Publications

Publications related to several research themes involving the Marine Propulsion Lab are listed below (last updated November 2019).

This list is infrequently updated so the latest research papers from academics in the lab may not be listed here. These can be found on our personal university webpages.

 

Propellers and Wake:

Aktas, B., Usta, O., & Atlar, M. (2020). Systematic investigation of coating application methods and soft paint types to detect cavitation erosion on marine propellers. Applied Ocean Research, 94, 101868.

Shi, W., Aktas, B., Atlar, M., Vasiljev, D., & Seo, K. (2018). Stereoscopic PIV aided wake simulation of a catamaran research vessel using a dummy-hull model in a medium size cavitation tunnel. Journal of Marine Science and Technology, 23(3), 507-520.

Prini, F., Benson, S. D., & Dow, R. S. (2018). The effect of laminate, stud geometry and advance coefficient on the deflection of a composite marine propeller.

Tani, G., Aktas, B., Viviani, M., & Atlar, M. (2017). Two medium size cavitation tunnel hydro-acoustic benchmark experiment comparisons as part of a round robin test campaign. Ocean Engineering, 138, 179-207.

Mizzi, K., Demirel, Y. K., Banks, C., Turan, O., Kaklis, P., & Atlar, M. (2017). Design optimisation of Propeller Boss Cap Fins for enhanced propeller performance. Applied Ocean Research, 62, 210-222.

Aktas, B., Atlar, M., Turkmen, S., Korkut, E., & Fitzsimmons, P. (2016). Systematic cavitation tunnel tests of a Propeller in uniform and inclined flow conditions as part of a round robin test campaign. Ocean Engineering, 120, 136-151.

Korkut, E., Atlar, M., & Wang, D. (2013). An experimental investigation into cavitation behaviour and pressure characteristics of alternative blade sections for propellers. International Journal of Naval Architecture and Ocean Engineering, 5(1), 81-100.

Korkut, E., & Atlar, M. (2012). An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers. Ocean Engineering, 41, 1-12.

 

Biofouling:

Li, C., Atlar, M., Haroutunian, M., Norman, R., & Anderson, C. (2019). An investigation into the effects of marine biofilm on the roughness and drag characteristics of surfaces coated with different sized cuprous oxide (Cu2O) particles. Biofouling, 35(1), 15-33.

Turkmen, S., Atlar, M., Yeginbayeva, I., & Benson, S. (2018). Development an Experimental Method to Investigate Hydrodynamic Drag. GMO Journal of Ship and Marine Technology, 24(213), 54-65.

Yeginbayeva, I. A., & Atlar, M. (2018). An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges. Biofouling, 34(9), 1001-1019.

Li, C., Atlar, M., Haroutunian, M., Anderson, C., & Turkmen, S. (2018). An experimental investigation into the effect of Cu2O particle size on antifouling roughness and hydrodynamic characteristics by using a turbulent flow channel. Ocean Engineering, 159, 481-495.

Turkmen, S., Yeginbayeva, I., & Atlar, M. (2016). Design of pressure drop section to measure frictional drag of fouling control surfaces. In International Congress on Marine Corrosion and Fouling. Newcastle University.

Bagley, F., Atlar, M., Charles, A., & Anderson, C. (2015). The use of copper-based antifoulings on aluminium ship hulls. Ocean Engineering, 109, 595-602.

Atlar, M., Ünal, B., Ünal, U. O., Politis, G., Martinelli, E., Galli, G., ... & Williams, D. (2013). An experimental investigation of the frictional drag characteristics of nanostructured and fluorinated fouling-release coatings using an axisymmetric body. Biofouling, 29(1), 39-52.

Ünal, U. O., Ünal, B., & Atlar, M. (2012). Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings. Experiments in fluids, 52(6), 1431-1448.

 

Underwater radiated noise:

Aktas, B., Atlar, M., Leivadaros, S., Sasaki, N., & Fitzsimmons, P. (2018). Hydropod: An Onboard Deployed Acoustic–Visual Device for Propeller Cavitation and Noise Investigations. IEEE Journal of Oceanic Engineering, 44(1), 72-86.

Aktas, B., Atlar, M., Fitzsimmons, P., & Shi, W. (2018). An advanced joint time-frequency analysis procedure to study cavitation-induced noise by using standard series propeller data. Ocean Engineering, 170, 329-350.

Turkmen, S., Aktas, B., Atlar, M., Sasaki, N., Sampson, R., & Shi, W. (2017). On-board measurement techniques to quantify underwater radiated noise level. Ocean Engineering, 130, 166-175.

Aktas, B., Atlar, M., Turkmen, S., Shi, W., Sampson, R., Korkut, E., & Fitzsimmons, P. (2016). Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials. Ocean Engineering, 120, 122-135.

 

Tidal turbines:

Shi, W., Atlar, M., Norman, R., Day, S., & Aktas, B. (2019). Effect of waves on the leading-edge undulated tidal turbines. Renewable energy, 131, 435-447.

Shi, W., Atlar, M., & Norman, R. (2017). Detailed flow measurement of the field around tidal turbines with and without biomimetic leading-edge tubercles. Renewable Energy, 111, 688-707.

Rosli, R., Norman, R., & Atlar, M. (2016). Experimental investigations of the Hydro-Spinna turbine performance. Renewable energy, 99, 1227-1234.

Shi, W., Atlar, M., Norman, R., Aktas, B., & Turkmen, S. (2016). Numerical optimization and experimental validation for a tidal turbine blade with leading-edge tubercles. Renewable energy, 96, 42-55.

Shi, W., Atlar, M., Rosli, R., Aktas, B., & Norman, R. (2016). Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs. Ocean Engineering, 121, 143-155.

Shi, W., Rosli, R., Atlar, M., Norman, R., Wang, D., & Yang, W. (2016). Hydrodynamic performance evaluation of a tidal turbine with leading-edge tubercles. Ocean Engineering, 117, 246-253.

Shi, W., Atlar, M., Seo, K., Norman, R., & Rosli, R. (2016). Numerical simulation of a tidal turbine based hydrofoil with leading-edge tubercles.

Shi, W. C., Wang, D. Z., Atlar, M., & Wang, D. (2013). Similarity laws and model test approaches to determine hydrodynamic performance of a marine turbine. In Advanced Materials Research (Vol. 694, pp. 665-672). Trans Tech Publications.

 

Air cavities:

Butterworth, J., Atlar, M., & Shi, W. (2015). Experimental analysis of an air cavity concept applied on a ship hull to improve the hull resistance. Ocean Engineering, 110, 2-10.

Slyozkin, A., Atlar, M., Sampson, R., & Seo, K. C. (2014). An experimental investigation into the hydrodynamic drag reduction of a flat plate using air-fed cavities. Ocean Engineering, 76, 105-120.

 

Novel appendages:

Turkmen, S., Sasaki, N., Atlar, M., Miles, A., & Takeda, T. (2016). The Gate Rudder application to improve poor course keeping ability of ships. In A. Yücel Odabaşı Colloquium Series 2nd International Meeting on Recent Advances in Prediction Techniques for Safe Manoeuvring of Ships and Submarines. Newcastle University.

 

Ship performance monitoring and analysis:

Carchen, A., Atlar, M., Turkmen, S., Pazouki, K., & Murphy, A. J. (2019). Ship performance monitoring dedicated to biofouling analysis: Development on a small size research catamaran. Applied Ocean Research, 89, 224-236.

Prini, F., Benson, S., Birmingham, R. W., Dow, R. S., Ferguson, L. J., Sheppard, P. J., ... & Hirdaris, S. (2018). Full-Scale Seakeeping Trials of an All-Weather Lifeboat. In SURV 9 Conference: Surveillance, Pilot & Rescue Craft, London, UK: The Royal Institution of Naval Architects.

Lim S, Turkman S, Rostami AB, Prini F, Kurniawati V, Carchen A, Gibson M, Benson SD, Pazouki K, Murphy AJ, Dow RS, Birmingham R. (2018). Ship performance-using the real world as a laboratory. In Full Scale Ship Performance Conference. RINA, UK.

Bashir, M. B., Tao, L., Atlar, M., & Dow, R. S. (2013, June). Experimental and numerical investigation of the wave-induced loads on a Deep-V catamaran in regular waves. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering  American Society of Mechanical Engineers.

Atlar, M., Seo, K., Sampson, R., & Danisman, D. B. (2013). Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance. International Journal of Naval Architecture and Ocean Engineering, 5(2), 302-312.

Bashir, M. B., Tao, L., Atlar, M., & Dow, R. S. (2011, January). Hydrodynamic Performance of a Deep-Vee Hull Form Catamaran in Regular Waves. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (pp. 45-54). American Society of Mechanical Engineers Digital Collection.

Prini, F., Birmingham, R. W., Benson, S., Dow, R. S., Sheppard, P. J., Phillips, H. J., ... & Hirdaris, S. (2018). Enhanced structural design and operation of search and rescue craft. In 13th International Marine Design Conference (IMDC 2018). Newcastle University.

Atlar M, Aktas B, Sampson R, Seo KC, Turkmen S, Fitzsimmons P. (2013) A marine science and technology catamaran-platform for full-scale observations and measurements. In: 3rd International Conference on Advanced Model Measurement Technology for the Maritime Industry (AMT’13). 2013, Gdansk

 

Ship Structures:

Li, S., Hu, Z., & Benson, S. (2019). An analytical method to predict the buckling and collapse behaviour of plates and stiffened panels under cyclic loading. Engineering Structures, 199, 109627.

Li, S., & Benson, S. D. (2019). A re-evaluation of the hull girder shakedown limit states. Ships and Offshore Structures, 1-12.

Prini, F., Birmingham, R. W., Benson, S., Dow, R. S., Sheppard, P. J., Phillips, H. J., ... & Hirdaris, S. (2018). Enhanced structural design and operation of search and rescue craft. In 13th International Marine Design Conference (IMDC 2018). Newcastle University.

Mohammed, E. A., Benson, S. D., Hirdaris, S. E., & Dow, R. S. (2016). Design safety margin of a 10,000 TEU container ship through ultimate hull girder load combination analysis. Marine Structures, 46, 78-101.

Benson, S., Downes, J., & Dow, R. S. (2015). Overall buckling of lightweight stiffened panels using an adapted orthotropic plate method. Engineering Structures, 85, 107-117.

Benson, S., Downes, J., & Dow, R. S. (2013). A comparison of numerical methods to predict the progressive collapse of lightweight aluminium vessels. Journal of Ship Production and Design, 29(3), 117-126.

Ehlers, S., Benson, S., & Misirlis, K. (2013, March). Ultimate strength of an intact and damaged LNG vessel subjected to sub-zero temperature. In Proceedings of the 6th International Conference on Collision and Grounding of Ships and Offshore Structures (ICCGS); Jun 17–19 (pp. 289-296).

Benson, S., Downes, J., & Dow, R. S. (2013). Load shortening characteristics of marine grade aluminium alloy plates in longitudinal compression. Thin-Walled Structures, 70, 19-32.

Benson, S., Downes, J., & Dow, R. S. (2013). Compartment level progressive collapse analysis of lightweight ship structures. Marine Structures, 31, 44-62.

Benson, S., AbuBakar, A., & Dow, R. S. (2013). A comparison of computational methods to predict the progressive collapse behaviour of a damaged box girder. Engineering Structures, 48, 266-280. 

Benson, S., Downes, J., & Dow, R. S. (2011). Ultimate strength characteristics of aluminium plates for high-speed vessels. Ships and Offshore Structures, 6(1-2), 67-80.

 

Global Research:

Benson S, Kiplimo R. (2019) Project Report