested on 

the Eastergrounds Hollow sub-catchment with soil depths to the slate bedrock of 2.2m 

and 3.7m. With a depth of 2.2m, the model showed too much temporal variation in the 

Eastergrounds spring temperature, whereas with a depth of 3.7m, the model was able 

to capture the nearly constant Eastergrounds spring temperatures. An excellent 
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comparison between the measured and simulated Eastergrounds stream temperature 

was also captured by the model. 

Overall, this study has suggested that the flow pathways producing subsurface 

stormflow in the Slapton Wood catchment are deeper than previously thought. The 

work has also indicated the potential of combining field monitoring and modelling 

approaches for improving understanding of flow pathways in other catchments.  
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Table 1 Eastergrounds Spring Temperatures during major subsurface stormflow 

events. Temperatures are the mean value in each of the six periods (there is very little 

variation over each period). 

 

Date Eastergrounds Spring Temperature (ºC) 

21/1/2007 - 25/1/2007 11.1 

 
15/2/2007 - 12/03/2007 11.3 

3/12/2007- 21/12/2007 11.2 

14/1/2008 - 21/1/2008 10.9 

13/3/2008 - 23/03/2008 10.6 

30/5/2008 - 8/6/2008 11.5 
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Table 2 Soil and bedrock layers used for the model testing 

 

Soil Standard soils Deeper soils 

Clay loam  0-1.4m 0-1.4m 

Head Deposits  1.4-2.2m 1.4-3.7m 

Slate 1      2.2-2.7m 3.7m-4.2m 

Slate 2      2.7m-20m 4.2m-20m 

Clay loam under stream    0-2.2m 0-3.7m 
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Table 3 Soil and bedrock parameters. * indicates a parameter has been calibrated 

 

Soil Saturated 

moisture 

content (-) 

Residual 

moisture 

content (-) 

Saturated 

hydraulic 

conductivity 

(m/day) 

Van Genuchten α 

parameter (/m) 

Van 

Genuchten n 

parameter (-) 

Clay loam  0.4 0.12 3.5* 1.8* 1.6* 

Head Deposits 0.4* 0.38* 864* 1.8* 1.6* 

Slate 1      0.18 0.03 0.002* 2.68 1.92 

Slate 2      0.18 0.03 0.1* 2.68 1.92 

Clay loam 

under stream    

0.4 0.12 70.0* 1.8* 1.6* 
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Table 4 Vegetation parameters. * indicates a parameter has been calibrated 

 

Parameter  Arable Grassland Woodland 

Transpiration reduction factor at –3.3m head 0.4* 0.8* 0.9* 

Canopy storage capacity 8 x 10
-4

 m 1 x 10
-4

 m 15 x 10
-4

 m 

Canopy resistance 80 s/m 100 s/m 150 s/m 

Maximum vegetation height 0.7m 0.3m 5.0m 

Maximum fraction of energy absorbed by the 

canopy  

0.85 0.85 0.85 

Maximum rooting depth 0.5 m 0.3 m 2.0 m 

Maximum leaf area index 1.5 1.0 3.0 
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Table 5 Fraction of the net radiation absorbed by the canopy. These values have been 

calibrated with the monthly values corresponding to the changes in the leaf area index 

 

Month  Arable Grassland Woodland 

January 

February 

10 

10 

40 

40 

20 

20 

March 

April 

10 

10 

40 

50 

20 

20 

May 25 75 60 

June 50 85 85 

July 75 85 85 

August 85 85 85 

September 5 70 80 

October 5 60 50 

November 

December 

10 

10 

50 

40 

20 

20 
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Table 6 Annual evaporation (mm) for 1-D water flow simulations using 1989-1991 

data 

 

Plot Simulated 

canopy 

evaporation 

Simulated 

surface 

evaporation 

Simulated 

transpiration  

Totals 

simulated 

Total 

estimated from 

measurement 

Arable 70 14 316 400 404 

Grassland 79 12 360 451 466 

Woodland 170 22 288 480 487 
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Figure 1. Location map and SHETRAN mesh for the Slapton Wood catchment. The 

SHETRAN mesh shows the channel network in bold. The Eastergrounds hollow sub-

catchment is highlighted 
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Figure 2. Slapton Wood Cross-section (location of the cross-section can be seen in 

Figure 1) 
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Figure 3 Measured temperatures in Eastergrounds Hollow during periods of high 

subsurface flows 
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Figure 4. Soil Temperatures in the Eastergrounds hollow. a) Measured data every 10 

days. b) Measured data and the estimated range in temperatures from the fitted 

sinusoidal curve  
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Figure 5. Simulated and measured soil water potentials for the grass site 
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Figure 6. Measured and simulated (deeper soils) discharge at the Slapton Wood 

catchment outlet (the measurement flume was blocked by sediment from 15/2/1990 to 

10/3/1990)
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Figure 7.  Measured and simulated soil temperatures in the Eastergrounds Hollow 
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Figure 8 Simulated discharge (deep soils) and measured stage for the Eastergrounds 

hollow  
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Figure 9.  Measured and simulated spring temperatures in the Eastergrounds Hollow. 

Measured and simulated temperatures are the mean value in each of the six periods 

(there is little variation over each period). 
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Figure 10. Measured and simulated (deep soil) stream temperatures in the 

Eastergrounds hollow  
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Figure 11.  Simulated soil temperatures (deep soils) on 22/2/2007 in the 

Eastergrounds Hollow  

 

 


