

WS-Mediator for Improving Dependability of Service
Composition

Thesis by

Yuhui Chen

In Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philosophy

Newcastle University
Newcastle upon Tyne, UK

July, 2008

Abstract

 i

Abstract

Web Services and service-oriented architectures (SOAs) represent a new paradigm for

building distributed computing applications. In recent years, they have started to play

a critical role in numerous e-Science and e-Commerce applications. The advantages

of Web Services, such as their loosely coupled architecture and standardized

interoperability, make them a desirable platform, especially for developing large-scale

applications such as those based on cross-organizational service composition.

However, the Web Service technology is now facing many serious issues that need to

be addressed, one of the most important ones being the dependability of their

composition. Web Service composition relies on individual component services and

computer networks, particularly the Internet. As the component services are

autonomous, prior to use their dependability is unknown. In addition to that, computer

networks are inherently unreliable media: from the user’s perspective, network

failures may undermine the dependability of Web Services. Consequently, failures of

individual component services and of the network can undermine the dependability of

the entire application relying on service composition.

Our research is intended to contribute to achieving higher dependability of Web

Service composition. We have developed a novel solution, called WS-Mediator

system, implementing resilience-explicit computing and fault tolerance mechanisms

to improve the dependability of Web Service composition. It consists of a number of

subsystems, called Sub-Mediators, which are deployed at various geographical

locations across the Internet to monitor Web Services and dynamically generate Web

Service dependability metadata in order to make resilience-explicit decisions. In

Abstract

 ii

addition to applying the fault tolerance mechanisms that deal with various kinds of

faults during the service composition, the resilience-explicit reconfiguration

mechanism dynamically selects the most dependable Web Services to achieve higher

service composition dependability fault tolerance.

A specific instance of the WS-Mediator architecture has been developed in the Java

Web Service technology. A series of experiments with real-world Web Services, in

particular in the bioinformatics domain, have been carried out using the Java WS-

Mediator. The results of the experiments have demonstrated the applicability of the

WS-Mediator approach.

Acknowledgements

 iii

Acknowledgements

It is a pleasure to thank the people who contributed in various ways to this thesis,

making it possible.

First, I would like to thank my PhD supervisor, Prof. Alexander (Sascha)

Romanovsky. With his enthusiasm, inspiration and encouragement, he helped me to

carry out the research and complete the work in various ways, providing explanation

when necessary, advising me on my reading as well as the relevant work in close

research domains, and many more. I would have been lost without his huge support.

I would also like to thank Dr. Aad van Moorsel and Dr. Neil Speirs, the members of

my thesis committee board. They provided invaluable comments and suggestions,

helping to keep the work on the right track.

There are many other people who assisted me at different stages of the research. I

would like to express my gratitude to them. I am especially grateful to Dr. Peter Li

and Dr. Panayiotis Periorellis for their kind assistance with the experimental work on

the Web Services used in their research projects. They provided us with the

information on the Web Services, helping us to set up the experiments.

I wish to express my warm and sincere thanks to Mrs. Mila Romanovskaya. She

greatly helped me to proof read and edit the thesis.

This list would not be complete without my family, on whose constant encouragement

and love I have relied throughout my time at University. Without their unflinching

support and understanding, it would have been impossible for me to finish this study.

It is to them that I dedicate this research.

List of Figures

 iv

List of Figures

Figure 2-1: Typical interaction in Web Services ...11

Figure 2-2: The automated travel booking process..12

Figure 2-3: Performance metrics obtained using the WSsDAT19

Figure 2-4: The automated travel booking process with multiple travel agencies34

Figure 2-5: The automated travel booking process implementing service diversity.. .35

Figure 3-1: The overlay architecture of the WS-Mediator system.46

Figure 3-2: Deployment of the WS-Mediator system..47

Figure 3-3: The internal structure of the Sub-Mediator...48

Figure 3-4: Assembly of BLP business procedures and internal activities51

Figure 3-5: The resilience-explicit service composition in travel booking use case.. .56

Figure 3-6: The use case of the Service Alternative execution mode..........................60

Figure 3-7: The use case of the N-version programming execution mode..................61

Figure 3-8: The use case of the Message Routing execution mode.............................62

Figure 3-9: Travel booking use case with the WS-Mediator system...........................65

Figure 4-1: Basic architecture of Web Services ..69

Figure 4-2: The architecture of Web Service client...70

Figure 4-3: Web Service application with the Java WS-Mediator71

Figure 4-4: Internal structure of the Sub-Mediator Elite. ..72

Figure 4-5: An example of the test SOAP message ...75

Figure 4-6: An example of the test policy..75

Figure 4-7: An abstract of the service request SOAP message78

Figure 4-8: An example of the Web Service Registry...80

Figure 4-9: An abstract model of the dependability metadata of a Web Service80

Figure 4-10: An example of the Sub-Mediator Registry ...82

List of Figures

 v

Figure 4-11: An example of the dependability metadata of a Sub-Mediator82

Figure 4-12: An abstract model of the individual execution policy.............................83

Figure 4-13: An example of the global execution policy...86

Figure 4-14: The execution sequence of the Dynamic Reconfiguration Engine88

Figure 4-15: The execution sequence of the service alternative execution mode90

Figure 4-16: Execution sequence of the N-version programming execution mode.....93

Figure 4-17: The execution sequence of the multi-routing execution mode95

Figure 5-1: Dependability monitoring of autonomous Web Services102

Figure 5-2: Dependability monitoring result of the GOLDPeople104

Figure 5-3: Dependability monitoring result of the GOLDPolicies104

Figure 5-4: Evaluation of the Service Alternative execution mode...........................108

Figure 5-5: Results of the service alternative execution mode109

Figure 5-6: Evaluation of the N-version programming execution mode.110

Figure 5-7: Results of the N-version programming execution mode111

Figure 5-8: Evaluation of the multi-routing execution mode.112

Figure 5-9: Results of the Multi-Routing execution mode ..112

Figure A-1: The architecture of the WSsDAT...138

Figure A-2: GUI for Web Services information inputs ...139

Figure A-3: GUI for test information display ..140

Figure A-4: Test procedure..142

Figure B-1: Class diagram of the Sub-Mediator Elite ...143

Figure B-2: The Service Processing Engine of the WS-Mediator Elite144

Figure B-3: Interpreting the global execution policy ...145

Figure B-4: The individual execution policy ...146

Figure B-5: The Dynamic Reconfiguration Engine of the Sub-Mediator Elite.........148

List of Figures

 vi

Figure B-6: Service Alternative Redundancy F-T execution mode...........................149

Figure B-7: N-Version Programming execution mode..150

Figure B-8: The Multi-Routing Execution mode...151

List of Tables

 vii

List of Tables

Table 5-1: Dependability monitoring results of the public Web Services.................102

Contents

 viii

Contents

1. Introduction..1

1.1 Motivation..1

1.2 Our Research..3

1.3 Our Contributions ..4

1.4 Thesis Outline ..6

2. Dependability of Service-Oriented Architecture7

2.1 Introduction..7

2.2 Preliminaries ..8

2.2.1 Service-Oriented Architecture ...8

2.2.2 Web Services ..8

2.2.3 Dependability ...9

2.3 Dependability of SOA and Web Services..10

2.3.1 Overview of SOA and Web Services ..10

2.3.2 Dependability of Web Services ..13

2.3.3 Our experiments on the dependability of Web Services.......................16

2.3.4 Means for Achieving Dependability...20

2.3.5 Fault tolerance in SOA ..22

2.4 Overview of the Existing Work ...25

2.4.1 Application-level Protocols ...26

2.4.2 Exception Handling Approaches ...26

2.4.3 System Diagnosis Approaches ...28

2.4.4 Approaches to Dependable Service Composition................................30

2.5 Problems Involved in Web Service Composition..34

2.6 Conclusions..39

3. The WS-Mediator System...41

3.1 Introduction..41

3.2 Research Objectives...42

3.3 Overview of the WS-Mediator...43

3.4 System Architecture...47

3.4.1 Sub-Mediator Structure ...48

3.4.2 Sub-Mediator Interface (SMI)..49

Contents

 ix

3.4.3 Business Logic Processor (BLP) ...51

3.4.4 Policy System (PS) ...51

3.4.5 Database System (DS)..52

3.4.6 Dependability Monitoring Mechanism (DMM)52

3.4.7 Dependability Assessment Mechanism (DAM)53

3.4.8 Resilience-explicit Dynamic Reconfiguration mechanism (REDRM) .54

3.4.9 Fault-tolerance mechanisms (FTMs)...59

3.4.10 Web Service Invocation Mechanism (WSIM)63

3.5 Application of the WS-Mediator ...63

3.6 Conclusions..66

4. Java WS-Mediator ...68

4.1 Introduction..68

4.2 Java Web Service middleware ...68

4.3 Structure of the Java WS-Mediator..71

4.3.1 Structure of the Sub-Mediator Elite ...72

4.3.2 Java APIs of the Sub-Mediator Elite ...74

4.3.3 Business Logic Processor (BLP) ...78

4.3.4 Database System ..78

4.3.5 Policy System ...82

4.3.6 Dependability Monitoring Mechanism (DMM)86

4.3.7 Dynamic Reconfiguration Mechanism (DRM)88

4.3.8 Fault-tolerance Execution Modes..89

4.4 Conclusions..96

5. Evaluation...97

5.1 Introduction..97

5.2 Evaluation Objectives ..97

5.3 Evaluation of Dependability Monitoring ...99

5.3.1 Dependability Monitoring of Public Web Services............................100

5.3.2 Dependability Monitoring of the GOLD Web Services103

5.4 Experiments with Bioinformatics Web Services105

5.4.1 Service Alternative Execution Mode ..108

5.4.2 N-version Programming Execution Mode ...109

5.4.3 Multi-routing Execution Mode with the Planetlab111

Contents

 x

5.5 Conclusions..113

6. Conclusions and Suggestions for Future Work114

6.1 Summary ..114

6.2 Suggestions for Future Work ...116

Bibliography ..121

List of Abbreviations ..134

Appendix A – The WSsDAT tool ..135

Appendix B – Implementation of Java Sub-Mediator Elite142

Appendix C – Dependability metadata...152

Appendix D – Dependability metadata database in XML................153

Appendix E – Implementation of Java client application.................158

Appendix F – Example of the valid result from DDBJ168

Appendix G - Execution sequence of unsuccessful process171

Appendix H - Execution sequence of successful process...................175

Appendix I – Dependability metadata of VBI180

Introduction

 1

1. Introduction

1.1 Motivation

Web Services [1] and service-oriented architectures (SOAs) [2] represent a new

paradigm for building distributed computing applications [3, 4]. Their applications

vary from e-Commerce [5] applications, for example, Internet search engines [6] or

online auctions [7], to complex large-scale e-Science projects [8, 9]. The advantages

of Web Services, such as their loosely coupled architecture and standardized

interoperability, are attracting more and more users, along with growing body of work

in the relevant research and development domains. Users’ demand for Web Services

seems to be driving the technology further. However, all the opportunities that this

paradigm has brought notwithstanding, the Web Service technology at present is still

far from maturity. The overwhelming pace of technological progress has also,

inevitably, caused problems which may undermine the future of Web Services.

Among these, their dependability is one of the most critical issues to be addressed.

Web Services have addressed many issues existing in the conventional technologies,

such as Enterprise Application Integration (EAI) [10] and Common Object Request

Broker Architecture (CORBA) [11, 12], to name just two of the more popular ones,

extensively applied in the past decades. In these conventional distributed applications,

service integration commonly relies on centralized brokers, or coordinators, which

implement objects-based or message-based interoperability [4] with the participating

component services and interact with them to perform automated business processes.

The limitation of such paradigm lies in the fact that the middleware has to be

centralized and trusted by all participating component service providers.

Consequently, this becomes an issue of the integration of cross-organizational

Introduction

 2

autonomous and heterogeneous services, especially when development cost, security

and confidentiality are concerned [4]. Web Services resolve these issues with their

loosely-coupled interaction pattern, standardized interoperability, extended peer-to-

peer integration fashion, etc. [4]. In Web Services, functionalities implemented by the

internal business procedures are deployed and exposed as services that can be

discovered and accessed through the Web. The interaction between the client and the

services generally relies on the SOAP/HTTP message binding [13-15]. The client, a

business logic application (e.g. e-Science or e-Commerce workflow), invokes Web

Services by sending them a SOAP message [2, 15], with the service request attached.

Web Services receive and parse the SOAP message, process the business logic

according to the service request, and return the results to the client via SOAP

messages. During the integration, the client does not necessarily know anything about

the Web Services involved other than their WSDL interface [16]; the communication

between them is guaranteed by the standardized interoperability, and no third party

service broker or coordinator is required. Therefore, compared with the conventional

technologies, the integration of autonomous and independent services is achieved in

Web Services at a low cost. [17]

Nevertheless, even with the advantages described above, Web Services are not a

magic solution to all problems of distributed applications. Similarly to other

distributed technologies, Web Service middleware relies on the existing underlying

middleware, such as network protocols, to implement the essential low-level services

[4]. Naturally, they inherit many of the dependability issues the conventional

infrastructure suffers from. For example, the interaction between the client and the

Web Services relies on the Web or other networks, which are inherently unreliable

media that may cause a loss, delay or damage of the message [3, 18-20]; Web

Introduction

 3

Services are deployed on application servers, which may become unreliable or out-of-

service, due to system maintenance or other internal activities [20, 21]; the design or

implementation of the Web Service business procedure may contain faults and result

in their erratic behaviour [20-22]. Thus, their dependability is a vital issue in

dependability-critical applications, even more so in those based on a service

composition in which a service, as an undependable component, can undermine the

dependability of the entire application. It is only logical that the dependability of Web

Services as a research domain has attracted active interest in recent years.

1.2 Our Research

This dissertation reports our work in developing solutions to improving the

dependability of Web Services. We started the research by investigating the

dependability means in the context of Web Services, followed with an in-depth

analysis of dependability issues in Web Services based on our experiments with

several real-world Web Services. At the same time, we studied related work

conducted by other researchers working in similar research areas. As a result, we have

developed a novel solution to improving the dependability of Web Services.

Conceptually, this solution is based on our understanding of the specific dependability

characteristics of Web Services. It addresses some dependability issues that have not

yet been covered by the existing work. In particular, our research focuses on the

problem domain from certain original perspectives, avoiding duplicating others’

work. We have adopted several novel approaches and concepts in the solution

proposed, developed certain unique mechanisms to ensure the novelty, feasibility and

efficiency of our approach, and proved them in a series of experiments with real-

world Web Services. This work has been reported at various academic events and

Introduction

 4

conferences, including the International Conference on Dependable Systems and

Networks 2006 [23], UK e-Science All Hands Meeting 2006 [24], the 3rd

International Service Availability Symposium [37], ReSIST Student Seminar 2007

[25], etc. A comprehensive description of the WS-Mediator approach is published by

the IT Professional magazine [26] in this year’s May/June issue.

1.3 Our Contributions

While the recent active research effort aiming at the dependability of Web Services

has developed some effective solutions, including those focusing on service

composition, we believe that there are still many issues remaining in this domain,

particularly concerning the dependability of service composition that relies on

autonomous Web Services. Our approach does not follow the methodology

commonly applied in other related work. We have learnt from our experiments and

studies of related work that in SOA the client’s perspective on the services might be

dramatically affected by the network consequences. This calls for solutions that would

improve the dependability of Web Service composition from the client’s perspective,

ensuring the continuity of the service provided to it. In order to address the

outstanding dependability issues in the existing Web Service applications, our

solution is based, in addition to the classic fault tolerance techniques, on certain novel

concepts, such as Resilience-explicit computing [27], path diversity, etc. The

contributions of our work are as follows:

• We have developed a WS-Mediator solution to improving the dependability of

Web Service applications. The approach offers an off-the-shelf mediator

system to ensure the dependability of service composition based upon the

existing legacy Web Services.

Introduction

 5

• We have devised a WS-Mediator architecture which employs the

dependability monitoring of Web Services, resilience-explicit dynamic

reconfiguration of service composition as well as fault tolerance mechanisms

to accomplish a smart system that can explicitly select most appropriate

components to improve the dependability of the entire service composition.

• We have implemented a prototype of the WS-Mediator using the Java Web

Service technology. The Java WS-Mediator implements a Web Service

dependability monitoring mechanism to achieve the dependability of the

services from the client’s perspective. Its novel Resilience-explicit dynamic

reconfiguration mechanism allows an on-the-fly dynamic integration of

component services to utilize the richness of service redundancy available in

the Web Service infrastructure, and optimizes the conventional service

diversity strategies. The off-the-shelf fault tolerance mechanisms allow the

system to cope with various types of faults. Moreover, the Java WS-Mediator

can be deployed on a personal computer and seamlessly integrated into the

existing Java client applications. It can be especially beneficial for the

development of new Java client applications by providing intuitive invocation

APIs to utilize the functionalities provided by the WS-Mediator for improving

their dependability.

• We have conducted a number of experiments with real-world Web Services to

evaluate the WS-Mediator approach and the Java WS-Mediator. The results of

the experiments demonstrate the applicability and effectiveness of this

solution.

Introduction

 6

1.4 Thesis Outline

The dissertation is organised as follows:

• Chapter 2 explains the fundamental concepts and definitions of SOA and Web

Services. We define dependability in the context of Web Services and analyse

their dependability. Finally, we summarize some related work in the area.

• Chapter 3 presents our WS-Mediator approach. In this chapter we discuss our

objectives and introduce the notion of the WS-Mediator as well as explaining

the WS-Mediator architecture and its components in detail.

• Chapter 4 introduces a prototype of the WS-Mediator. In this chapter, we

explain how to implement the WS-Mediator system using the Java Web

Service technology.

• Chapter 5 reports on the experiments conducted to evaluate the WS-Mediator

approach. The results of the experiments with real-world Web Services are

analysed to demonstrate the applicability of the WS-Mediator approach.

• Chapter 6 concludes this dissertation, offering our vision of the possible

further development of the WS-Mediator system.

Dependability of Service-Oriented Architecture

 7

2. Dependability of Service-Oriented Architecture

2.1 Introduction

In this chapter, we will analyse dependability issues in the context of SOA and Web

Services. Even though Web Services are becoming, with all their promising potential,

a fundamental technology and platform in many distributed computing applications

[6-9], they are now facing a range of critical challenges, dependability being one of

the most crucial. In this chapter, we will introduce the general concept of

dependability and discuss dependability means in the context of Web Services. We

will then provide a brief overview of the background and foundation that our work is

built upon.

The chapter is organized as follows: section 2.2 defines the basic terms and introduces

the problem domain. Section 2.3 presents our analysis of dependability issues in the

context of Web Services. We will then describe our experiments involving several

Web Services used in the bioinformatics domain. These experiments have helped us

to understand the dependability behaviour of real-world Web Services. Finally, some

classic theories and technologies for achieving dependability are discussed. Section

2.4 introduces our study of the existing work concerned with improving Web Service

dependability. Section 2.5 specifically analyses dependability issues in Web Service

composition. Section 2.6 concludes the chapter and summarizes the key points

covered in it.

Dependability of Service-Oriented Architecture

 8

2.2 Preliminaries

Although often used, the terms SOA and Web Services are not always consistently

defined. It is, however, essential here to clearly define these terms as fundamental for

this dissertation.

2.2.1 Service-Oriented Architecture

In this dissertation, we follow the definitions of SOA and Web Services provided by

the World Wide Web Consortium (W3C) [2]:

Service-Oriented Architecture: A set of components which can be invoked, and whose

interface descriptions can be published and discovered.

The above is a basic definition which describes what SOA is, and yet it is rather

abstract: it does not make the underlying concepts and technologies it relies on

explicit. It is the specification [1] that refines the definition, presenting SOA as a form

of distributed systems architecture in which services implement abstracted interface

for exchanging messages with clients. The machine-processable abstracted interface

describes only those details of services that are important for using them. Their

implementation details and internal structure are hidden from clients. The message

exchange between services and clients relies on the underlying computer network,

such as the Internet. The actual technologies for constructing a SOA are not made

specific in these definitions and may vary in realistic applications.

2.2.2 Web Services

The definition of Web Services is given in [2] as follows:

Dependability of Service-Oriented Architecture

 9

Web Service: a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web Service

in a manner prescribed by its description using SOAP messages, typically conveyed

using HTTP with an XML serialization in conjunction with other Web-related

standards.

Comparing the above definition with that of SOA, it becomes clear that Web Services

are a form of SOA. The definition specifically constrains the underlying technologies

involved in constructing Web Services. Some of these technologies, such as the Web

Service Description Language (WSDL) [16] and the Simple Object Access Protocol

(SOAP) [15], have been purposefully developed for Web Services, while others have

been adopted from the existing standards and protocols, such as the Hyper-Text

Transport Protocol (HTTP) [14] and the Extensible Markup Language (XML) [28].

2.2.3 Dependability

In this dissertation, we start with the definition of dependability given in paper [21], a

well known and widely accepted source which offers a comprehensive clarification of

the basic concepts and means of dependability in computing systems:

Dependability: the ability to deliver service that can justifiably be trusted.

The above definition is universally recognised in related research domains. It is,

however, very abstract and brief. Paper [21] offers an alternative definition:

Dependability: the ability to avoid service failures that are more frequent and more

severe than is acceptable to the user(s).

Dependability of Service-Oriented Architecture

 10

The above further refines the definition of dependability. Although it is still abstract,

it precisely defines the criterion for deciding if a system is dependable. The paper

specifies the attributes of dependability as reliability, availability, safety, security,

survivability and maintainability [21]. Thus, researchers can identify and specify the

means of dependability in their specific research domains according to the above

taxonomy.

2.3 Dependability of SOA and Web Services

SOA and Web Service technologies have been developing very fast in recent years,

becoming critical in many commercial and scientific distributed computing

applications [6-9] and thus prompting a great deal of research interest in the issue of

their dependability. The term dependability covers varied characteristics, while

dependability means may vary from one context to another. It would not be feasible to

cover all of its aspects in our research. In this section, we will describe the

dependability means we are concerned with in our study. We will also offer a specific

analysis of the dependability issues commonly manifested in the existing Web Service

applications. Lastly, we will report on our studies of some relevant work conducted

by other researchers working in related fields.

2.3.1 Overview of SOA and Web Services

SOA and Web Services implement standardized interoperability [13] between

services and clients. These services are software components implementing

capabilities and functionalities, and can be discovered and accessed via computer

networks, especially the Internet. Their implementation details are invisible to clients.

However, their interface needs to be defined, described and published in a machine-

Dependability of Service-Oriented Architecture

 11

processable format. The definition of Web Services specifically states that their

interface should be described in the WSDL. Clients interact with them through SOAP

messages relying on the underlying network protocols such as HTTP.

Figure 2-1: Typical interaction in Web Services

In Web Services, clients and services are assumed to be loosely-coupled, which

means that they are stand-alone systems independent of each other [4]. The services

are normally autonomous, and developed and deployed by different service providers.

Because of the nature of Web Services, the services developed by the same service

providers can also, to some extent, be regarded as autonomous of each other. Clients

can discover services through various discovery services, such as the UDDI [29]. The

discovered information is sufficient for implementing invocations to Web Services.

The Web Service implementation details and internal structure are hidden from

clients. Figure 2-1 shows the typical Web Service architecture.

UDDI

Service requestor

Client Application

Web Services
Middleware

(SOAP)

Service provider

Web Services
Middleware

(SOAP)

Service implementation

SOAP/HTTP

Web Services
Middleware

(SOAP)

Services Registry

Service Looking-up Service publishing

Dependability of Service-Oriented Architecture

 12

In Web Services, the term client is often used to refer to the application software

which invokes Web Services to perform business processing logic (e.g. an e-Science

or e-commerce workflow), and Web Services act as clients when they invoke other

Web Services to implement their internal business logic [4]. In this dissertation, the

term client refers to the client application that invokes Web Services, unless stated

otherwise. Web Service applications often rely on service composition, which

integrates multiple Web Services to implement the entire business logic.

Figure 2-2: The automated travel booking process based on Web Service composition

We will use an automated travel booking use case (see Figure 2-2) to explain how the

Web Service applications function. A travel booking procedure comprises a set of

operations intended to meet a customer’s request to book a journey via a travel agency

for him/her. The procedure consists of the following steps: a booking request, booking

processing, booking quotation, and booking fulfilment. To start the booking procedure,

the customer sends a booking request to the travel agency for them to book a flight to

his/her destination as well as hotel accommodation for his/her stay there. The travel

agency starts processing the booking when it receives a booking request. Processing

involves the analysis of the booking request placed by the customer and other internal

business processing logic, including finding the appropriate flight and hotel, booking

a flight with an airway company and booking a room with a hotel, registering the

booking details in the database, and so on. Therefore, along with the Web Services

Dependability of Service-Oriented Architecture

 13

offered by the travel agency, the airway company and the hotel also need to provide

Web Services for the relevant processes to be carried out. Booking fulfilment involves

sending the booking reference, flight details, and hotel details to the customer. Note

that in this abstract travel booking use case we only focus on the computing systems

that are involved in the procedure, unconcerned with the details of the actual business

activities.

In order to deal with the issue of possible conflicts within Web Service specifications

[4], the Web Service Interoperability Organization (WS-I) [30] has instituted the Web

Service interoperability profile [13] to promote and standardise the interoperability of

Web Services by clarifying such specifications. It consists of some non-proprietary

Web Service specifications, further refining the mechanisms defined in Web Service

specifications, such as SOAP message binding, Web Service publishing, etc., to

construct an interoperable Web Service infrastructure. The WS-I profile is well

recognised and supported by the majority of the Web Service middleware [31-33],

therefore it is safe to assume Web Services to be universally interoperable in scientific

research unless there are specific circumstances to make this false. Thus, in the travel

booking use case, the travel agency can freely invoke the flight booking and hotel

booking Web Services without the service providers having to participate for the

interaction to occur.

2.3.2 Dependability of Web Services

Because of the nature of their architecture, unreliability is an intrinsic characteristic in

distributed systems. It is therefore essential to consider dependability issues as the

architectural implication for distributed systems [1]. Many researchers are aware of

this, reporting on and discussing their relevant experiences [18, 19, 34-36]. Our

Dependability of Service-Oriented Architecture

 14

experiments [37, 38], conducted upon the real-world bioinformatics Web Services

(see section 2.3.3), have also revealed some important aspects of the dependability

issues of real-world Web Services used in scientific applications.

Web Services implement capabilities and functionalities via computer networks,

especially the World Wide Web (Web) [39]. They are typically autonomous and

deployed by various companies or organizations to loosely couple with clients. The

result of this manner of composition has been a wide range in the dependability

characteristics of the Web Services being developed, especially those built upon

legacy components. The hardware and software faults in Web Services or other

internal activities can lead to failures of the client. Because Web Services are

administrated by various independent providers, it is difficult to develop the

corresponding handling mechanisms in the client application. For example, a Web

Service can develop halt failures [21] when it is shut down without informing its

clients. When the client invokes the service, an exception will arise indicating the

unavailability of the service, yet without detailed information about the failure.

Without collaboration from the service provider, it is difficult to implement further

actions to handle the failure because of the lack of information about the state of the

service. Some Web Services can return error messages to their clients, indicating an

exceptional state of the service. However, these error messages are normally

insufficient for implementing handling mechanisms at the client side.

The network which the Web Service infrastructure relies on is an unreliable medium

[18, 19, 34]. There are many common network-related problems, such as latency of

response, loss of messages, corrupted messages, traffic congestion, etc. The services

can be inaccessible entirely because of network failures. For instance, paper [18]

Dependability of Service-Oriented Architecture

 15

points out that “local and network conditions are far more likely to impede service

than server failures”. This conclusion is further supported by paper [19]: “Network-

related outages can potentially render more than 70% of the hosts inaccessible to the

user. Host-related failures tend to be of a shorter duration than failures that might

involve the network”. The development of dependable Web Service applications thus

calls for solutions capable of dealing with exceptional behaviours of individual

component Web Services as well as network failures [40].

According to the classification and taxonomy proposed in papers [20, 21], the issues

described above can be grouped into the following types of failures:

• Service failure: an event that occurs when the delivered service deviates from

correct service.

• Network failure: An event that occurs during the exchange of messages

between the client and the service, including delay, loss and change of the

content of the message.

In turn, service failures can be classified as follows:

• Omission failures: The service omits to respond to an input. It can be the result

of a system crash, poor system maintenance and hardware or software

component failures.

• Erratic failures: Service responds to the inputs; however, the result is

incorrect, or the response time is unreliable or abnormal.

Network failures can be further grouped in the following way:

• Omission failures: message lost during an exchange of messages.

Dependability of Service-Oriented Architecture

 16

• Timing failures: unusual network latency during an exchange of messages.

• Content failures: the content of the message changed during an exchange of

messages.

2.3.3 Our experiments on the dependability of Web Services

To analyse the dependability of realistic Web Services, we have conducted some

experiments with real-world Web Services, developing a Web Service dependability

Assessment Tool (WSsDAT) in order to assess Web Service dependability [37]. The

tool can continuously monitor a number of Web Services and generate metrics from

the monitoring results to present the dependability characteristics of the services.

More details about the WSsDAT tool can be found in Appendix A. Some of the

experiments, in which the tool was used, are reported in papers [37, 38].

Here we briefly report the experiment with two BLAST Web Services, commonly

used in Bioinformatics research [41], which provide similar functionalities. In the

experiment, we used the WSsDAT to monitor the BLAST Web Services from three

locations simultaneously to observe the differences in their behaviour and how the

locations (networks) affect the dependability. Below are listed the two Web Services:

 EBI BLAST Web Service1, deployed by the European Bioinformatics Institute

(EBI), Cambridge, UK [41]

 DDBJ BLAST Web Service2, hosted by the DNA Databank, Japan [42]

Two WSsDAT tools were located in Newcastle upon Tyne, UK: one was deployed

from the campus network at Newcastle University, whilst the other one was hosted on

1 http://www.ebi.ac.uk/collab/mygrid/service4/soap/services/alignment::blastn_ncbi?wsdl
2 http://xml.nig.ac.jp/wsdl/Blast.wsdl

Dependability of Service-Oriented Architecture

 17

a computer connected to it with 1MB broadband via a domestic Internet Service

Provider, Telewest Broadband (UK) [43]. The remaining WSsDAT was deployed in

the China Education and Research Network (CERNET) in Tianjin [44].

In order to observe the variances of the dependability and performance metrics over

different periods - during working days, the weekend, daytime and night time - the

two BLAST services were monitored continuously for over a month. Here we report a

set of data collected from Friday, March 18, 2005 until Sunday, March 20, 2005. The

total duration was 72 hours and the interval between the successive service

invocations was 30 minutes. All measurements were stored in a database for further

analysis.

During the experiment, the EBI BLAST service behaved very erratically. Below is a

report of the results collected concerning the service:

• Successively tested 132 times in 72 hours at each location

• Domestic Broadband (Telewest), Newcastle Upon Tyne, UK

o Average response time: 842.1s (239s ~ 760s)

o Failure rate: 58.3% (76 invalid results)

• Newcastle University Campus Network

o Average response time: 764.6s (240s ~1000s)

o Failure rate: 62.9% (82 invalid results)

• CERNIC, China

o Average response time: 945.7s (261s ~1886s)

Dependability of Service-Oriented Architecture

 18

o Failure rate: 43.2% (56 invalid results)

All of the failures were caused by the EBI service returning the SOAP message, with

the error message “Gateway failure” attached. The error message seemed to indicate

the failure of an internal service component. However, without collaboration by the

service provider we do not have information about the failure.

In contrast, the dependability of the DDBJ service was very good during the

experiment, with no failures recorded. There were two delays registered at each of the

three roots, indicating unknown states of the service or some part of the network.

• Successively tested 132 times in 72 hours at each location

o 100% successful

• Domestic Broadband (Telewest), Newcastle Upon Tyne, UK

o Average response time: 103.1s

o Delays: 180s, 728s

• Newcastle University Campus Network

o Average response time: 97.8s

o Delays: 369s, 925s

• CERNIC, China

o Average response time: 130.0s

o Delays: 397s, 940s

Dependability of Service-Oriented Architecture

 19

Figure 2-3 shows the charts drawn from these results. Our experiment shows that the

dependability of a BLAST service can vary dramatically. This empirical conclusion

can be extended to the global Web Service infrastructure, where the dependability of

services are all different from the user’s perspective [18, 38].

Figure 2-3: Performance metrics obtained using the WSsDAT from the BLAST

services deployed at the EBI and DDBJ when invoked from the University of

Newcastle campus network, a commercial broadband supplier (UK) and from China.

Service failures have been shaded in grey.

Dependability of Service-Oriented Architecture

 20

With the superior richness of services offered by SOA, Web Service applications

extensively use this diversity to improve the dependability of service composition

(see, for example, the solutions proposed in [40, 45-48], to name a few). This strategy

is based on the fact that, in SOA, different service providers may provide similar

services which can be used as redundancy and alternatives to each other. We believe

that the information collected in our experiments can be used to understand the

behaviour of the BLAST Web Services and thereby allow scientists to select those

that are the most reliable for use in their data analyses. This makes it possible to select

Web Services from among similar services based upon their dependability behaviour.

Our experiments indicate that, based on the comparison of its dependability

characteristics with those of the EBI BLAST service, the DDBJ BLAST service

should be the first choice for users. Furthermore, the fact that it is possible to deploy

and use the WSsDAT in different physical locations can lead to insights on how the

network can affect the dependability and performance of Web Services, pointing

towards the idea of on-location monitoring of Web Service dependability at the client

side.

2.3.4 Means for Achieving Dependability

There are many techniques used to achieve dependability. Paper [21] groups them in

the following categories:

• Fault prevention

• Fault tolerance

• Fault removal

• Fault forecasting

Dependability of Service-Oriented Architecture

 21

Current research on the dependability of Web Services implements the above

approaches - individually or in combination - to deal with different types of failures

[21].

Fault prevention can eliminate a number of faults hidden in the design and

implementation of the system. It has to be applied during the system design stage by

employing quality control techniques such as modularization, structured

programming, etc. [21].

Fault-tolerance mechanisms act upon errors to maintain the continuity of services.

The aim of fault tolerance is to avoid system failures in spite of the remaining faults.

It typically consists of two phases: error detection and system recovery [21]. Error

detection is used to identify the presence of errors, whilst system recovery is aimed at,

by applying error and fault handling, transforming a system state that contains one or

more errors and (possibly) faults into a state without detected errors or faults that

could be activated again. Error handling eliminates errors from the system state,

whilst fault handling prevents faults from being activated again [21, 49].

Fault forecasting performs qualitative evaluation of component failures and

quantitative evaluation of the probability of failures with respect to fault occurrence or

activation. The dependability attributes of a system may change during the life cycle

of the system because of system aging. By employing modelling and testing

techniques, dependability attributes can be evaluated, and the probabilistic estimates

of dependability measures can help to make changes to the system to avoid system

failures. Thus, in fault-tolerant systems, fault forecasting can evaluate the

effectiveness of fault tolerance mechanisms and lead to improvements in the

implementation of fault tolerance mechanisms. More examples can be seen in papers

Dependability of Service-Oriented Architecture

 22

[50, 51], which report how to use the fault-injection technique to assess the

dependability of Web Services.

Fault removal is generally applied in the development phase or during system

maintenance. It focuses on discovering potential faults in a system and removing them

to avoid failures [21].

2.3.5 Fault tolerance in SOA

With their complex architecture and complicated application scenarios, Web Service

applications are doomed to a potentially high rate of failures. This calls for a variety

of methods to be designed to minimize failures occurring in Web Services and in their

interaction with clients. Nevertheless, faults can never be completely removed from

real-world systems, nor can the occurrence of errors be ever entirely prevented [22].

In this respect, the application of appropriate fault tolerance (FT) techniques is critical

for improving the dependability of Web Service applications. Generally speaking, in

fault tolerance, system recovery consists in error handling and fault handling. Error

handling may involve the following forms [21]:

• Rollback, which brings the system back to a correct state saved at checkpoints

before the occurrence of errors.

• Roll forward, where the state without detected errors is a new state.

• Compensation, where the erroneous state contains enough redundancy to

enable errors to be masked.

Fault handling prevents located faults from being activated again, by employing the

following steps [21]:

Dependability of Service-Oriented Architecture

 23

• Fault diagnosis, which identifies and records the location and type of cause(s)

of error(s).

• Fault isolation, which excludes the faulty components from service processing.

• Reconfiguration, which switches service processing from faulty to redundant

components.

• Reinitialization, which sets the new system configuration.

The selection of the fault tolerance techniques strongly depends on the fault

assumptions made, and mostly lead to two basic fault tolerance strategies: backward

and forward recovery [21, 52]. Backward recovery typically implements the recovery

block fault tolerance technique [52, 53] to maintain the continuity of the service in

spite of faults. If errors occur during the transaction, the system rolls back to a

previous correct state, and then applies a retry or service diversity to tolerate the

faults.

In contrast to backward, forward recovery transforms the system into a correct state. It

mainly relies on exception handling [20] techniques to tolerate errors occurring during

transactions. Exception handling mechanisms can be found in many mainstream

programming languages, for example Java, C++, and etc. They provide methods and

tools to handle exceptional states and activities during the execution of software so as

to achieve more reliable and robust software and systems.

N-version programming [54] is an important compensation technique, typically

employed in dependability-critical applications. It is used for tolerating design and

implementation faults. The approach requires multiple versions of software or

components to be developed by independent developers to identical specifications.

Although it is still impossible to avoid all of them, the approach can sufficiently

Dependability of Service-Oriented Architecture

 24

minimize the probability of common faults, thereby improving the reliability of

system software [55]. In practice, however, the cost of applying the N-version

programming approach is high and its effectiveness often overestimated, resulting in

misjudgements of the reliability of the software or the system [55].

In the context of SOA, there has been some research focusing on applying the

Recovery block [52, 53] and N-version programming [54-56] techniques, which

employ the diversity approach to implement fault tolerance mechanisms. This

normally includes service and messaging path diversity.

Diversity is a natural advantage of Web Services because of their loosely coupled

architecture and standardised interoperability. Several Web Services implementing

similar functionalities are likely to be found in the growing Internet world, and can be

used for implementing service diversity. Furthermore, there is normally path diversity

to be found on the Internet. A lot of applications [46, 47, 57] utilize similar services to

implement the diversity approach. In Recovery blocks, diverse services can be used as

alternatives replacing the faulty services to maintain continuous service. The approach

can be especially beneficial for employing N-version programming in an application,

with the development cost dramatically reduced by using the existing services as

redundancy. This strategy may potentially be at risk from the problem of common

faults, whereby the services may share the same faulty services as external component

services. However, the probability of such problems can be minimized by applying

appropriate techniques, such as the solution proposed in paper [58].

Dependability of Service-Oriented Architecture

 25

2.4 Overview of the Existing Work

As part of our research of Web Service dependability, we have studied the existing

work, focusing on improving Web Service dependability and constructing dependable

Web Service applications. Such solutions typically rely on the techniques outlined in

section 2.3.4. There are too many different factors in the dependability of Web

Services, and it is impossible to deal with all kinds of faults in one solution.

Therefore, various approaches have been developed based upon particular fault

assumptions.

In general, depending on their purposes, these can be classified into two categories:

one aimed at developing dependable Web Services, and the other at dependable

applications based on Web Service composition. Approaches of the first kind adopt

various dependability-attaining techniques in service design and development to

improve their dependability. According to their fault assumptions and the

implementation of dependability-attaining techniques, many of them can be classified

as application-level protocols, exception handling, system diagnosis and modelling,

etc. Approaches of the second type often adopt service diversity and dynamic

reconfiguration of service composition to improve the dependability of the entire

application. These solutions are typically complex. Most of them implement the

broker/proxy-type architecture and apply multiple dependability-attaining techniques

in different combinations to deal with various types of faults. Below we will briefly

introduce some typical work to summarize the current state of research in this domain.

Dependability of Service-Oriented Architecture

 26

2.4.1 Application-level Protocols

Current W3C Web Service specifications do not define standards and mechanisms to

guarantee the Quality of Service (QoS) and dependability of Web Services.

Additional protocols and standards have been developed to standardize the

implementation of QoS and dependability mechanisms. Such protocols and standards

particularly focus on application-level messaging dependability in addition to the

lower-level network protocols, most commonly HTTP [14]. The Service Reliability

(WS-Reliability) specification [59] is one of such solutions, which has been formally

declared as an OASIS [59] standard.

The WS-Reliability defines a protocol that guarantees the reliability of SOAP

message delivery. It can cope with failures of software components, the system and

the network during message delivery between distributed applications. This

application-level messaging protocol is designed to prevent duplicates and loss of

messages, and to guarantee message ordering. It cannot, however, deal with service

failures or unavailability of particular services. Therefore, it requires upper-level fault

tolerance mechanisms to deal with other types of failures.

2.4.2 Exception Handling Approaches

Exception handling is a classic fault tolerance technique [20]. Solutions based on it

implement exception handling mechanisms to cope with errors occurring in Web

Services, therefore achieving a highly dependable individual Web Service. Some of

these emphasise the tolerance of internal hardware and software faults, while others

also deal with network failures.

Dependability of Service-Oriented Architecture

 27

AmberPoint Inc. [60] presents a solution for managing exceptions in a commercial

Web Service environment. The solution implements an intermediary-based Exception

Manager (EM) to detect run-time exceptions in a set of Web Services. The EM

executes localized resolutions to deal with exceptions. The approach overcomes the

shortcomings of the traditional programmatic exception handling mechanisms applied

in the context of Web Services.

Salatge and Fabre [46] introduce a connector-based solution for ensuring the

dependability of Web Services for clients. It proposes a special language for

implementing fault tolerance connectors to couple services and clients. Clients, Web

Service providers or dependability experts can implement the connectors in their

applications. The connectors implement error handling mechanisms to deal with

failures and exceptions during communication between clients and services. They can

also collect error information during execution in order to monitor the health of Web

Services. In addition to the above techniques, the service redundancy strategy is also

employed in this solution, based upon the Ontology technology. The solution can

improve the robustness of communication between clients and services. It is

especially suitable in developing a Web Service application in which clients and

service providers are correlative and can efficiently cooperate in implementing

connectors.

Dobson [61] proposes a container-based approach to fault tolerance in SOA. This

work is based on the assumption that, in SOA, services may fail for many reasons,

including resource starvation, faults in implementation and network instability. The

authors have developed a notion of fault-tolerant service container, an extensible

architecture, to employ component diversity in a SOA application. The container is

Dependability of Service-Oriented Architecture

 28

configured with a fault tolerance policy. It allows the use of fault tolerance

mechanisms to leverage the existing services at the application level. A software

development kit (SDK) and a deployment tool are developed to implement the

container. This container-based approach addresses the problem of the traditional

hardware redundancy strategy commonly adopted by service providers. It achieves

redundancy at the service level, allowing both software and hardware redundancy.

The approach can employ service diversity by binding services available at a service

marketplace. In this way, service redundancy can be achieved at low cost. The

container acts as a proxy to the actual services. It intercepts messages transmitted

between the client and the services and applies exception handling techniques to deal

with failures of services. Such message interception is transparent to both the client

and service provider, and controlled by the fault tolerance policy model. The fault

tolerance procedures in the container implement the actions of fault tolerance policy

models.

The solutions based upon exception handling techniques can improve Web Service

dependability and/or the interaction between services and clients. They are often

highly application-specific and especially suitable for those service providers which

offer dedicated client-applications to their clients to improve the usability of their

services. As exception handling mechanisms need to be developed in the design and

implementation stages, such solutions can hardly benefit the existing legacy Web

Services without modification. Users may be able to employ them for implementing

their client applications; this, however, requires collaboration from providers.

2.4.3 System Diagnosis Approaches

Dependability of Service-Oriented Architecture

 29

In developing systems, some approaches apply diagnosis and assessment techniques

to achieve highly dependable Web Services. These approaches commonly implement

system diagnosis and assessment mechanisms to assess the dependability of internal

and external system components, and act upon diagnosis results to avoid failures.

Ardissono, Furnari, Goy, Petrone and Segnan [62] present an approach relying on

consistency-based diagnosis aimed to achieve intelligent exception management. This

approach applies fault tolerance to compose Web Services by implementing exception

handling which relies on smart failure identification and diagnostic information-aware

exception handlers. In addition to the traditional model-based diagnosis approaches,

this work allows local diagnosers to analyse exceptions that arise in each component

Web Service and to extend the diagnostic-reasoning information in the business logic

description of each component Web Service. A global diagnoser is then introduced to

conduct global reasoning. It identifies the causes of exceptions by consulting the local

diagnosers. The existing component Web Services need to be modified so that they

can interact with the corresponding local diagnosers and achieve diagnostic

information awareness.

Vieira, Laranjeiro, and Madeira [50] propose a fault injection technology for

assessing Grid Web Service dependability. The authors have developed a fault

injection toolkit, which allows network-level fault injection for real-time middleware

message interception and fault injection. The toolkit can precisely inject specific

rather than random faults into middleware messages, which makes it valuable for

assessing Grid middleware for constructing dependable Grid applications. The toolkit

can also be used as a tool to test individual Web Services.

Dependability of Service-Oriented Architecture

 30

The above summarises some typical approaches based upon system diagnosis and

assessment. Such approaches can help developers to build highly dependable Web

Services, such as dependability-critical applications where service dependability is

vital. It is difficult to apply such solutions in the existing systems, and the

development cost of such solutions is quite high.

2.4.4 Approaches to Dependable Service Composition

The solutions aimed at improving the dependability of Web Service composition

typically implement the service broker architecture and fault tolerance mechanisms.

They intercept communication between the client and Web Services and act upon

exceptions and failures to maintain service continuity. As for those applications that

integrate Web Services dynamically discovered from registries and invoke them

according to their WSDL interface, it is difficult to implement specific fault tolerance

mechanisms to ensure the dependability of service composition because of the lack of

information. In such circumstances, functionally similar Web Services are often used

to employ the service diversity strategy.

Alwagait and Ghandeharizadeh [45] propose a dependable Web Service framework

(DeW) for solving problems caused by service migration. When a Web Service

migrates to a different location or gets disconnected from the Internet, clients

typically have to manually rediscover the service or its replicas from the UDDI and

modify their application code to invoke them to the new location. The DeW

implements Web Service registry proxies to automatically re-direct the client’s

invocation of a service to the old location to the new location of the service or its

replicas. When a Web Service migrates, the service provider can register the new

location of the service or its replica in the DeW. When the client invokes the service

Dependability of Service-Oriented Architecture

 31

using its old location, an exception will rise. The exception will be handled by the

DeW proxy, which will find the new location of the service or its replicas, and

redirect the client’s invocation there.

Laranjeiro and Vieira [48] propose a mechanism for adopting service diversity into

composite Web Service applications. It simplifies the implementation of service

redundancy commonly applied in the context of Web Service architecture. The

mechanism, called Fault tolerant Web Services (FTWS), allows programmers to

specify alternative Web Services for each operation and offers a set of artefacts that

simplify the software design and coding process. It is able to deal with all aspects

related to the redundant Web Service invocation and responses voting, as well as

evaluating and comparing the alternative services. The evaluation procedure generates

data for resolving voting impasses. When developing a SOA application,

programmers normally have to select component Web Services and redundant

alternative Web Services when constructing composite ones. It is their job to code all

the service redundancy and voting mechanisms. Such procedures are typically error-

prone. With the FTWS deployed as a proxy Web Service, it can automatically deal

with all aspects related to service redundancy and responses voting. In short, it is an

off-the-shelf proxy Web Service that implements service redundancy and voting

mechanisms to simplify the development of composite Web Services.

Tsai, Song, Paul, Cao, and Huang [47] propose a framework that extends the existing

Web Services to achieve dynamic reconfiguration for Web Services. It can perform

automatic reconfiguration of participating services at run-time to cope with service

unavailability, network inability as well as software and hardware failures. This

framework extends the current WSDL interface specification, specifying a service by

Dependability of Service-Oriented Architecture

 32

its interface, scenarios and constraints (ISC), i.e. representing its actors, conditions,

data, actions, timing and events (ACDATE). The ISC specification specifies the static

and dynamic structure of services.

The authors have developed a run-time distributed dynamic reconfiguration tool based

on the ISC. The Dynamic Reconfiguration Service framework (DRS) uses the ISC

specification for improving Web Service dependability, maintaining a service registry

for monitoring and managing registered Web Services. It is implemented and

deployed with redundancy to avoid a single point of failure. Multiple DRSs can be

deployed in each system layer, communicating and synchronizing with each other to

enhance the dependability of the framework. Every DRS has a Service Directory (SD)

and a Standard Service Naming Directory (SSND) for managing Web Services and

needs to interact with services providers to obtain information for them. The DRS can

track the status of participating Web Services and rank them according to user

feedback reports from participating agents. It generates a proxy agent for each

abstract node in its SD. When the client invokes a participating Web Service, it is the

proxy agent rather than the actual address of the service that is invoked. The DRS

implements auditing agents to monitor the status of participating services at run-time

and to generate a profile for each active service. With the DRS performing dynamic

reconfiguration at run-time, if a participating service becomes unreliable, the client’s

invocation can be automatically switched to an alternative service.

Townend, Groth and Xu [58] propose a provenance-aware weighted fault tolerance

scheme for developing dependable Web Service applications. This approach identifies

common-mode failures in applications using multi-version design. It introduces a

provenance system to record the flow of data from a service to identify shared

Dependability of Service-Oriented Architecture

 33

services. The recorded provenance information can be used to determine weighting of

the results delivered by each service for result voting. The results from those services

whose weightings are below the threshold are eliminated from the voting procedure.

A Java-based Web Service implementation of the Provenance Recording Protocol,

called Provenance Recording for Services, is implemented to support a provenance-

aware SOA.

The service broker architecture was popular in the conventional distributed

applications, such as the message broker in EAI and the object request broker in

CORBA [4]. In these systems, the service broker was the key service component for

performing service integration. The client’s business logic depends on the service

broker for interaction with participating component services in order to execute

business processes. However, the service broker can at the same time cause problems

in developing cross-organizational applications because of its lack of ability to

integrate autonomous component services. Because of their standardized

interoperability, these limitations do not apply to the service broker in Web Services.

Therefore, the dependability-improving service brokers proposed in the above

solutions are feasible in Web Service applications. In fact, the Web Service

specification [1] describes a Web Service called Web Service intermediary which

develops value-adding services between the client and Web Services, and which can

be used to implement service brokers in the way fully compliant with Web Service

specifications. Unfortunately, the potential of this architecture is not recognised in the

above solutions, where the researchers develop their own architecture to implement

service brokers. As a result, these solutions can hardly be seamlessly integrated into

the existing applications, and they do not support on-the-fly dynamic service

Dependability of Service-Oriented Architecture

 34

integration that would allow new component services to be integrated in service

composition without recompiling the client applications and the service broker.

2.5 Problems Involved in Web Service Composition

Among the many studies aimed at improving Web Service dependability, those

developing dependable Web Service composition constitute a significant part,

emphasising how important it is to ensure the dependability of applications based on

service composition. However, although the existing work has addressed certain

dependability issues effectively, there are still some problems

remaining.

Customer

Client
application

Travel booking
(Web Services)
Travel agency 1

HTTP/SOAP

Flight booking
(Web Services)

Airway 1

Hotel booking
(Web Services)

Hotel 1

HTTP/SOAP

HTTP/SOAP

Flight booking
(Web Services)

Airway 2

Hotel booking
(Web Services)

Hotel 2

HTTP/SOAP
Travel booking
(Web Services)
Travel agency 2

HTTP/SOAP

HTTP/SOAP

Figure 2-4: The automated travel booking process with multiple travel agencies

Web Service composition relies on multiple component services to implement entire

business processes. These component services are developed and administrated by

different service providers. In reality, there is no guarantee that all component

services are highly dependable. For instance, in the travel booking use case, by

employing appropriate dependability solutions the Web Services provided by the

travel agency and the airway company can be developed in such a way as to meet a

Dependability of Service-Oriented Architecture

 35

high dependability standard because this is essential for these businesses. However, it

might be seen as less important to the hotel business, with the development of highly

dependable Web Services restricted by a limited budget. Therefore, the dependability

of the entire travel booking process can be eventually undermined by undependable

hotel booking Web Services.

In such circumstances, it is well worth employing service diversity strategy to develop

a client application. As there are several travel agencies offering the same business,

the client can send quotation requests to multiple agencies, booking the journey with

one of them (see Figure 2-4). Thus, things become less problematic to the customer,

as long as one of the travel agencies can eventually complete the booking process.

Figure 2-5: The automated travel booking process with multiple travel agencies

implementing service diversity. The solid lines represent primary routes and the

dashed lines alternative routes.

However, the situation is very different for the travel agencies from what it is for the

customer. The travel agencies have to compete with each other, and the dependability

of their services is their key to success (note that we are not concerned here with other

Dependability of Service-Oriented Architecture

 36

business factors, such as price, service quality, etc.) Therefore, the travel agencies

also need to build service diversity into their travel booking services, to prevent their

business from failing due to undependable external component services, such as the

Web Services provided by the participating business partners, and the network needed

to access them. In a scenario, the use case illustrated in Figure 2-4 may turn into that

in Figure 2-5, in which both travel agencies (TA), TA1 and TA2 use the same

Airways (AW), AW1 and AW2, and hotels (HT), HT1 and HT2, as external services.

However, these Web Services have different dependability characteristics. The

selection of the appropriate components during service composition is one of the most

important elements in defining the dependability of the entire application.

The service diversity strategy and the proxy/broker architecture have been extensively

employed in solutions for developing dependable Web Service applications. However

the limitations of those solutions have restricted their applicability and efficacy in

real-world applications. In the following, we discuss some of these limitations.

There are two ways to apply service diversity: service alternatives as used in the

Recovery block [52, 53] fault tolerance technique and service redundancy as used in

N-version programming [52-55]. In this dissertation, we draw the following

distinction between them:

• Service alternative: component services are used as alternatives to the primary

service, and the business logic processor only invokes them when the primary

service fails to deliver valid results.

• Service redundancy: component services are used synchronously, the business

logic processor invokes them at the same time and processes the results

returned from them according to certain preference.

Dependability of Service-Oriented Architecture

 37

The above diversity strategies have been employed in some of the existing solutions.

However, to the best of our knowledge, the existing work does not provide features

for making justified selection of the diversity strategies and component services.

In practice, it is difficult to choose which diversity strategy to use, because their

applicability largely depends on the environmental variables, such as network

bandwidth, system capacity, etc. [36]. These variables are especially restrictive in the

service redundancy approach. It may straightforward applying the approach to the

simple business model illustrated in Figure 2-5, yet as the number of redundant

component services grows, the approach becomes less applicable, possibly

undermining the dependability of the application [36]. We believe the above issue

was not sufficiently addressed in the existing work.

Many solutions employ the service alternative diversity strategy, because of its

simplicity. However the strategy for selecting the component services is seldom

discussed. Obviously, which primary component service is selected mostly defines

how efficient and feasible the service alternative approach will be. A highly

dependable primary service can benefit the performance of the entire service

composition. Unfortunately, to the best of our knowledge, there is no satisfactory

solution currently to help application developers to select component services.

Although some solutions implement service ranking mechanisms, such as in [47],

there is not enough information to reflect the changing behaviour of Web Service

dependability. Moreover, computer networks play a very important role in Web

Services, with the dependability of the computer network between the client and

services crucial for service composition. The dependability of a Web Service may

Dependability of Service-Oriented Architecture

 38

change dramatically from one client’s perspective to another’s, because of the

different networks between clients and the service provider.

Many solutions use similar services to implement service diversity. However even

though the candidate services provide similar functionalities, their interfaces, required

input parameters, etc. can be very different. Some solutions propose interface

mapping mechanisms to deal with the issue; in addition to the difficulties of

implementing and maintaining such mechanisms and mapping registries, these

approaches often undermine the compatibility with some Web Service security

mechanisms [13]. For example, it is unlikely that an encrypted SOAP message

provided by the client can be decrypted by all candidate services, and that a security

key issued by a service will be accepted by other services. For similar reasons, those

approaches are often inapplicable for the stateful Web Services 3, whereas if a service

fails in the middle of the business logic process, diverting the client’s request to other

candidate services will cause problems, because they do not contain the states or their

internal business logic implementations can be very different.

We can now summarise several problems still existing in Web Service composition

which have not yet been satisfactorily dealt with in the relevant work:

• Dynamically selecting appropriate fault tolerance mechanisms

• Dynamically selecting diverse component services in corresponding

mechanisms

• Failures of component services undermining the dependability of service

composition

3 http://xml.coverpages.org/statefulWebServices.html

Dependability of Service-Oriented Architecture

 39

• Network failure can undermine the dependability of Web Services from the

client’s perspective

• Compatibility with Web Service security mechanisms

• Compatibility with stateful Web Services.

2.6 Conclusions

The dependability of Web Services is an active and important research domain. The

loosely-coupled distributed architecture of Web Services has brought benefits for

developing e-Science and e-commerce applications. However, such architecture is

inherently undependable. Research on the dependability of Web Service applications

needs to deal with both service failures and network failures. It is also very important

that such solutions need to be compliant with the Web Service specifications [1] and

the WS-I interoperability profile [30]. There have been many approaches developed to

ensuring the dependability of Web Service and service composition. However, our

analysis shows that the limitations of those solutions restricted their applicability and

efficacy. There is a need for solutions to help develop dependable Web Service

applications. We conclude that such solutions will need to improve the dependability

of the existing legacy Web Services for clients without modifying them, thus benefit

clients whose applications rely on the services dynamically discovered from the

UDDI or other registries and employed in their applications. This can minimize the

development cost whilst fully utilizing the richness of services in the Web Service

world. New solutions are needed to improve the dependability of Web Service

applications from the user’s perspective to minimize the problems caused by service

and network failures. New techniques are also required for improving the efficiency

of such solutions by explicitly utilizing service diversity strategies and using the most

Dependability of Service-Oriented Architecture

 40

dependable components to ensure dependable service composition. Moreover, the

solutions should have better compatibility with Web Service security mechanisms and

stateful Web Services. The above considerations motivated our research on improving

the dependability of Web Services.

The WS-Mediator System

 41

3. The WS-Mediator System

3.1 Introduction

In this chapter, we present the WS-Mediator approach. Generally speaking, the WS-

Mediator is a Web Service intermediary system which implement an overlay

architecture [63-65], resilience-explicit computing [27] and fault tolerance

mechanisms to improve the dependability of Web Service composition. It explicitly

mediates clients’ requests to Web Services in accordance with the dependability

behaviour of these services and of the communication media (the Internet). The WS-

Mediator is implemented as a distributed network of dedicated services (called Sub-

Mediators) which allows monitoring of the dependability of the Web Services from

different locations. Monitoring results are used to dynamically generate and update

the dependability metadata of these Web Services, which makes it possible to achieve

explicit dynamic adaptation of Web Service composition at run-time. The system can

be seamlessly employed by applications, to provide off-the-shelf (ready-made) fault

tolerance mechanisms for improving the dependability of service composition without

modifying component services. This is especially beneficial for integrating

autonomous Web Services.

The chapter is organised as follows. Section 3.2 defines the objectives of the solution,

while section 3.3 overviews the architecture of the WS-Mediator system. Section 3.4

explains the structure and internal components of Sub-Mediator, and describes the

design principle of the WS-Mediator system in detail, with a particular focus on the

functional components. Section 3.5 demonstrates how to use the WS-Mediator system

in applications. Finally, section 3.6 concludes this chapter and highlights its main

contributions.

The WS-Mediator System

 42

3.2 Research Objectives

In the previous chapter, we briefly overviewed relevant work on improving Web

Service dependability, highlighting the problems that have not been sufficiently

addressed in the existing solutions, which do not fully explore the impact of the

Internet and the quality of the service received by clients. Some solutions allow

clients to utilize service diversity in their applications. However, they neither support

justified selection of the diversity strategies nor select the component services

dynamically according to their changing dependability behaviours. Moreover, the

client application and the service brokers implementing these solutions often need to

be recompiled every time new component services are added to the composition

schema. Besides, these solutions tend to require a degree of collaboration from service

providers as additional information has to be obtained to implement relevant

mechanisms [46, 58]. This is, however, rarely suitable in cross-organizational

applications, thus eliminating the applicability of these solutions.

Yet ensuring the dependability of service composition with autonomous Web Services

is an important issue. Motivated by the problems described in section 2.5, our work

aims to tackle them, and accordingly we define the objectives for our approach in the

following way:

• To propose a solution to improving the dependability of Web Service

composition, which can maintain the continuity of services despite failures of

component services and network.

• This solution should be compliant with the Web Service specifications and

interoperability, and support on-the-fly dynamic integration of component

services according to their dependability characteristics.

The WS-Mediator System

 43

• To make it possible to carry out an easy dynamic integration of new

component services to business logic to employ service diversity in service

composition.

• To develop a dependability monitoring mechanism to assess the dependability

of component services from the client’s perspective and generate

dependability metadata representing the dependability behaviour of

component services.

• To provide off-the-shelf fault tolerance mechanisms and dynamic

reconfiguration of these to deal with various fault assumptions.

As a result of our research, we have developed an architectural solution achieving the

above objectives. Below we will present the approach in detail.

3.3 Overview of the WS-Mediator

Our solution, the WS-Mediator (Web Service Mediator) system, realizes an off-the-

shelf mediator architecture [66] to ensure the dependability of Web Service

applications. The WS-Mediator system implements the Web Service intermediary

architecture [1]. Being autonomous of the client, it mediates between the client and

Web Services to ensure the continuity of services by employing resilience-explicit

computing and fault tolerance mechanisms.

The term Resilience-Explicit Computing refers to “the explicit use of information

(metadata) on the resilience characteristics of system components, infrastructure and

environment to guide decision-making at either design time or in the running system”

[27, 63, 65]. Resilience-explicit computing is specifically addressing dependability

issues in SOA to achieve highly dependable SOA applications.

The WS-Mediator System

 44

In theory, resilience-explicit computing originally refers to the situation in which a

client imposes a dependability requirement when attempting integration with services,

whilst the services present dependability metadata at their interface [65]. In practice,

the above service lookup and integration process can be carried out by introducing

into the architecture a special service that can mediate between the client and the

services to match the dependability requirement of the client and the dependability

metadata of the services by employing explicit reasoning about service composition.

In the current Web Service technology, there is no standard definition of how

dependability metadata should be presented at the Web Service interface, nor is there

a standard way to implement them so that they can be universally understood by the

client. A special service should therefore be developed to resolve this issue. This

could, for instance, behave as a service coordinator between the client and the

services, and implement a conversion mechanism to convert the dependability

metadata from different services to a standard format that can be understood by the

client.

Our WS-Mediator approach followed the above route, extending it to adopt some

concepts and mechanisms from adaptive fault tolerance technology [67, 68], which

has already been applied in developing dependability-critical applications (e.g. [69])

for many years, to resolve the dependability issues in Web Service composition.

In SOA, from some perspectives the distinction between a service provider and a

client is blurred. When it invokes other Web Services, a service provider acts as a

client [4]. The WS-Mediator monitors the dependability of Web Services and

generates dependability metadata from monitoring results. The system overlay

architecture [63-65] allows the subsystem, i.e. Sub-Mediators, to be deployed at

The WS-Mediator System

 45

various locations in the Internet. In practice, the Sub-Mediator can be deployed at the

same root where the client application executes. Thus, Sub-Mediators can perform on-

location monitoring of component services to consider the network impact. The

notion of on-location monitoring implies that it is performed at the client side by

distributed Sub-Mediators to realise the dependability behaviour of Web Services

from the client’s perspective (see Figure 3-1). Sub-Mediators can also utilize the

overlay architecture to implement message-routing strategies to deal with network-

related faults. The dependability Web Service metadata are used by the resilience-

explicit dynamic reconfiguration mechanism to make decisions about which Web

Service to select as the most appropriate for performing dynamic service composition

during the business procedure. This novel approach improves the efficiency and

feasibility of service diversity by applying it according to the dependability of

component services. The system does not limit the selection of candidate component

services, allowing new component services to be introduced into service composition

without modification or recompiling of any of its service components. Clients can

flexibly provide a number of candidate Web Services at run-time for implementing

service diversity.

Unlike the existing solutions (e.g. [46-48]), our approach does not create additional

difficulties for adapting systems to their applications. Furthermore, the system

provides integrated off-the-shelf fault tolerance mechanisms corresponding to various

fault assumptions and application scenarios, to be integrated into the client application

at run-time, thereby reducing the development cost of a dependable service

composition.

The WS-Mediator System

 46

SO
AP

SOAP

SOAP
SOAP

SOAP

SOAP

SOAP

SOAP

Figure 3-1: The overlay architecture of the WS-Mediator system allows monitoring

the dependability of Web Services from different locations by a dedicated global

network of Sub-Mediators. The system helps the clients to dynamically select the best

Web Services for service composition, and apply fault tolerance mechanisms to ensure

dependable applications.

The flexible and scalable architecture of the WS-Mediator allows it to be easily

tailored for various specific applications. There are many ways to deploy Sub-

Mediators - for example, they can be deployed on a local network, to be shared by

local clients; or a virtual organization could deploy a Sub-Mediator on each node of

the framework to construct the WS-Mediator system. A company could deploy a

number of Sub-Mediators at different locations to utilize the WS-Mediator

architecture so as to improve the dependability of their services for globally

distributed users. Figure 3-1 illustrates the general architecture of the WS-Mediator

system. Below we will explain its architecture and system components in detail.

The WS-Mediator System

 47

Client
application

Web Services

Web Services

Web Services

Sub-Mediator

Sub-Mediator

Sub-Mediator

HTTP/SOAP

HTTP/SOAP

HTTP/SOAP

HTTP/SOAP

HTTP/SOAP

WS-Mediator

Figure 3-2: Deployment of the WS-Mediator system, which consists of a number of

Sub-Mediators which implement an interface that accepts invocations from the client.

They monitor Web Services and other Sub-Mediators and generate dependability

metadata so that resilience-explicit computing can be performed. The system also

applies fault tolerance techniques to deal with faults. The dashed lines represent

optional message routes.

3.4 System Architecture

The WS-Mediator system consists of a set of interconnected Sub-Mediators, forming

an overlay architecture [64] (see Figure 3-2). Sub-Mediators are globally distributed

over the Internet to monitor the dependability of Web Services, and provide accurate

dependability metadata, presenting Web Service dependability characteristics from

the client’s perspective. They are functionally identical; if implementation diversity is

intended, however, their implementations can be different. The client invokes a Sub-

Mediator as the portal of the WS-Mediator system. Sub-Mediators intercept the

interaction between the client and component services, performing resilience-explicit

The WS-Mediator System

 48

computing and applying fault tolerance techniques to improve the dependability of

service composition. Below we will describe the Sub-Mediator functionalities and its

internal structure.

Interface

Sub-Mediator

Dependability
monitoring
mechanism

Dependability
assessment
mechanism

Web Services
invocation

mechanismDatabase system

Resilience-explicit
dynamic

reconfiguration
mechanism

Fault tolerance
mechanisms

Policy system

Business logic processor

Figure 3-3: The internal structure of the Sub-Mediator

3.4.1 Sub-Mediator Structure

Figure 3-3 illustrates the internal structure of the Sub-Mediator. The Sub-Mediator

implements an interface (SMI) to accept the client’s invocation. The client’s request is

parsed and realized by the Business logic processor (BLP), which controls other

internal components, performing business logic procedures to fulfil the client’s

request. The Resilience-explicit dynamic reconfiguration (REDRM) implements a

resilience-explicit computing mechanism to dynamically select and integrate the best

component services in service composition according to their dependability metadata.

Preferences in this selection are constrained by policies defined by the client and

The WS-Mediator System

 49

managed by the Policy system (PS) of the Sub-Mediator. The Fault-tolerance

mechanisms (FTMs) implements different fault tolerance techniques to deal with

different kind of faults. The client can define corresponding policies to select the

appropriate fault tolerance mechanisms to improve service composition dependability.

The Web Service invocation mechanism (WSIM) invokes the Web Services and

collects results. These are processed by the BLP and returned to the client via the

SMI. The dependability metadata of the Web Services is stored in the Database

system (DS), which also comprises information about Web Services and other Sub-

Mediators. The client can submit and edit information about Web Services to the DS

and retrieve the Web Service dependability metadata via the WSI. The dependability

monitoring mechanism (DMM) successively monitors the Web Services and Sub-

Mediators registered in the DS. The Dependability Assessment (DA) mechanism

processes monitoring results by the DMM to assess the dependability of Web Services

and Sub-Mediators and to generate their dependability metadata.

3.4.2 Sub-Mediator Interface (SMI)

The Sub-Mediator interacts with the client via the SMI, which can be implemented in

different forms, such as APIs and Web Services, according to the concrete

implementation of the Sub-Mediator. Essentially, the SMI should have the following

functionalities:

o Accepting a client’s service request for dynamically mediated service

composition with candidate Web Services

o Accepting service policies as defined by the client

o Accepting information submission by Web Services

o Accepting a client’s request for Web Service dependability metadata

The WS-Mediator System

 50

o Returning mediated results to the client

o Returning Web Service dependability metadata to the client for dependability

analysis.

The mediating service is the main service provided by the WS-Mediator system.

When the client (e.g. an e-Science workflow) requests the WS-Mediator to mediate

service composition, it needs to provide one or several candidate Web Services, and

an invocation message to be sent to each candidate Web Service. The number of the

candidate services depends on the intended fault tolerance mechanisms. The

invocation message carries the actual request to each corresponding Web Service. The

Sub-Mediator generates a mediated result, based on the results collected from

candidate Web Services, according to service policies. The mediated result needs to

indicate the source of the initial results, i.e. the candidate Web Services which

returned the results that it generated from. In case of no candidate returning a valid

result, or other types of failures, the mediated results need to attach an error message

indicating the type and details of the error.

The Sub-Mediator allows the client to submit and edit information about Web

Services, e.g. the endpoint address, the required message binding methods, etc. via the

SMI to help the WS-Mediator system to monitor Web Services. This information is

then stored in the DS, and Web Services monitored by the Sub-Mediator. The client

can also retrieve Web Service dependability metadata via the SMI for dependability

analysis. For example, a Sub-Mediator can request the dependability metadata on

particular Web Services to identify the best messaging routes.

The WS-Mediator System

 51

3.4.3 Business Logic Processor (BLP)

The BLP controls the business logic process in order to fulfil the client’s request. It

parses the client’s request and service policies, assembles the business process

procedures and carries out a set of activities to perform the procedures. Figure 3-4

illustrates the assembly of BLP business procedures and execution activities. The

actual process of each procedure node is carried out by the corresponding

mechanisms.

3.4.4 Policy System (PS)

The PS manages two types of policies: service and system configuration policies.

They define essential and optional configuration parameters to constrain the execution

of service procedures as well as internal behaviours.

Figure 3-4: Assembly of BLP business procedures and internal activities

The WS-Mediator System

 52

Service policies comprise a set of entities allowing the client to define service

preference and other processing parameters, such as constraints on the invocation

method used for invoking component services, selection of fault tolerance

mechanisms, criteria for selecting candidate component services, etc.

System configuration policies contain entities representing system settings. They set

parameters to define the corresponding behaviours of the system and its components.

For example, they can set the maximum number of synchronous invocations the

system allows at a time, the maximum number of entities that the DS can store, etc.

3.4.5 Database System (DS)

The DS comprises two databases: the Web Service database (WSD) and the Sub-

Mediator database (SMD). The WSD stores information on the registered Web

Services and their dependability metadata, whilst the SMD stores information on the

registered Sub-Mediators and their dependability metadata. The information on Web

Services needs to be sufficient for the Sub-Mediator to invoke and monitor them,

including their endpoint address, operation name and so on. Different operations

offered by the same Web Services are regarded as different services. The

dependability metadata comprises entities representing the Web Service dependability

characteristics, such as their dependability rank, average response time, major types of

failures, etc. The structure and content of the SMD is similar to that of the WSD.

3.4.6 Dependability Monitoring Mechanism (DMM)

The DMM monitors the dependability of both Web Services and Sub-Mediators. It

retrieves the information on Web Services and Sub-Mediators from the DS to

compose test scripts to invoke the services and collect their dependability metrics,

The WS-Mediator System

 53

such as the availability measurement (m), round-trip response time (t), type of failure

(f), etc. The test scripts run continuously, with the interval defined by the system

configuration policies, which also define the dependability metrics, e.g. m, t, f, that the

test script needs to collect. For instance, when the DMM monitors a Web Service

(WS), it invokes it using the test script and waits for a response. If it returns a valid

result that does not contain any error message, then its availability measurement (m)

increases. The round-trip response time of the invocation is recorded for calculating

the average response time (r) of a WS. If it returns an invalid response, its m

decreases, and the error message is logged in the database for the type of failures

statistic (f). If it fails to respond, or an exception arises during the invocation, its m

also decreases, and the type of the exception is also logged for the statistic f.

3.4.7 Dependability Assessment Mechanism (DAM)

The DAM assesses the dependability metrics of services and their dependability

characteristics to generate dependability metadata. It can generate and update both

permanent dependability metadata (m, t, f), which represent the long-term

dependability characteristics of services, and temporary dependability metadata (m, t,

f) defining their short-term dependability characteristics. The system configuration

policies determine the time frame for calculating the short-term dependability

metadata (m, t, f). Theoretically, the short-term dependability metadata more

accurately represent the dependability of component services during run-time

dynamic service composition, whilst the long-term dependability metadata can help to

understand the changing behaviour of services.

The WS-Mediator System

 54

3.4.8 Resilience-explicit Dynamic Reconfiguration mechanism (REDRM)

The REDRM component dynamically selects and integrates component services

according to their dependability metadata (m, t, f). Until now, solutions implementing

service diversity have not emphasised strategy of selecting candidate services. The

execution order of the alternative services has been decided randomly by the service

diversity mechanism, without reasoning. However, as shown in our experiments [37,

38], the dependability characteristics of a Web Service may change from one moment

to another. For instance, the availability (m) and the round-trip response time (t) of the

service can vary dramatically, and the service suffers from different type of failures (f)

at different times. Moreover, the above characteristics can also vary from different

clients’ viewpoints as well as becoming less predictable because of the variations in

the network and other relevant environmental factors. In section 2.5, the use case

illustrated in Figure 2-5 demonstrates that inappropriately selecting primary

component services when applying service diversity may undermine the efficiency of

service composition. Therefore, we introduce resilience-explicit computing for

making decisions about selecting component services in dynamic service composition

to improve the feasibility and efficiency of the service diversity approach. The Sub-

Mediator uses the candidate Web Services provided by the client to implement service

diversity. Before carrying out service composition, the REDRM uses the relevant

service policies defined by the client to sort the candidate services by their

dependability metadata (m, t, f) in the DS. The best Web Services are used primarily

to perform service integration, whilst the others are used as alternatives. The

following shows how to apply resilience-explicit dynamic reconfiguration in service

composition:

 Service composition: /* collect component services

The WS-Mediator System

 55

 Aggregation A = {s1, s2, … sn}

 Dependability metadata: /* set the criterion for dynamic selection

Criterion C = m: availability /* the criterion set by the selection policy

 Sort component services: /* sort services according to metadata

 Order O = (A – sorted)

 Adaptation: replace (Service S, O) /* switch to new component services

Below is an example which shows how to apply resilience-explicit computing in the

design of an application implementing service alternatives:

 Set

 {sn | services (n)} : list of candidate component services

 criterion = m (availability) : parsed from selection policy

 threshold t : parsed from selection policy

 Retrieve

 {an | availability (n)} = mn: metadata (m) of sn

 Filter

 {cn | candidates (n)} = sn where an is equal to or greater than t

 Sort cn : sort according to an

 Composition

 Try

service S = c1

response r = invoke (c1);

if (r is valid) then Finish

else replace S with next cn

 Try … /* try alternatives

The WS-Mediator System

 56

 Finish

 return r /* return response to the upper level class

The benefits of this approach are clear. Integrating explicitly selected component

services can maximize the dependability and performance of service composition as

the less dependable component services are avoided to prevent them from

undermining the dependability of the entire application.

Customer

Client
application

Travel booking
(Web Services)
Travel agency 1

Flight booking
(Web Services)

Airway 1

Hotel booking
(Web Services)

Hotel 1

Flight booking
(Web Services)

Airway 2

Hotel booking
(Web Services)

Hotel 2

Travel booking
(Web Services)
Travel agency 2

Resilience-explicit
service composition

Figure 3-5: The resilience-explicit service composition in travel booking use case. The

solid lines represent fixed message routes, and the dashed lines redundant/alternative

message routes.

Here we use the travel booking use case to demonstrate the feasibility of resilience-

explicit computing in service composition. The travel booking illustrated in Figure 3-

5 extends the one illustrated in Figure 2-5, where both travel agencies (TA), TA1 and

TA2 use the same Airways (AW), AW1 and AW2, and hotels (HT), HT1 and HT2, as

external component services. Normally, TA1 uses AW1 and HT1 as primary

component services for travel booking, with AW2 and HT2 used as alternatives if

AW1 or HT1 fails. TA2 implements resilience-explicit service composition in its

travel booking business procedure. AW1, AW2, HT1 and HT2 are equally used as

redundant component services. When TA2 receives a quotation request from the

The WS-Mediator System

 57

client, the resilience-explicit computing mechanism checks the dependability

metadata (m, r) of AW1, AW2, HT1 and HT2, and selects the most dependable ones

to perform service composition. Let us assume that the HT1 is an undependable Web

Service, whilst HT2 is very dependable, and that TA2 uses HT2 primarily to check

the hotel. At the same time, the performance of AW2 is better than of AW1, and TA2

uses AW2 to check the flight. In this scenario, TA2 achieves the best dependability

and shortest response time for the client.

In contrast, when TA1 receives a quotation request from the client, it invokes AW1

and HT1 to check their availability. However, as we already know, HT1 is an

undependable Web Service and therefore fails to respond to TA1 enquiry. Therefore,

TA1 has to switch to HT2 to check the availability. Meanwhile, although AW1 is

slower than AW2, it successfully delivers the response to TA1. Eventually, TA1

returns the booking quotation; however, it loses the competition against TA2, which

delivers faster response because of the superior service implementation. Below we

demonstrate how to apply resilience-explicit computing in designing TA2:

 Services

 {hotel | HT1, HT2 }

 {airway | AW1, AW2 }

 Metadata

{m (%) | HT1: 60%, HT2: 90%, AW1: 90%, AW2: 90% }

{r (ms) | HT1: 500ms, HT2: 400ms, AW1: 800ms, AW2: 600ms }

 Selection policy

 {primary_criterion : m (availability) | no threshold;

 Second_criterion: r (response time) | no threshold }

The WS-Mediator System

 58

 Sort

 {hotel | HT2, HT1} /* mHT2 > mHT1

 {airway | AW2, AW1} /* mAW2 = mAW1 but rAW2 < rAW1

 Composition

 Try check hotel

hotel h = HT2

response rh = invoke (h)

 if (r is valid) then Finish hotel booking

 h = HT1

 Try …

 Finish hotel booking

 Try check flight

airway a= AW2

response ra = invoke (h)

 if (r is valid) then Finish airway booking

 a = AW1

 Try …

Finish check flight

 Finalize

 quotation = rh + ra + service charge

 return quotation

There are also other benefits gained through resilience computing. For example, the

REDRM can appropriately set relevant parameters when integrating component

services according to the information in the dependability metadata. The information

may contain average or maximum response time of the component service, and the

The WS-Mediator System

 59

REDRM can set the invocation time-out parameter according to the response times to

improve the performance of service composition.

3.4.9 Fault-tolerance mechanisms (FTMs)

The Sub-Mediator implements fault tolerance techniques to tolerate temporary and

permanent service and network failures. They are implemented as different fault

tolerance execution modes aggregated in the FTMs. There are currently three types of

fault tolerance execution modes included.

A. Service Alternative Execution Mode

The Service Alternative execution mode implements the Recovery block fault

tolerance technique [52] to apply the service diversity strategy [20]. When the client

selects the Service Alternative execution mode and provides a number of Web

Services as candidates, the REDRM mechanism will first check the dependability

metadata of the candidate Web Services, removing the Web Services that do not meet

the acceptance thresholds from the candidate list. Then the REDRM sorts the Web

Services according to prior criteria defined in the service policies comprised in the PS.

The Web Service with the best dependability metadata will be selected as the primary

one and the others used as alternatives. If the primary Web Service fails, the next best

alternative Web Services will be invoked. Eventually, when a valid result is received

from a Web Service, the execution will be terminated. The result will then be

delivered to the BLP, which uses it to generate the mediated result to be sent to the

client as the response to the service request. Figure 3-6 illustrates the use case of the

Service Alternative execution mode.

The WS-Mediator System

 60

Figure 3-6: The use case of the Service Alternative execution mode

B. N-version Programming Execution Mode

The N-version Programming execution mode implements the N-version Programming

technique [70]. The N-version Programming mode invokes a number of Web Services

simultaneously, and the results received from Web Services will be processed

according to the corresponding service policies. Note that the technique used in Web

Services is sometimes different from the classical N-version programming technique

applied in conventional software/system development, where the multiple versions are

mostly developed from the same requirements and specifications, and their processing

results can be voted for result validation. With Web Services, similar Services can be

used for implementing service diversity; they are, however, very likely to be irrelative

to each other, not meeting the same implementation specifications. Thus, the results

can only be voted after transforming and matching processes, which mechanisms are

not intended in the WS-Mediator system. Using the result voting mechanism in this

The WS-Mediator System

 61

execution mode is subject to applicability. Figure 3-7 illustrates the use case of the N-

version programming execution mode.

Dynamic Selection of WSs

Check dependability metadata

Sort WSs

Select multiple WSs

Invoke WSs
Validate the response

Change WS

BLP
(Vote results)

Check global policy

Check individual policy

Figure 3-7: The use case of the N-version Programming execution mode

C. Message Routing Execution Mode

The Message Routing execution mode implements a unique fault tolerance

mechanism which extends the conventional Message Routing diversity strategy to

achieve explicit selection of message routing. When this execution mode is selected,

the Sub-Mediator checks the dependability metadata of each candidate Web Service

from the Sub-Mediators registered in its Sub-Mediator registry. If the dependability

metadata of a Web Service in the participating Sub-Mediators meet the parameters

defined in the service policies, the Sub-Mediator can be selected as a message routing

intermediary. Once the required number of intermediaries is satisfied, the local Sub-

Mediator passes the invocation details of the Web Service to the intermediary Sub-

Mediators. The intermediary Sub-Mediators then invokes the Web Service from their

The WS-Mediator System

 62

locations. The results will be retuned to the local Sub-Mediator. If more than one

message route is selected, the results will be processed according to the service

policies. Figure 3-8 illustrates the use case of the Message Routing execution mode.

Select candidate SMs

Check dependability
metadata

Sort SMs

Invoke SMs

Invoke SMs

Validate the response Change WS

BLP
(Vote results) Check the dependability

metadata of the WSSelect Message routes

Check the global policy

Figure 3-8: The use case of the Message Routing execution mode.

D. Dynamic Reconfiguration of Fault-tolerance Mechanisms

The fault tolerance mechanisms are designed to deal with various types of failures as

well as different types of application scenarios. The efficiency of the WS-Mediator

system greatly relies on the selection of fault tolerance mechanisms during service

composition. Resilience-explicit computing can also be applied in making decisions

about the selection of fault tolerance mechanisms. The novelty of our approach is that

the resilience-explicit dynamic reconfiguration mechanism consults the statistic of

type of failures (f) of Web Services to select the most appropriate fault tolerance

mechanism for dealing with typical failures of Web Services. For instance, if a Web

The WS-Mediator System

 63

Service often fails because of network-related failures, then it may be advisable to

apply the message routing execution mode integrated with the service; if a Web

Service only rarely fails due to temporary faults, such as an occasional time-out,

system maintenance, and so on, it can be a good choice to make it the primary service

and apply the service alternative execution mode, whilst using other, less dependable

ones, as alternatives. Furthermore, it is also feasible to automatically select the N-

version programming execution mode when the availability measurement (m) of all

candidate Web Services is much lower than certain standards.

3.4.10 Web Service Invocation Mechanism (WSIM)

The development of Web Services relies on Web Service middleware provided by a

variety of organizations and companies [31-33], which implements mechanisms

defined in the Web Service specifications. As this middleware commonly supports

different message binding methods, invocation methods, etc., the WSIM needs to

aggregates different message binding and invocation methods to suit different Web

Services. The message binding method and invocation type can be defined in the

service policies.

3.5 Application of the WS-Mediator

Applying the WS-Mediator is easy. It can be seamlessly integrated in Web Service

composition applications. It does not require component services to be modified,

because of its compliance with the interoperability standards. The WS-Mediator

simplifies the development of the client application by enhancing service composition

procedures and fault tolerance mechanisms with the off-the-shelf functionalities

implemented in the WS-Mediator. Therefore, the client application only needs to

The WS-Mediator System

 64

provide candidate component services and define service policies for the WS-

Mediator, avoiding the complexity of service composition. Moreover, the WS-

Mediator can dramatically improve the dependability and performance of service

composition without increasing the complexity and cost of application development,

and these benefits become more prominent when the scale of service composition

increases, involving more component services.

Moreover the WS-Mediator approach improves the applicability and efficacy of the

service diversity strategy based on the functionally-similar autonomous services

without undermining the compatibilities with Web Services security mechanisms and

stateful Web Services. The approach allows the client to set specific requests

(including encrypted messages) and service policies for each candidate services so

that the system explicitly selects the best component services during dynamic

composition. In the case of stateful Web Service composition, the system allows the

client to decide how to continue the execution of a workflow when a failure occurs in

the middle of the interactions with a stateful component service. For example, the

client can provide replica services as alternatives so that these replica services can

retrieve the processing state and continue the business logic process; or the client can

decide to abandon the interrupted business logic process and use other similar services

to process the business logic from the top.

While providing flexible transaction-oriented fault tolerance to improve the

dependability of service composition, the WS-Mediator system does not interfere with

the execution of the client application. We believe that the client will typically be in a

better position to choose how to compose the business logic and decide how to control

the workflow, while the WS-Mediator system can help the client application to use

The WS-Mediator System

 65

the best services and improve the dependability of the transactions between the client

and the services.

Figure 3-9: Travel booking use case with the WS-Mediator system. The solid lines

represent fixed primary and the dashed lines redundant/alternative message routes.

Here we use the travel booking use case again to demonstrate the advantages of the

WS-Mediator system. Figure 3-9 illustrates the travel booking use case that integrates

the WS-Mediator system into service composition. The client application and TA2

both develop their business logic relying on the WS-Mediator system, whilst TA1

retains the conventional implementation. TA2 relies on Sub-Mediator2 to implement

dynamic integration with AW1, AW2, HT1 and HT2, applying fault tolerance

mechanisms in the interaction between TA2 and the external component services.

Obviously, TA2 provides higher dependability and better performance than TA1 does.

Sub-Mediator1 monitors the dependability of TA1 and TA2. When the client requests

the WS-Mediator to perform service composition for travel booking, TA2 will be

selected by Sub-Mediator2 to fulfil the booking request. While in reality TA2 may fail

to deliver the service to the client during the process of the booking process because

of failures of component services or the network beyond what the fault tolerance

mechanisms can deal with, the dependability metadata provide quantitative evidence

The WS-Mediator System

 66

suggesting TA2 is less likely to fail than TA1. Thus, the performance of the travel

booking procedure is optimized because all participating component services are

explicitly selected. Consequently, TA1 will lose business when competing with TA2,

until its dependability improves. In real-world applications, there are far more travel

agencies other than TA1 and TA2 offering similar services, as well as more airway

companies and hotels. It is difficult to decide which service is trustworthy and

dependable, without the help of the WS-Mediator system.

3.6 Conclusions

In section 3.2, we have outlined the objectives we set for our research. We believe

these have been successfully achieved in the WS-Mediator approach:

A. The WS-Mediator is a generic solution reinforcing and extending the existing

work on improving the dependability of Web Services via its overlay

architecture to ensure the continuity of services.

B. The innovation of the WS-Mediator lies in its off-the-shelf mediating

architecture and resilience-explicit computing, which allow dynamic

integration of Web Services according to their dependability behaviour.

C. The WS-Mediator supports genuine on-the-fly integration with Web Services

via its interoperable Web Service interface and invocation mechanism.

D. The Policy-driven dynamic reconfiguration of the fault tolerance mechanisms

makes the WS-Mediator applicable to dealing with various types of faults and

the changing behaviour of Web Services and the network.

E. The WS-Mediator is compliant with the Web Service interoperability

standards.

The WS-Mediator System

 67

F. The flexible and scalable design of the approach allows it to be extended or

tailored to suit specific applications.

In this chapter, we have described the architecture of the WS-Mediator system and

explained the functionalities of the system components. We have specifically focused

on how to generate dependability metadata according to monitoring results, and how

to utilize these metadata in resilience-explicit computing to achieve dynamic service

composition with the most dependable Web Services. Moreover, the WS-Mediator

improves the dependability of service composition by employing a variety of fault

tolerance techniques.

Java WS-Mediator

 68

4. Java WS-Mediator

4.1 Introduction

In this chapter we present the Java WS-Mediator, which is a prototype of the WS-

Mediator system implemented using the Java Web Service technology [71]. The Java

WS-Mediator has been developed with the aim of evaluating the WS-Mediator

approach and demonstrating the applicability of the approach in a number of realistic

Web Service applications. We chose Sun Microsystems Glassfish [33] as the Java

Web Service platform for the development of the prototype. Our implementation

supports two types of Sub-Mediator. The Sub-Mediator Elite is implemented as an

additional layer on top of the Glassfish Java Web Service Middleware. It can be easily

deployed on a personal computer to enable WS-Mediator Java APIs to be invoked by

the client application. The Web Service intermediary Sub-Mediator implements Web

Service interface and is developed to be deployed on the Glassfish application server.

It uses the Sub-Mediator Elite as the underlying middleware to achieve the designed

functionalities.

The chapter is organised as follows: section 4.2 briefly introduces the Java Web

Service technology, section 4.3 presents the design of the Java WS-Mediator, and

section 4.4 concludes this chapter.

4.2 Java Web Service middleware

Web Services is a paradigm of distributed systems that extends the conventional peer-

to-peer middleware protocols to override some shortcomings of the conventional

distributed systems. The implementation of Web Services relies on middleware

infrastructure known as Web Service middleware. This middleware shares the

Java WS-Mediator

 69

underlying infrastructure with the conventional middleware to provide fundamental

underlying services such as transaction support, etc. See a representation of Web

Service architecture in Figure 4-1.

Figure 4-1: Basic architecture of Web Services. [1]

The client application also relies on Web Service middleware which implements

underlying protocols atop conventional middleware. The architecture of the client

application is illustrated in Figure 4-2.

Web Service middleware can be developed based upon different technologies.

Today’s middleware typically relies on the .NET [72] or J2EE [73]. While comparing

these is beyond the scope of this dissertation, our choice of the Java Web Services

based on the J2EE technology to develop the WS-Mediator was prompted by the

platform-independent nature of the J2EE technology. Besides there are sufficient

recourses and supports available for Java Web Services free of charge, which makes

them a cost-efficient platform to conduct academic research and experiments.

Java WS-Mediator

 70

Figure 4-2: The architecture of Web Service client

There are several implementations of the Java Web Service middleware developed by

different providers, such as Aparche Axis [32], JBoss [31], and Glassfish [33]. All of

them are sufficient for developing complex Web Service applications. While each has

its unique features and advantages over the others, we chose Glassfish for the

following reasons:

• Its comprehensive development environment and tools integrated in the

NetBeans IDE for developing Web Service applications [74].

• Sufficient support of dynamic Web Service invocation provided by the

powerful Dispatch<T> interface.

• Compliancy with the current Web Service specifications and Web Service

Interoperability standards.

• Open-source project with strong industrial support by both Sun Microsystems

and Microsoft.

Java WS-Mediator

 71

Figure 4-3: Web Service application with the Java WS-Mediator

Below is the development environment and packages for implementing the Java WS-

Mediator:

• Development IDE: NetBeans v5.5.1 [74]

• Java SDK: J2EE v1.5

• Web Service platform: Glassfish V2

• Java Web Service API: JAX-WS 2.1 [75] and JAX-RPC 1.6

4.3 Structure of the Java WS-Mediator

The WS-Mediator system is structured of functionally identical Sub-Mediators. These

can be implemented in different forms, as long as they agree with the fundamental

principles and designed functionalities presented in chapter 3. We have developed a

special Java WS-Mediator middleware called Mediator-Elite to accomplish the

designated structure and functionalities of the Sub-Mediator.

Java WS-Mediator

 72

Figure 4-4: Internal structure of the Sub-Mediator Elite, which implements Java APIs

as interface to accept invocations from the client application. It monitors Web

Services and other Sub-Mediators registered in its database, and generates their

resilience metadata to perform resilience-explicit dynamic reconfiguration.

4.3.1 Structure of the Sub-Mediator Elite

The Sub-Mediator Elite is implemented as an additional layer atop the Glassfish Web

Service middleware. It can be deployed on personal computers. The Java client

application can invoke the Java APIs of the Sub-Mediator Elite to use it as a locally

deployed Sub-Mediator. The Sub-Mediator Elite can also be used for implementing

the Web Service intermediary type Sub-Mediator by deploying it on the Glassfish

Application Server, as well as realizing a Web Service interface corresponding to the

Java APIs of the Sub-Mediator Elite (see Web Service architecture with the Java WS-

Mediator shown in Figure 4-3).

Java WS-Mediator

 73

Figure 4-4 illustrates the internal structure and components of the Sub-Mediator Elite.

It implements Java APIs (JAPIs) to accept the invocation from the client application.

The BLP parses the client’s requests and service policies, and assigns tasks to the

corresponding components to implement the business logic process procedures. The

Web Service Database (WSD) stores the information about Web Services and keeps

their dependability metadata. The Web Service Database Accessing Bridge (WSDAB)

allows editing the information about Web Services and retrieving their dependability

metadata. The Sub-Mediator Database (SMD) stores the information about other Sub-

Mediators and keeps their dependability metadata. The Sub-Mediator Database

Accessing Bridge (SMDAB) edits the information about the Sub-Mediators and

retrieves their dependability metadata. The Dynamic Reconfiguration Engine (DRE)

implements a resilience-explicit mechanism to integrate Web Services and apply

fault-tolerance techniques. It selects the most desirable, according to the service

policies, Web Services and then chooses fault tolerance execution modes to perform

service composition. The Fault-tolerance Mechanisms (FTMs) implement different

fault tolerance execution modes to deal with different fault assumptions. The Web

Service Monitoring (WSM) and Sub-Mediator Monitoring (SMM) monitor Web

Services and Sub-Mediators respectively and generate their dependability metadata.

The Web Service Invocation Mechanism (WSIM) implements various message

binding and invocation methods to improve the interoperability with real-world Web

Services. In the following sections we will describe the functionalities of each

component in detail.

Java WS-Mediator

 74

4.3.2 Java APIs of the Sub-Mediator Elite

The Sub-Mediator accepts service requests via its JAPIs interface. There are three

basic types of service requests classified by their purpose:

• Accessing the Web Service database

• Accessing the Sub-Mediator database

• Requesting mediating services

The above requests are dealt with by corresponding service components. Below is an

explanation of each type of service requests.

A. Accessing Web Service Database

The Sub-Mediator Elite allows adding, editing, and removing the information about

Web Services via the WSDAB. After the client adds a Web Service to the WSD, it is

periodically monitored by the Sub-Mediator Elite for later use. The client needs to

provide the following information associated with it:

• Endpoint address of the Web Service

• Operation name

• Description of the Web Service

• Test SOAP message

• Test policy

The endpoint address and operation name are used for identifying the Web Service

and the client-intended service function provided by the Web Service. Different

operations provided by the same Web Service are regarded as different entities. The

Java WS-Mediator

 75

description gives a briefly memo about the Web Service. The WSM mechanism uses

the test SOAP message to invoke the Web Service and the corresponding service

operation. Figure 4-5 shows a simple example of the test SOAP message:

<soapenv:Envelope xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\">

<soapenv:Body>

<addNumbers xmlns=\"http://mediator.wsmediator.org\">

<arg0>10</arg0>

<arg1>20</arg1>

</addNumbers>

</soapenv:Body>

</soapenv:Envelope>

Figure 4-5: An example of the test SOAP message

The test policy is used for defining relevant parameters, such as the invocation method

and expected timeout. Figure 4-6 illustrates an abstract model of the test policy:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsmip="http://schemas.wsmediator.org/testpolicy/policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <parameter1>{value}</parameter1>

…

<parameterN>{value}</parameterN>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Figure 4-6: An example of the test policy

Java WS-Mediator

 76

The client can also edit and remove the existing Web Services from the WSD, as well

as retrieve the information about Web Services by providing their endpoint address

and operation name. The client can request the dependability metadata of a Web

Service via the corresponding JAPIs. The dependability metadata will be capsulated

in a SOAP message returned to the client.

B. Accessing the Sub-Mediator Database

The client can add and edit information about other Sub-Mediators in the SMD. In

order to add a Sub-Mediator, the client needs to submit the following items:

• Endpoint address of the Sub-Mediator

• Its Location and ISP

• Brief memo

The endpoint address is used for identifying the Sub-Mediator. The test script for

monitoring a Sub-Mediator is automatically generated by the SMM mechanism. The

client may request the dependability metadata of Sub-Mediators by providing the

endpoint address. The dependability metadata of a Sub-Mediator will be attached into

the SOAP message sent to the client.

C. Requesting Mediating Services

The most important type of requests is for mediating services. It is the core service

offered by the WS-Mediator system. The client invokes the corresponding API to

submit a mediating service request. The following information needs to be attached to

a service request message:

• One or more candidate Web Services

Java WS-Mediator

 77

• Endpoint addresses of the Web Services

• Operation names of the services being invoked

• SOAP messages to each candidate Web Service

• An individual execution policy associated with each Web Service

• A global execution policy

The candidate Web Services are not limited to those existing in the WSD. However,

only the Web Services that have already been monitored by the Sub-Mediator can be

used explicitly since only their dependability metadata are available. The SOAP

message associated with each candidate Web Service is identical to that used for

invoking the Web Service directly from the client without using the Sub-Mediator.

The individual execution policy constrains the instruction indicating how to process a

candidate Web Service. The global execution policy indicates how to process the

client’s request. An abstract example of the service request SOAP message is

illustrated in Figure 4-7.

<SOAP abstract>

 <ws>

 <endpointAddress>{EndpointAddress_ws1}</endpointAddress>

<functionName>{FunctionName_ws1}</functionName>

<SOAPMessage>{SOAP_to_ws1}</SOAPMessage>

<individualPolicy>{InExPolicy_XML_ws1}</ individualPolicy>

</ws>

<ws>

<endpointAddress>{EndpointAddress_ws2}</endpointAddress>

<functionName>{FunctionName_ws2}</functionName>

 <SOAPMessage>{SOAP_to_ws2}</SOAPMessage>

Java WS-Mediator

 78

<individualPolicy>{InExPolicy_XML_ws2}</ individualPolicy>

</ws>

<ws>

 <endpointAddress>{EndpointAddress_ws3}</endpointAddress>

<functionName>{FunctionName_ws3}</functionName>

<SOAPMessage>{SOAP_to_ws3}</SOAPMessage>

<individualPolicy>{InExPolicy_XML_ws3}</ individualPolicy>

</ws>

<globalExecutionPolicy>

 {GlobalExecutionPolicy_XML}

</globalExecutionPolicy>

</SOAP abstract>

Figure 4-7: An abstract of the service request SOAP message

4.3.3 Business Logic Processor (BLP)

The BLP implements service operations corresponding to the Web Service Interface,

diverting service requests to the corresponding service processing components. A

service request for accessing the WSD will be diverted to the WSDAB, one for

accessing the SMD to the SMDAB, and one for mediating services to the DRE.

When service components complete the execution of service requests, they pass the

results back to the BLP, which assembles the processing result into a SOAP message

and returns it to the client.

4.3.4 Database System

There are two databases comprised in the DS of the Sub-Mediator Elite. The WSD

consists of the Web Service Registry and the Web Service Dependability Metadata

Java WS-Mediator

 79

Database. The SMD consists of the Sub-Mediator Registry and the Sub-Mediator

Dependability Metadata Database.

A. Web Service Database (WSD)

The Web Service Registry maintains the information about a number of Web Services

added by the clients and the system administrators. It contains the information

associated with each Web Services:

• Endpoint address of the Web Service

• Operation name

• Description of the Web Service

• Test SOAP message

• Test policy

The above information is used for monitoring Web Services. Figure 4-8 illustrates an

abstract model of the Web Service Registry in the XML format.

<?xml version="1.0" encoding="UTF-8"?>

<webServicesRegistry>

<ws>

 <endpointAddress>{Endpoint_ws1}</endpointAddress>

 <operationName>{Operation_ws1}</operationName>

 <description>{Memo_Text_ws1}</description>

 <testSOAPMessage>{TestSOAPMessage_ws1}</testSOAPMessage>

 <testPolicy>{TestPolicy_ws1}</testPolicy>

</ws>

<ws>

Java WS-Mediator

 80

 <endpointAddress>{Endpoint_ws2}</endpointAddress>

 <operationName>{Operation_ws2}</operationName>

 <description>{Memo_Text_ws2}</description>

 <testSOAPMessage>{TestSOAPMessage_ws2}</testSOAPMessage>

 <testPolicy>{TestPolicy_ws2}</testPolicy>

</ws>

…

</webServicesRegistry>

Figure 4-8: An example of the Web Service Registry

The Web Service Dependability Metadata Database stores the dependability metadata

of the corresponding Web Services, i.e. attributes which represent their dependability

characteristics. Figure 4-9 illustrates an abstract model of the dependability metadata

of a Web Service in the XML format.

<?xml version="1.0" encoding="UTF-8"?>

<ws service={Name_of_ws1}>

<endpointAddress>{Endpoint_ws1}</endpointAddress>

<operationName>{Operation_ws1}</operationName>

 <dependabilityAttribute1>{value}</dependabilityAttribute1>

<dependabilityAttribute2>{value}</dependabilityAttribute2>

 …

<dependabilityAttributeN>{value}</dependabilityAttributeN>

</ws>

Figure 4-9: An abstract model of the dependability metadata of a Web Service

If a Web Service registered in the Web Service Registry is not used for a certain

period of time, it will be removed from the database, along with its metadata.

Java WS-Mediator

 81

B. Sub-Mediator Database (SMD)

The Sub-Mediator Registry contains the following information about a number of

Sub-Mediators:

• Endpoint address of the Sub-Mediator

• The Location and ISP of the Sub-Mediator

• Memo

Sub-Mediators implement a universal test service for monitoring. The Sub-Mediator

Monitoring Mechanism uses the endpoint address of the Sub-Mediator to

automatically generate the test script. The endpoint address can be used to identify the

Sub-Mediator in the Sub-Mediators Registry. The location and ISP of the Sub-

Mediator help the client to locate it and can also be used for implementing message

routing strategies. The memo briefly describes the Sub-Mediator. Figure 4-10 gives an

abstract model of the Sub-Mediator Registry.

<?xml version="1.0" encoding="UTF-8"?>

<subMediatorRegistry>

<ws>

 <endpointAddress>{Endpoint_sm1} </endpointAddress>

 <location>{city, country}</location>

 <isp>{NameofISP}</isp>

 <memo>{MemoText_sm1}</memo>

</ws>

<ws>

 <endpointAddress>{Endpoint_sm2} </endpointAddress>

 <location>{city, country}</location>

Java WS-Mediator

 82

 <isp>{NameofISP}</isp>

 <memo>{MemoText_sm2}</memo>

</ws>

……

</ subMediatorRegistry >

Figure 4-10: An example of the Sub-Mediator Registry

The Sub-Mediator Dependability Metadata Database stores the dependability

metadata of Sub-Mediators in the registry. Figure 4-11 shows an abstract model of the

dependability metadata of a Sub-Mediator in the XML format:

<?xml version="1.0" encoding="UTF-8"?>

<sm service={Name_of_sm1}>

<endpointAddress>{Endpoint_sm1}</endpointAddress>

<operationName>{Operation_sm1}</operationName>

<dependabilityAttribute1>{value}</dependabilityAttribute1>

<dependabilityAttribute2>{value}</dependabilityAttribute2>

 …

<dependabilityAttributeN>{value}</dependabilityAttributeN>

</sm>

Figure 4-11: An example of the dependability metadata of a Sub-Mediator

4.3.5 Policy System

There are three types of policies implemented in the Sub-Mediator Elite, listed below:

• Test Policy

• Individual execution policy

• Global execution policy

Java WS-Mediator

 83

As the test policy was introduced above, we will now focus on the individual

execution policy and global execution policy.

A. Individual Execution Policy

As mentioned already, when the client invokes a Sub-Mediator requesting mediator

services, it needs to define an individual execution policy for each candidate Web

Service. The individual execution policy is an instruction for processing invocation for

every Web Service, which may set, for example, the invocation method, the timeout

parameter, etc. However, it can be omitted from the service request, with the Sub-

Mediator using the system default settings to set parameters for invoking the Web

Service. Figure 4-12 shows an abstract model of the individual execution policy:

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp = http://schemas.xmlsoap.org/ws/2004/09/policy

 xmlns:wsmip = "http://schemas.wsmediator.org/individualPolicy/policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <parameter1>{value}</parameter1>

 <parameter2>{value}</parameter2>

 …

 <parameterN>{value}</parameterN>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Figure 4-12: An abstract model of the individual execution policy

Java WS-Mediator

 84

To implement the individual execution policy described above, we have developed a

WS-Mediator Policy framework, extending the WS-Policy framework in [76]. Below

we show the individual execution policy specially developed in one of our

experiments, followed by a brief explanation of each policy entity:

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp = http://schemas.xmlsoap.org/ws/2004/09/policy

 xmlns:wsmip = "http://schemas.wsmediator.org/indevidualPolicy/policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <bindingMethod>SOAP11HTTP</bindingMethod>

 <invocationMode>Sync</invocationMode>

 <timeout>20000ms</timeout>

 <autotimeout>maximum</autotimeout>

 <retryAfterFailure>3</retryAfterFailure>

 <retryInterval>3000ms</retryInterval>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

• <bindingMethod>: this indicates the binding method of the SOAP message.

Web Service invocation APIs should follow the binding method while

invoking the Web Service. Default value: SOAP11HTTP

• <invoactionMode>: this entity indicates the invocation method of the Web

Service. There are three types of invocation methods: synchronous,

asynchronous invocation and the conventional RPC (Remote Procedure Call)

invocation. Default value: Sync (Synchronous invocation)

Java WS-Mediator

 85

• <timeout>: this sets the timeout parameter for an invocation. If the invocation

does not complete in the timeout period, it will be terminated and a timeout

exception will be raised. The value of the timeout parameter can be

automatically set by the Sub-Mediator when the value is set as 0ms.

• <autotimeout>: the Sub-Mediator can automatically set the timeout

parameter for invoking a particular Web Service according to dependability

metadata. There are three options: average, minimum and maximum,

representing average, minimum and maximum response time.

• <retryAfterFailure>: the Sub-Mediator implements the retry strategy to

tolerate temporary service and network failures. This entity sets the number of

retry invocations of a particular Web Service before giving up.

• <retryInterval>: this entity sets the interval between retries.

B. Global Execution Policy

When the client requests a mediating service from a Sub-Mediator, it needs to attach a

global execution policy to the service request message. The global execution policy is

an instruction which indicates how to process the entire service request. It sets

important parameters for performing service procedures according to the service

request. Figure 4-13 shows an abstract model of the global execution policy:

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy
xmlns:wsmgp="http://schemas.wsmediator.org/globalPolicy/policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <wsmExecutionMode:executionMode1 execution="true">

Java WS-Mediator

 86

 <exeMode1_parameter1>{value}</ exeMode1_parameter1>

 <exeMode1_parameter2>{value}</ exeMode1_parameter2>

 …

 <exeMode1_parameterN>{value}</ exeMode1_parameterN>

 </ wsmExecutionMode: executionMode1>

 <wsmExecutionMode: executionMode2 execution="false">

 <exeMode2_parameter1>{value}</ exeMode2_parameter1>

 <exeMode2_parameter2>{value}</ exeMode2_parameter2>

 …

 <exeMode2_parameterN>{value}</ exeMode2_parameterN>

 </ wsmExecutionMode: executionMode2>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Figure 4-13: An example of the global execution policy

The above abstract model has also been also implemented upon the WS-Mediator

Policy framework. Node <wsmExecutionMode> represents fault tolerance

mechanisms. The boolean attribute “execution” indicates whether the execution mode

is selected. The concrete implementation of the global execution policy can be found

in section 4.3.8.

4.3.6 Dependability Monitoring Mechanism (DMM)

The Sub-Mediator Elite implements monitoring mechanisms to periodically monitor

the registered Web Services and Sub-Mediators. The monitoring mechanisms

generate dependability metadata according to monitoring results. These dependability

metadata are used for resilience-explicit computing. Because the monitoring is

Java WS-Mediator

 87

performed by each Sub-Mediator itself, the generated dependability metadata present

the dependability of Web Services from the perspective of the Sub-Mediator. If the

Sub-Mediator is deployed close enough to the client, the metadata can accurately

present the dependability of the Web Services from the client’s perspective.

A. Web Service Monitoring (WSM)

The WSM mechanism retrieves the information about Web Services from the Web

Service Registry, using it to periodically invoke them. Having sent a test SOAP

message to invoke a Web Service, the mechanism waits a certain period of time

defined by the test policy for the result. If the latter is not returned until timeout, the

test fails, and the dependability rank of this Web Service will be reduced. If the result

is received before timeout, the monitoring mechanism checks the validity of the

result. When the test policy specifies an expected result, the monitoring mechanism

compares the received result with the expected SOAP message. If the messages match,

the result is valid, and then the dependability rate of the Web Service will increase. If

the expected SOAP message is not given, the monitoring mechanism will check the

semantic validity of the result. Unless there is an error message attached to the SOAP

message, the result will be regarded as valid. The monitoring mechanism also records

the response time of the successful invocations, and calculates the average, minimum

and maximum response time of Web Services.

B. Monitoring Sub-Mediators

A Sub-Mediator monitors other Sub-Mediators registered in its Sub-Mediator

Registry. It invokes the other Sub-Mediators via a special test interface to check their

Java WS-Mediator

 88

dependability, upon which the test results are processed for updating the dependability

metadata of the Sub-Mediators.

Figure 4-14: The execution sequence of the Dynamic Reconfiguration Engine

4.3.7 Dynamic Reconfiguration Mechanism (DRM)

The DRM is the core component of the Sub-Mediator Elite, which dynamically

reconfigures service composition and fault tolerance mechanisms, implementing

resilience-explicit computing algorithms to suit different fault tolerance mechanisms.

The execution procedure of the DRM starts with checking the global execution policy

to decide which fault tolerance mechanism to apply, and the user-defined criterion

(e.g. m, f, r) to select component services. Then the DRM checks the metadata of

component services and dynamically sorts them according to their dependability

metadata. If the dependability metadata of a component service is lower than the user-

defined threshold (e.g. rws < rthreshold), the component service will be removed from

the candidate list. At the end, the sorted list of component services is passed to the

Java WS-Mediator

 89

selected fault tolerance execution mode to perform service composition. Figure 4-14

illustrates the execution sequence of the DRM.

Below is the DRM execution procedure:

 List of component services

 services = {ws1 … wsn}

 Global execution policy

 execution_mode = {Service Alternatives | NVP | Multi-routing}

 primary_criterion = {metadata | m, r, f | threshold};

 second_criterion = {metadata | m, r, f };

 Metadata

{ws1 | m (%), r (ms)}

{wsn | m (%), r (ms)}

 Sort

services_sort = services sorted by primary_criterion/second_criterion

 Execute

 execute(execution_mode)

 End

4.3.8 Fault-tolerance Execution Modes

The DRM invokes the fault tolerance mechanisms to perform service composition.

The execution procedures in the fault tolerance execution modes are different and

component services are used differently, according to the particular fault tolerance

techniques.

Java WS-Mediator

 90

Figure 4-15: The execution sequence of the service alternative execution mode

A. Service Alternative Execution Mode.

Figure 4-15 illustrates the execution sequence of the Service Alternative execution

mode. At beginning of the execution sequence, the execution engine checks the global

execution policy to set the relative execution parameters. The global execution policy

defined for the Service Alternative execution mode is illustrated below, followed by

the explanation of the main entities.

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy
xmlns:wsmgp="http://schemas.wsmediator.org/globalPolicy/policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <wsmFTMode:ServiceAlternatives execution="true">

Java WS-Mediator

 91

 <priority>{value}</priority>

 <dependabilityAcceptance>{value}</dependabilityAcceptance>

 <responseTimeAcceptance>{value}</responseTimeAcceptance >

 <timeout>{value}</timeout>

 </wsmFTMode:ServiceAlternatives>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

• <wsmFTMode:ServiceAlternatives execution="true">: this entity defines the

fault tolerance execution mode. Here it indicates the Service Redundancy

execution mode. The value “true” of the attribute execution indicates this fault

tolerance execution mode is selected for processing the request. The nested

entities are the parameters for this execution mode.

• <priority>: this sets the criterion for sorting candidate Web Services. Web

Services can be sorted according to their dependability rate or average

response time, as shown by their dependability metadata.

• <dependabilityAcceptance>: this entity sets the minimum acceptance of the

dependability rate. The Web Services with a dependability rate lower than

that will be removed from the list of candidate Web Services.

• <responseTimeAcceptance>: this entity sets the maximum acceptance of the

minimum response time. If the minimum response time of any Web Service is

greater than the maximum acceptance, the Web Service will be removed from

the list of candidate Web Services.

Java WS-Mediator

 92

• <timeout>: this sets the timeout parameter for the entire service request. If the

Sub-Mediator cannot complete the request before timeout, it will return an

error message to the client.

Once the execution parameters are set, the execution engine checks dependability

metadata to set the parameters for invoking component services. For example, the

maximum response time of a component service recorded in the dependability

metadata can be used to set the timeout parameter of the invocation. Then the

execution engine selects the first component service in the sorted list and invokes the

service to perform service integration. Once the component service has returned the

result, the execution engine checks its validity. If it is valid, the execution engine

finalizes the execution procedure and returns it to the BLP. If the component service

fails to deliver valid results, the next component service in the list will be invoked,

and so on.

:NVP_Engine :NVP_Policy

checkpolicy()

:WS_Proc :Results_Cache :Results_Proc :SOAP_Proc :WS_Bridge :WS_Invoke_Engine

processWSs()

buildInvocationInfo()

invokeWS()

returnResults()

checkResult()

For num of WSs

cacheResult()

finalizeCache()

generateResult()

updateWSmetadata()

End for

For num of WSs

End for

[If valid, break]
(Optional)

[resultsVoting()]

Java WS-Mediator

 93

Figure 4-16: Execution sequence of the N-version programming execution mode

B. N-Version Programming Execution Mode

Figure 4-16 presents the execution sequence of the N-Version Programming

execution mode. First of all, the execution engine checks the global execution policy

to set the relative execution parameters, such as the number of synchronous

invocations, the number of expected results, etc. The global execution policy defined

for the N-Version Programming execution mode is illustrated below, followed by the

explanation of the main entities.

 <wsmFTMode:nVersionProgramming execution="true">

 <priority>{value}</priority>

 <dependabilityAcceptance>{value}</dependabilityAcceptance>

 <responseTimeAcceptance>{value}</responseTimeAcceptance >

 <resultsProcessing>{value}</resultsProcessing>

 <numberOfSyncInvocation>{value}</numberOfSyncInvocation>

 <numberOfExpectedResults>{value}</numberOfExpectedResults>

 <timeout>{value}</timeout>

 </wsmFTMode: nVersionProgramming >

• <resultsProcessing>: this defines how to process the results returned from

candidate Web Services. There are three options: vote, quickest, and all. In the

vote option, the service request terminates when result voting is completed. In

the quickest option, the entire service request terminates when a valid result is

received. In the all option, the service request terminates until the invocations

to the Web Services are all completed.

Java WS-Mediator

 94

• <numberOfSyncInvocation>: in the N-Version Programming execution mode,

a number of Web Services will be invoked simultaneously. This entity defines

the maximum number of simultaneous invocations allowed at a time.

• <numberOfExpectedResults>: If the number of candidate Web Services is

greater than the number of allowed simultaneous invocations, they will be

divided into groups and invoked in a certain order. This entity defines the

number of expected results. Once there are enough results received, the

execution will be terminated.

Once the execution parameters are set, the execution engine selects the required

number of component services from the candidate list, and invokes them

synchronously. The results returned from component services are checked by the

execution engine. If some of the invoked services fail to deliver valid results, the

execution engine retrieves alternative component services from the list and invokes

them until the expected number of valid results is fulfilled. Then the execution engine

finalizes the execution procedure and processes the received results.

C. Multi-Routing Execution Mode

Figure 4-17 illustrates the execution sequence of the Multi-Routing execution mode.

The execution engine interprets the global execution policy to define the execution

procedure and set execution parameters. Then it checks the dependability of Sub-

Mediators and selects the defined number of Sub-Mediators to implement the Multi-

Routing Strategy. Similar to the N-Version Programming execution mode, the

execution engine invokes the selected Sub-Mediators synchronously and validates the

results returned by them. The execution procedure terminates when the expected

number of valid results are received.

Java WS-Mediator

 95

:MR_Eninge :MR_Policy

checkpolicy()

:SubMed_Metadate :Results_Cache :Results_Proc :Dispatch_Engine

checkSubMetadata()

invokeSubMediator()

returnResults()

selectSubMediators()

For num of SMs

cacheResult()

finalizeCache()

generateResult()

End for

For num of SMs

End for

[If valid, break]
(Optional)

[resultsVoting()]

Figure 4-17: The execution sequence of the multi-routing execution mode

The global execution policy corresponding to the Message Routing execution mode is

illustrated below, followed by the explanation of the main entities.

 <wsmFTMode:MessageRouting execution="true">

 <dependabilityAcceptance>{value}</dependabilityAcceptance>

 <responseTimeAcceptance>{value}</responseTimeAcceptance >

 <resultsProcessing>{value}</resultsProcessing>

 <numberOfRoutes>{value}</ numberOfRoutes>

 <timeout>{value}</timeout>

 </wsmFTMode: MessageRouting >

Java WS-Mediator

 96

• <dependabilityAcceptance>: this entity sets the minimum acceptance of the

dependability rate. If the dependability rate of a Web Service recorded on the

participating Sub-Mediator is lower than that, the Sub-Mediator will not be

selected as an intermediary for implementing the message routing.

• <responseTimeAcceptance>: this entity sets the maximum acceptance of the

minimum response time. If the minimum response time of a Web Service

registered on the participating Sub-Mediator is greater than the maximum

acceptance, the Sub-Mediator will not be selected as an intermediary.

• <numberOfRoutes>: this entity defines the number of the messaging routes,

i.e. the number of Sub-Mediators that will be selected as intermediaries.

• <timeout>: this sets the timeout parameter for the entire service request. If the

Sub-Mediator cannot complete the request before timeout, it will return an

error message to the client.

4.4 Conclusions

In this chapter, we presented the Java WS-Mediator, a prototype of the WS-Mediator

system based on the Java Web Service technology. The Java WS-Mediator system is

constructed of Java Sub-Mediators. The chapter also proposed an implementation of

the Sub-Mediator Elite as a lightweight Sub-Mediator for local deployment, used to

develop the Web Service type Sub-Mediators. In addition, we explained the structure

and execution sequences of the components and mechanisms. Overall, the Java WS-

Mediator proves the WS-Mediator approach can be realized on the basis of the current

Web Service technologies.

Evaluation

 97

5. Evaluation

5.1 Introduction

In this chapter, we describe our evaluation of the WS-Mediator approach. We have

conducted a series of experiments with different application scenarios, carefully

selected to represent typical Web Services applications occurring in the real world. In

these experiments, we utilized the Java WS-Mediator to implement several composite

applications based on real-world Web Services, developed and deployed by a variety

of independent Web Service providers. The analysis of the results of the experiments

will demonstrate the applicability and effectiveness of the WS-Mediator approach.

This chapter is organized as follows: section 5.2 introduces the objectives of the

experiments and provides a brief outline of the evaluation of the approach. Section 5.3

reports the experiments that monitor the dependability of several real-world Web

Services. We will use the results of the experiments to prove the feasibility of on-

location monitoring of the dependability of generic Web Services. In section 5.4, we

will focus on an experiment conducted with an e-Science application. This experiment

was conducted upon three Web Services frequently used in Bioinformatics research.

We have developed a realistic application based upon the Java WS-Mediator to

demonstrate how to improve the dependability of e-Science workflows by adopting

the WS-Mediator approach. Section 5.5 concludes this chapter.

5.2 Evaluation Objectives

The evaluation of the WS-Mediator approach is based on our experiments on the real-

world Web Services. The approach was developed as a result of our studies of the

latest Web Services technologies and other relevant work. The design of the solution

Evaluation

 98

is compliant with the current Web Service specifications and standards. However, the

applicability and the effectiveness of the approach can only be verified in real-world

applications. The WS-Mediator is a generic solution that can be tailored to fit

different application scenarios. We have conducted a series of experiments to verify

its applicability by developing realistic applications using the prototype

implementation of the approach, the Java WS-Mediator. The experiments were

carefully planned to achieve the following objectives:

• To evaluate the applicability of monitoring Web Service dependability. Web

Services can be autonomously deployed by independent Web Service

providers or explicitly deployed by the participating providers within a virtual

organization.

• To evaluate the effectiveness of the resilience-explicit dynamic

reconfiguration of dynamic service composition. The resilience-explicit

dynamic reconfiguration mechanism of the WS-Mediator calculates

dependability metadata to make run-time decisions for selecting component

Web Services. The experiments need to produce quantitative results to prove

the effectiveness of the approach.

• To evaluate the applicability of fault-tolerance execution models. The fault-

tolerance mechanisms that are designed to deal with the designated faults are

selected by the client and dynamically applied at run-time. We need these

experiments to prove that the dynamic reconfiguration of fault-tolerance

mechanisms can provide flexible means of achieving Web Service

dependability based on specific fault assumptions.

• To verify the ease of developing Web Service applications using the WS-

Mediator system.

Evaluation

 99

• To verify the message intercepting ability of the WS-Mediator system.

The above are the most important objectives of our experiments, which evaluate the

core concepts and components of the WS-Mediator approach. There were also many

other experiments conducted to evaluate various aspects of the approach and its

prototype implementation, which are not as central for this dissertation.

5.3 Evaluation of Dependability Monitoring

Monitoring Web Service dependability is the fundamental part of the WS-Mediator

approach. The dependability monitoring mechanism assesses the dependability of

Web Services and generates their dependability metadata. Resilience-explicit

computing adapted to the WS-Mediator approach relies on dependability metadata to

make decisions. Our research emphasises the notion of Web Service dependability

from the client’s perspective. This requires on-location monitoring of Web Services at

the same locations where clients run their applications. In chapter 4, we described

how this approach was achieved in the Java WS-Mediator. The experiments reported

in this section will emphasize the feasibility of the approach by demonstrating the

dependability monitoring of real-world Web Services using the Java WS-Mediator.

As we have shown above, Web Services used in an application can either be deployed

by autonomous providers or by cooperative providers to the client. These autonomous

Web Services can be discovered from the UDDI or from another registry of Web

Services. Commonly, providers only reveal limited information that is sufficient only

for invoking their Web Services. No collaboration between the client and the service

provider is expected in such application scenarios, and so such Web Services are

typically regarded by clients as black box components. Since message-exchanging

Evaluation

 100

between the client and Web Services is guaranteed by the Web Service

Interoperability standards, the implementation of the client application and of Web

Services both need to be compliant with the Web Services Interoperability. This is

one of the fundamental principles in developing a generic Web Service, although this

may not be a crucial criterion for the Web Services that are developed only to serve

the correlative clients, because of the possibility of implementing corresponding

mechanisms in the client application. However, unless this may bring additional

benefits, it is always undesirable to undermine the interoperability of a Web Service.

Most Web Services and client applications are developed upon the existing Web

Services middleware (e.g. Aparche Axis [32], JBoss [31], and Glassfish [33]) which

provides underlying infrastructure to support the interoperability of the Web Service

applications by default, and so for a generic solution such as the WS-Mediator, it is

safe to consider the Web Services as universally interoperable. Furthermore, specific

mechanisms can always be implemented in addition to the standard invocation

mechanisms to cope with the corresponding changes at the Web Service side. Below

Web Services are assumed to be interoperable, enabling the invocation mechanisms of

the Java WS-Mediator to invoke them without modification.

The evaluation of dependability monitoring was conducted on a number of

autonomous Web Services in addition to those deployed by our colleagues for their

research project. In the following text, we will report the experiments.

5.3.1 Dependability Monitoring of Public Web Services

In order to validate the ability of the Sub-Mediator Elite to monitor the dependability

of real-world Web Services, we randomly discovered some publicly deployed Web

Services from a popular Web Services publisher, The XMethods [1]. These Web

Evaluation

 101

Services are deployed by different service providers and upon different platforms, as

listed below:

• WS1: Get conversion rate from one currency to another currency

Endpoint: http://www.webservicex.com/CurrencyConvertor.asmx?wsdl

• WS2: Lotto Number Generator

Endpoint: http://reto.checkit.ch/Scripts/Lotto.dll/wsdl/IgetNumbers

• WS3: Returns the date of Easter for a given year

Endpoint: http://www.stgregorioschurchdc.org/wsdl/Calendar.wsdl

• WS4: Translate English to Pig Latin

Endpoint:

htttp://www.aspxpressway.com/maincontent/webservices/piglatin.asmx?wsdl

• WS5: Find a ZIP Code given a U.S. City and State

Endpoint: http://ws.strikeiron.com/InnerGears/ZipByCityState2?WSDL

We deployed the Sub-Mediator Elite on a computer connected to the Campus network

of Newcastle University and registered the selected Web Services for dependability

monitoring. These Web Services all provide very simple services, returning responses

according to the client’s inputs. A test script was written for each Web Service

according to its WSDL interface, and a global test policy defined to set the parameters

for monitoring them. During the experiments, 100 invocations were made on each

Evaluation

 102

Web Service with the interval between each invocation being 60 minutes (see Figure

5-1).

WS1 WS4WS3WS2 WS5

Web Services
Monitoring mechanism

Sub-Mediator Elite

BLP

WSD Test policy

Figure 5-1: Dependability monitoring of autonomous Web Services

There were no technical problems in the interaction between the Sub-Mediator Elite

and the Web Services. The Sub-Mediator Elite invoked the Web Services successfully

and received expected results from the Web Services except for failures of some of

the Web Services.

Failures
Web

Services
Invocations

Average

response

time

Dependability

rate

Unusual

delays
Service

failures

Omission

failures

time

out

WS1 100 152 100% 3 0 0 0

WS2 100 175 100% 7 0 0 0

WS3 100 132 93% 5 0 3 4

WS4 100 186 17% 0 83 0 0

WS5 100 119 95% 9 1 2 2

Table 5-1: Dependability monitoring results of the public Web Services

Table 5-1 shows the results of dependability monitoring. Four of the Web Services

achieved a high rate of dependability during the monitoring. The WS4, which

Evaluation

 103

translates English to Pig Latin, was successfully invoked 17 times but became

inactive thereafter, providing only an error message indicating that unknown service

failures occurred in the service. The WS1 and WS2 were the most reliable, although

several unusual delays occurred for unknown reasons (unusual delay refers to a valid

response from the service that takes over 2 times longer than the average response

time). The WS3 and WS5 were less dependable with varied types of failures captured

during the monitoring.

5.3.2 Dependability Monitoring of the GOLD Web Services

The results presented in the previous section demonstrate the ability of the Sub-

Mediator Elite application to monitor the dependability of autonomous Web Services.

The monitoring mechanism of the Sub-Mediator Elite successfully recorded the

dependability behaviour of Web Services and generated their dependability metadata.

However, we could not obtain confirmation from the service providers about the

correctness of the monitoring results due to the autonomy of Web Services. In

addition, the reasons behind some of the failures and delays of the Web Services were

unknown to us. We have therefore conducted additional experiments to verify the

validity of dependability monitoring using two Web Services kindly provided to us by

colleagues working on the GOLD project [2]. These two Web Services were

• GOLDPeople: a Web Service returning the list of the people in the GOLD

project.

• GOLDPolicies: a Web Service returning the aggregation of the policies

developed for the GOLD project.

Evaluation

 104

The two Web Services are formal Web Services deployed for research purposes.

However, they are by no means expected to be reliable because they are also used for

software testing and debugging. Therefore, these two Web Services may behave

unreliably when software testing and debugging are taking place on servers.

Figure 5-2: Dependability monitoring result of the GOLDPeople

Figure 5-3: Dependability monitoring result of the GOLDPolicies

GOLDPolicies

400

500

600

700

800

900

1000

1 51 101 151 201 251 301 351 401
Invocations

Response Time (ms)

Average Response Time (ms)

GOLDPeople

0

100

200

300

400

500

600

700

800

1 51 101 151 201 251 301 351 401
Invocations

Response Time (ms)

Average Response Time (ms)

Evaluation

 105

The two Web Services are deployed on the campus network of Newcastle University.

We deployed the Sub-Mediator Elite on a computer connected to the same network.

The WS-Mediator Elite performed dependability monitoring on the two Web Services

and logged the returned results. Figure 5-2 and Figure 5-3 illustrate the results of the

dependability monitoring of the two Web Services, as shown in their dependability

metadata. The average response time of the GOLDPeople and GOLDPolicies are 77

and 526 milliseconds respectively. During the monitoring, the GOLDPolicies

remained 100% dependable. However, 13 service failures were recorded for the

GOLDPeople service based on its dependability rate of 96%. The error messages

indicated internal server failures in the GOLDPeople services representing ongoing

unusual activities taking place on the server which were confirmed by our colleagues.

The dependability monitoring of the GOLD services proves the applicability and

feasibility of on-location dependability monitoring mechanism implemented in the

WS-Mediator. The generated dependability metadata can accurately represent the

dependability behaviour of Web Services. The above experiment was reported in the

UK All Hands Meeting 2006 [3].

5.4 Experiments with Bioinformatics Web Services

The experiments reported above prove the capability and feasibility of dependability

monitoring using the WS-Mediator. They provide effective and quantitative evidence

concerning the dependability behaviour of Web Services. The dependability metadata

generated serve as a sufficient precondition to achieve resilience-explicit computing.

Thus we were able to carry out a complete evaluation of the entire WS-Mediator

system. Below we report experiments on three Bioinformatics Web Services aimed at

demonstrating the applicability and effectiveness of the WS-Mediator approach.

Evaluation

 106

In chapter 2, we presented experimental work analyzing the dependability of two

BLAST Web Services used in the bioinformatics domain [4]. BLAST is an algorithm

which is commonly used in in silico experiments in bioinformatics to search for gene

and protein sequences that are similar to a given input query sequence [5]. We

discovered dramatically different dependability characteristics of the BLAST Web

Services. Dependability characteristics of each BLAST Web Service also varied when

monitored from different geographical locations. Our analysis shows that the existing

BLAST services are likely to offer a reasonable degree of diversity despite the fact

that they all execute the same basic matching algorithms. This is due to differences

between the DBs, the specific BLAST searches they execute, the hardware they are

deployed on and the software code they run. This adds to the diversity of their

geographical locations.

In order to evaluate the WS-Mediator approach, we conducted experiments on three

BLAST Web Services with the Java WS-Mediator deployed on a computer in the

campus of Newcastle University, UK. The experiments demonstrate the applicability

of the WS-Mediator approach by employing it to real Web Services used in e-Science

environment. The three BLAST Web Services involved in this case study are:

 The BLAST Web Service deployed by the European Bioinformatics Institute

(EBI), Cambridge, UK [6]

 The BLAST Web Service hosted by the DNA Databank, Japan (DDBJ) [7]

 The BLAST Web Services hosted by Virginia Bioinformatics Institution

(VBI), USA [8]

Evaluation

 107

Before the experiment started, test scripts were submitted for monitoring each Blast

Web Service and generating their dependability metadata (see Appendix C for the

pattern and explanation of dependability metadata). The three services were

monitored synchronously at an interval of 5 minutes between invocations. Appendix

D shows some of the dependability metadata. Thus, the Java WS-Mediator can use

the dependability metadata to perform resilience-explicit computing and to select the

appropriate Web Services for service composition.

In our experiments, we have developed a Java client application based upon the Java

WS-Mediator. This application (see Appendix E) uses the three BLAST Web Services

as candidates and searches the genetic databases of the three Blast Web Services for a

match to an input query sequence. An example of the expected result is shown in

Appendix F. The Java client application invokes the request every 30 minutes. If

erroneous replies are returned from a service, the client application makes three tries

before switching to the redundant services. The interval between retries is 30 seconds.

The timeout periods of the three Web Services are set automatically by the Sub-

Mediator according to their maximum response time recorded in the metadata. We

used the Service alternatives, N-version programming and Multi-routing execution

modes in the experiments and logged the execution results for analysis. The example

of successful and unsuccessful execution results of the business process are shown in

Appendix G and Appendix H respectively. The execution results list the execution

procedures performed during the business logic processing, and show the result of

each step carried out during the execution. The final result of service execution and

the execution report are attached to the execution results.

Evaluation

 108

Figure 5-4: Evaluation of the Service alternative execution mode. The solid lines

represent fixed or primary, and the dashed lines alternative message routes

5.4.1 Service Alternative Execution Mode

Figure 5-4 shows the application for evaluating the Service alternative execution

mode. In the experiment, we set the dependability measurement (m) as the criterion

for selecting the best component service. At the beginning of the run, the three

BLAST Web Services were dynamically ordered by the WS-Mediator according to

their dependability measurement (m) during the preceding execution. As the DDBJ

was the most dependable Web Service, it was used as the primary BLAST Web

Service. However, at some moment during the execution, the DDBJ became

unreliable, repeating the message: “The search and analysis service is very busy now.

Please try again later.” In these circumstances, the WS-Mediator switched to using

the VBI after failed attempts with the DDBJ. The VBI returned valid results in most

attempts. Because the DDBJ was not in a dependable state, its dependability

measurement (m) dropped dramatically. Figure 5-5 shows the results of the

experiment. From the moment shown in Figure 5-5 as point (A), the VBI became the

Evaluation

 109

most dependable Web Service and was therefore chosen as the primary Web Service

to be invoked. There was an interesting contrast of two switching sequences during

the invocations. As shown in Figure 5-5, there were two entirely failed executions

during the experiment. In the first one (see Figure 5-5, Point (B)), the DDBJ was the

first Web Service to be called, the VBI was the second one and the EBI was the last

one. In the second (see Figure 5-5, Point (C)), the VBI became the primary Web

Service. It was called first, followed by the DDBJ. The EBI was still the last one to be

attempted. The logged metadata generated by the monitoring mechanism ensured that

the switching sequences were correct according to the dependability metadata at the

time. In this execution mode, the average overhead of the Java WS-Mediator is only

about 100 milliseconds. The average response times of the DDBI, VBI and EBI were

about 24 seconds, 29 seconds and 63 seconds respectively.

Service Alternatives

0

50000

100000

150000

200000

250000

300000

350000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Execution Sequece

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

DDBJ (Japan)

VBI (USA)

EBI (UK)
Execution time

Failures

Valid Results

(B) (C)

(A)

Figure 5-5: Results of the Service alternative execution mode

5.4.2 N-version Programming Execution Mode

Figure 5-6 shows the application for evaluating the N-version programming execution

Evaluation

 110

mode. In this experiment, all of the three Web Services were invoked simultaneously.

Once the quickest result is obtained from a Web Service, the execution terminates.

This strategy is slightly different from the classic N-version programming technique,

which commonly requires voting on results. However, in real-world Web Services

applications, it is not always possible to vote on the results received from diverse

services. The results can be semantically equivalent or similar when the SOAP

messages are literally different. Therefore, in the WS-Mediator, result voting is

optional. We believe the client should have better knowledge about how to process

the results.

Figure 5-6: Evaluation of the N-version programming execution mode. The solid line

represents a fixed message route, and the dashed lines redundant message routes

Figure 5-7 shows a proportion of the results collected in the N-version programming

execution mode. Because the DDBJ and the EBI were, for unknown reasons, in very

unstable states, they failed to provide valid results to the invocations. The final results

of all executions were returned from the VBI. In this execution mode, the overhead of

Evaluation

 111

the Java WS-Mediator was about 130 milliseconds. It was slightly higher than that in

the Service alternative execution mode.

N-version Programming

0

10000

20000

30000

40000

50000

60000

70000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145

Execution sequence

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

EBI (UK)

VBI (USA)

DDBJ (Japan)

Execution Time

Failures

Valid Results

Figure 5-7: Results of the N-version programming execution mode

5.4.3 Multi-routing Execution Mode with the Planetlab

We deployed six Remote Sub-Mediators at six different sites on PlanetLab in the

Multi-routing execution mode. PlanetLab is an open platform for developing,

deploying, and accessing planetary-scale services [9],which provides a global

research network for developing and experimenting with network services.

The six sites where we deployed the Sub-Mediators were located in China, UK and

USA as illustrated in Figure 5-8. In each country, we deployed two Sub-Mediators in

two different cities. The geographical locations of the Sub-Mediators were registered

in the Mediator-Elite deployed on a computer in the Campus network of Newcastle

University. This computer acted as the client’s terminal. Such deployment was

implemented with applying geographical diversity in mind. However, it is worth

Evaluation

 112

mentioning that this experiment did not emphasize the selection of diverse network

paths between the sites and the possible network overlap between the Sub-Mediators

and the candidate Web Services. This experiment was designed only to validate the

applicability and functionality of the WS-Mediator.

Figure 5-8: Evaluation of the multi-routing execution mode. The solid lines represent

fixed or primary message routes, and the dashed lines alternative routes.

Multi-routing

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Executions

R
es

po
ns

e
tim

e
(m

s)

Final
Washington
Shanghai
Newcastle

Figure 5-9: Results of the Multi-Routing execution mode

Evaluation

 113

In this experiment we chose the VBI BLAST as the ultimate Web Service. Three

routes with dependability acceptance of 70%were required. The level of routing

diversity was set as “Country”. During the execution, The Sub-Mediators located in

Shanghai (China), Newcastle upon Tyne (UK), and Washington (USA), were selected

as the routing intermediate nodes according to their dependability metadata (see

Appendix I). Figure 5-9 shows some results obtained in this experiment. During the

experiment, the three Sub-Mediators and the VBI BLAST Web Service performed

reliably. Most of the time, the Sub-Mediator deployed in Newcastle upon Tyne (UK),

delivered the quickest responses, while the one in Shanghai (China), was the slowest

one. In this execution mode, the average overhead of the WS-Mediator was about 140

milliseconds.

5.5 Conclusions

The experiments reported in this chapter demonstrate the applicability of the WS-

Mediator approach. The experiments were conducted with realistic Web Services

deployed by diverse service providers in real-world environments. The results of the

experiments have proved that the WS-Mediator is capable of providing the required

functionalities. The quantitative evidence supports the evaluation of the approach as

feasible and effective. The experiments conducted with the BLAST Web Services

have clearly manifested the benefits of using the WS-Mediator approach with real-

world Web Service applications.

Conclusions and Suggestions for Future Work

 114

6. Conclusions and Suggestions for Future Work

In this chapter, we summarize our work and make suggestions for further work. In

section 6.1, we summarize our research and studies reported in each chapter. In

section 6.2, we outline certain possible extensions that could be made to our solutions.

In addition, we discuss how the knowledge gained in this study can be applied in

future work to improve the dependability of Web Service applications.

6.1 Summary

Web Service technology is developing very fast, and has started to play a critical role

in more and more e-Commerce and e-Science applications. Due to the complexity of

architecture and complicated application scenarios of Web Services, their

dependability is a challenging research topic. While there have been many approaches

developed to improving the dependability of individual Web Services and Web

Service composition applications, there is still a need for solutions that would ensure

the dependability of Web Service composition given the persistence of varied types of

faults in the infrastructure. It is therefore essential to analyse concrete dependability

characteristics of Web Services and involved components, such as individual

component services, networks, etc. and develop solutions to cope with specific fault

assumptions.

Web Service composition is an activity involving integration of several component

services over computer networks. For instance, in the travel booking use case, the

travel agent has to invoke both an airway company and a hotel to follow the business

process logic. In practice, applications (e.g. [8, 9]) will be much more complicated

Conclusions and Suggestions for Future Work

 115

and service composition will involve far more component services for the business

process logic to be implemented. The dependability of service composition relies on

the dependability of individual component services and of the networks. Failures of a

single node (e.g. a component service or a segment of the network) can undermine the

dependability of the entire application. In our example, the travel booking process

cannot be accomplished until the travel agent receives valid results from both the

airway company and the hotel. However, in reality, it is impossible to ensure that

Web Services do not fail during the integration; moreover, computer networks are

inherently unreliable. Hence, solutions for improving the dependability of service

composition need to deal with failures of individual component services and networks

to ensure the continuity of services.

All this has prompted us to develop an approach focusing on the dependability of

Web Service composition specifically from clients’ point of view, with network

failures considered to be part of the dependability characteristics of component Web

Services. Compared to the existing solutions, the WS-Mediator approach innovatively

adapts the resilience-explicit computing technology to improve the efficacy of fault

tolerance techniques (including the service diversity strategy), commonly employed in

other solutions. The WS-Mediator system utilises Sub-Mediators, deployed on the

overlay architecture, to monitor the dependability of component services, generate

dependability metadata reflecting clients’ point of view and apply fault tolerance

techniques to deal with faults. Dependability metadata consist of various attributes

that represent the dependability characteristics of Web Services, such as response

time, availability rate, types of failures, etc. The resilience-explicit dynamic

reconfiguration mechanism of the WS-Mediator system makes run-time decisions

according to these metadata to dynamically select the most dependable component

Conclusions and Suggestions for Future Work

 116

services for assembling the business process logic. In addition, the system implements

a number of fault tolerance mechanisms (such as recovery blocks, N-version

programming and path diversity) to deal with various types of faults in order to ensure

the overall dependability of the service composition.

A prototype of the WS-Mediator system, called Java WS-Mediator, has been

implemented using the Java Web Service technology. We have conducted a series of

experiments with several real-world Web Services (e.g. the BLAST Web Services

commonly used in the bioinformatics domain, and Web Services deployed by the

GOLD project, etc) to evaluate our solution, and their results have demonstrated the

applicability and efficacy of the WS-Mediator approach.

6.2 Suggestions for Future Work

The architecture of the WS-Mediator system is flexible and scalable, and there are

many ways in which our system could be extended in future research. Below we

outline several promising extensions:

1. The efficacy of the WS-Mediator approach relies on dependability metadata

and the design and implementation of the dynamic reconfiguration

mechanism. Currently, the WS-Mediator system generates dependability

metadata comprising attributes such as response time (r), availability

measurement (m) and types of failures (f). The dynamic reconfiguration

mechanism utilises these attributes to select the most appropriate component

services. In future development, this solution could be extended to a

comprehensive metadata framework comprising more attributes to represent

other dependability characteristics of Web Services, including their changing

Conclusions and Suggestions for Future Work

 117

dependability behaviour. For example, the response time (r) or availability

measurement (m) of a service may be consistently different at different times

of the day or on different days of the week because of the variations in the way

the service is accessed. Therefore, metadata may comprise an attribute

recording the average response time (r) or availability measurement (m) at a

certain time of the day, on a certain day of the week, etc. Another example

would be an attribute registering the average system down time [19, 34] after

the occurrence of each type of failure, which would allow the service

composition mechanism to decide when to retry the service after the

occurrence of a certain type of failure. The dynamic reconfiguration

mechanism could then be accordingly extended by more advanced algorithms

corresponding to each particular attribute of metadata or their combinations. In

particular, when the response time (r) or availability measurement (m) is

chosen as a criterion for selecting component services, a new algorithm

should be able to use a time slice of historic response time (r) or availability

measurement (m) of a candidate service to forecast its changing dependability

behaviour. Thus the algorithm can explicitly decide if it is reasonable to use

the service at a certain time regardless of its overall response time (r) or

availability measurement (m).

2. The WS-Mediator system implements a number of fault tolerance mechanisms

as fault tolerance execution modes to deal with different types of faults. There

are two major ways to select a fault tolerance mechanism during service

composition: explicit selection by the client and automatic selection by the

WS-Mediator system. The client can select a particular fault tolerance

execution mode and set relevant parameters in the global execution policy. In

Conclusions and Suggestions for Future Work

 118

practice, however, because the dependability characteristics of autonomous

component services are unknown, it may be difficult for the client to select the

appropriate fault tolerance execution mode. The dynamic reconfiguration of

the WS-Mediator system is designed to automatically select the most

appropriate fault tolerance mechanisms according to the types of failures (f)

captured in the dependability metadata related to particular component

services. Currently, the efficacy of the approach is restricted by the simple

form in which dependability metadata are recorded (for example, the types of

failures are saved and analysed at a very coarse level). This could be improved

in the future by developing a more efficient dynamic reconfiguration

mechanism in conjunction with a more comprehensive metadata framework.

In particular, specific algorithms could be developed to identify the common

types of failures in component services at a much finer level (e.g. following

the classification from [81]) and to select the suitable fault tolerance

mechanisms to be applied in service composition.

3. The current development of the WS-Mediator system does not explicitly

address security issues, and yet Web Service security is emerging as an active

research topic today. There are several types of security techniques developed

for Web Services, one of the most important being the OASIS Web Services

Security (WSS) TC [82]. The WS-Mediator system implements the standard

Web Service intermediary architecture, which is extensively employed in

many applications implementing value-adding services between clients and

Web Services. The special requirements of the Web Service architecture is

realised in the research on security of Web Services. Paper [83] emphasises

that the development of security models and mechanisms in Web Services

Conclusions and Suggestions for Future Work

 119

should be compatible with Web Service architecture, including such

components as intermediaries. Therefore, in theory, the WS-Mediator should

be compatible with those applications that employ security models and

mechanisms described in [82]. This supposition needs, however, to be

investigated in future work.

4. The Business Process Execution Language (BPEL) [84] has been extensively

used in developing e-Commerce and e-Science applications in the past few

years. Compared to the Java Web Service technology, BPEL simplifies service

composition by specifically focusing on the description of the business process

logic, with other jobs left to the underlying middleware. The WS-Mediator

system offers the standard Web Service interface and can therefore be

seamlessly integrated into applications developed in the BPEL. The executable

process can directly invoke the WS-Mediator system to perform service

composition. However, generally speaking, the BPEL is not as powerful as a

general-purpose programming language like Java with regard to tasks such as

message processing, etc. Therefore, it is well worth investing some effort in

the future in improving the applicability of the WS-Mediator system to the

development of applications in the BPEL.

5. The WS-Mediator approach addresses network-related issues in Web Service

composition, using the message routing diversity mechanism to deal with

some of them. Currently, message routing diversity is achieved by using

several remote Sub-Mediators as intermediary nodes. However, some overlaps

of message paths may still happen when we use this application-level message

routing approach. In future, the message routing diversity mechanism could be

implemented in a more elaborate way to discover low-level message paths by

Conclusions and Suggestions for Future Work

 120

tracing messages sent to services. This message routing information needs to

contain specific network routes along which messages between the client and

the service travel. By comparing message routing paths to a particular service

from different Sub-Mediators, the WS-Mediator should be able to effectively

select the less overlapping paths to implement path diversity to the service.

Furthermore, by tracing messages, the WS-Mediator might be able to identify

the dependability characteristics of particular networks and select message

routing paths during service composition accordingly.

6. The WS-Mediator system monitors Web Services at different locations in the

Internet and dynamically assesses their dependability. The dependability

metadata generated by Sub-Mediators can help clients to select the most

dependable services, taking into consideration the impact of the network.

Currently, these dependability metadata can be retrieved via the Web Service

interface of Sub-Mediators. In future, it would be possible to publish these

dependability metadata on a special Web site. The system would automatically

detect the IP address of the user who accessed it and dynamically publish

dependability metadata generated by the Sub-Mediator closest to the user.

This would help users to easily find out how dependable Web Services

were and use them accordingly. At the same time, Web Service providers

could use the Web site to obtain the dependability metadata about their

services generated by Sub-Mediators distributed across the Internet.

Bibliography

 121

Bibliography

1. W3C. (2004). 'Web Services Architecture'. [cited 30 Jan 2008]; Available

from: http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/#service_oriented_architecture

2. W3C. (2004). 'Web Services Glossary -W3C Working Group Note 11

February 2004'. [cited 30 Jan 2008]; Available from:

http://www.w3.org/TR/ws-gloss/

3. Attiya, H. and Welch, J., 2004. Distributed Computing: Fundamentals,

Simulations, and Advanced Topics. 2nd edition. Wiley series on parallel and

distributed computing. New Jersey: John Wiley & Sons.

4. Alonso, G., Casati, F., Kuno, H., and Machiraju, V., 2004. Web Services:

Concepts, Architecures and Applications, Berlin: Springer.

5. Laudon, K.C. and Traver, C.G., 2002. E-Commerce. Boston: Addison Wesley.

6. Google. 'Google SOAP Search API (Beta)'. [Retrieved: 03 March 2008];

Available from: http://code.google.com/apis/soapsearch/reference.html

7. Ebay. (2008). 'Ebay Developers Program'. [Retrieved: 03 March 2008];

Available from: http://ebaydeveloper.typepad.com/

8. Townend, P., Xu, J., Yang, E., Bennett, K., Charters, S., Holliman, N.,

Looker, N., and Munro, M., 2005. 'The e-Demand project: a summary'. in

Proceedings of the Fourth UK eScience All-Hands Meeting. Nottingham, UK.

Bibliography

 122

9. Hiden, H., Conlin, C., Perrioellis, P., Cook, N., Smith, R., and Wright, A.R.

(2006). 'The GOLD Project: Architecture, Development and Deployment'.

[Retrieved: 30 Jan 2008]; Available from:

http://www.ncl.ac.uk/ceam/research/publication/46755

10. Gable, J. (2002). 'Enterprise application integration'. Information Management

Journal, Issue: March/April 2002. [Retrieved: March/April 2002]; Available

from: http://findarticles.com/p/articles/mi_qa3937/is_200203/ai_n9019202

11. Object Management Group. (2007). 'Catalog of Specialized CORBA

Specifications'. [Retrieved: 30 Jan 2008]; Available from:

http://www.omg.org/technology/documents/spec_catalog.htm

12. Orfali, R., harkey, D., and Edwards, J., 1997. Instant CORBA. USA: John

Wiley & Sons, Inc.

13. WS-I. (2007). 'Basic Profile Version 1.2'. [Retrieved: 30 Jan 2008]; Available

from: http://www.ws-i.org/Profiles/BasicProfile-1_2(WGAD).html

14. W3C. (2007). 'HTTP - Hypertext Transfer Protocol'. [Retrieved: 30 Jan 2008];

Available from: http://www.w3.org/Protocols/

15. W3C. (2007). 'SOAP Version 1.2'. [Retrieved: 30 Jan 2008]; Available from:

http://www.w3.org/TR/soap/

16. W3C. (2001). 'Web Services Description Language (WSDL) 1.1'. [Retrieved:

30 Jan 2008]; Available from: http://www.w3.org/TR/wsdl

Bibliography

 123

17. Ferguson, D.F., Storey, T., Lovering, B., and Shewchuk, J. (2003). 'Secure,

Reliable, Transacted Web Services: Architecture and Composition'.

[Retrieved: 25 Feb 2008]; Available from: http://msdn2.microsoft.com/en-

us/library/ms996535.aspx

18. Merzbacher, M. and Patterson, D., 2002. 'Measuring End-User Availability on

the Web: Practical Experience', in Proceedings of the International

Conference on Dependable Systems and Networks. IEEE Computer Society

Press. p. 473- 477

19. Kalyanakrishnan, M., Iyer, R.K., and Patel, J., 1997. 'Reliability of Internet

Hosts - A Case Study from the End User's Perspective', in Proceedings of the

6th International Conference on Computer Communications and Networks.

IEEE Computer Society Press. p. 418-423

20. Cristian, F., 1991. 'Understanding fault--tolerant distributed systems', in

Communications of the ACM. Vol. 34, Issue 4: p. 56-78.

21. Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C., 2004. 'Basic

Concepts and Taxonomy of Dependable and Secure Computing', in IEEE

Transactions on Dependable and Secure Computing. IEEE Computer Society

Press. Vol. 1, No. 1: p. 11-33.

22. Lee, P.A. and Anderson, T., 1990. Fault Tolerance: Principles and Practice,

2nd edition. J.C. Laprie, A. Avizienis, and H. Kopetz (editors). Springer-Verlag

New York, Inc.

Bibliography

 124

23. Chen, Y. and Romanovsky, A., 2006. 'A Mediator System for Improving

Dependability of Web Services', in Proceedings of the International

Conference on Dependable Systems and Networks - DSN 2006. Philadelphia,

USA. Vol. Supplemental: p. 132-133.

24. Atkinson, M. and Trefethen, A. (2006). 'UK e-Science ALL HANDS

MEETING'. [Retrieved: 30/12/2006]; Available from:

http://www.allhands.org.uk/2006/

25. Chen, Y., 2006. 'On Improving Dependability of Web Services by employing

the Mediator System', in ReSIST Student Seminar. San Miniato, Italy.

26. Chen, Y. and Romanovsky, A., 2008. 'WS-Mediator for Improving the

Dependability of Web Services Integration', in Journal of IT Professionals.

IEEE Computer Society Press. Vol.10, No. 3, Issue: May/June 2008: p. 29-35

27. Anderson, T., Andrews, Z., Fitzgerald, J., Randell, B., Glaser, H., and Millard,

I., 2007. 'The ReSIST Resilience Knowledge Base', in Proceedings of the 37th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks. Edinburgh, UK, Vol. Supplemental.

28. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., and Yergeau, F.

(2006). 'Extensible Markup Language (XML) 1.0 (Fourth Edition)'.

[Retrieved: 03 March 2008]; Available from: http://www.w3.org/TR/xml/

29. OASIS. (2004). 'UDDI Version 3.0.2'. [Retrieved: 30 Jan 2008]; Available

from: http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-

v3.0.2-20041019.htm

Bibliography

 125

30. Web Services Interoperability Organization. 'About WS-I'. [Retrieved: 30 Jan

2008]; Available from: http://www.ws-i.org/about/Default.aspx

31. JBoss Labs. 'JBoss Web Services'. [Retrieved: 16 Jan 2008]; Available from:

http://labs.jboss.com/jbossws/

32. The Apache Software Foundation, 'Web Services - Axis'. [Retrieved: 16 Jan

2008]; Available from: http://ws.apache.org/axis/

33. Glassfish Community. 'GlassFish Project - Documentation Home Page'.

[Retrieved: 27 March 2008]; Available from:

https://glassfish.dev.java.net/javaee5/docs/DocsIndex.html.

34. Oppenheimer, D., Ganapathi, A., and Patterson, D., 2003. 'Why Do Internet

Services Fail, and What Can Be Done About It?', in Proceedings of USENIX

Symposium on Internet Technologies and Systems. Seattle, USA, Vol. 3: p.1-1.

35. Han, J. and Watson, D., 2006. 'An Experimental Study of Internet Path

Diversity', in IEEE Transactions on Dependable and Secure Computing. IEEE

Computer Society Press. Vol. 3, Issue 4: p. 273 - 288.

36. Mendonça, N.C. and Silva, J.A.F., 2005. 'An Empirical Evaluation of Client-

side Server Selection Policies for Accessing Replicated Web Services', in

Proceedings of the 2005 ACM symposium on Applied computing. Santa Fe,

New Mexico: ACM. p. 1704-1708.

37. Chen, Y., Li, P., and Romanovsky, A., 2006. 'Web Services Dependability and

Performance Monitoring', in Proceedings of 21st Annual UK Performance

Engineering Workshop, UKPEW 2005. Newcastle Upon Tyne, UK.

Bibliography

 126

38. Li, P., Chen, Y., and Romanovsky, A., 2006. 'Measuring the Dependability of

Web Services for Use in e-Science Experiments', in Service Availability. Book

series: Lecture Note of Computing Science. Springer: Berlin / Heidelberg. p.

193-205.

39. W3C. (2001). 'About the World Wide Web'. [Retrieved: 30 Jan 2008];

Available from: http://www.w3.org/WWW/

40. Tartanoglu, F., Issarny, V., and Romanovsky, A., 2003. 'Dependability in the

Web Services Architecture in Architecting Dependable Systems'. In

Architecting Dependable Systems. Book series: Lecture Notes in Computer

Science. Springer: Berlin / Heidelberg. Vol. 2677: p. 90-109.

41. Stevens, R.D., Robinson, A.J., and Goble, C.A., 2003. 'myGrid: Personalised

Bioinformatics on the Information Grid', in Journal of Bioinformatics. Vol.

Supplement 1(19), No. 19: p. i302-i304.

42. Miyazaki, S. and Sugawara, H., 2000. 'Development of DDBJ-XML and its

application to a database of cDNA', in Journal of Genome Informatics.

Universal Academy Press, Inc (Tokyo). Issue 11: p. 380-381.

43. NTL Business Limited. (2008). 'ntl: Telewest business'. [Retrieved: 03 March

2008]; Available from:

http://www.ntltelewestbusiness.co.uk/products__solutions/broadband__interne

t_services.aspx

Bibliography

 127

44. CERNIC. (2008). 'China Education and Research Network (CERNET)'.

[Retrieved: 03 March 2008]; Available from:

http://www.edu.cn/HomePage/english/cernet/index.shtml

45. Alwagait, E. and Ghandeharizadeh, S., 2005. 'DeW: A Dependable Web

Services Framework', in Proceedings of the 14th International Workshop on

Research Issues on Data Engineering: Web Services for E-Commerce and E-

Government Applications (RIDE'04). IEEE Computer Society Press, p. 111-

118.

46. Salatge, N. and Fabre, J.-C., 2007. 'Fault Tolerance Connectors for Unreliable

Web Services'. in Proceedings of the 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks. IEEE Computer Society

Press. p. 51-60.

47. Tsai, W.T., Song, W., Paul, R., Cao, Z., and Huang, H., 2004. 'Services-

Oriented Dynamic Reconfiguration Framework for Dependable Distributed

Computing'. in Proceedings of the 28th Annual International Computer

Software and Applications Conference (COMPSAC'04). IEEE Computer

Society Press, Vol. 01.

48. Laranjeiro, N. and Vieira, M., 2007. 'Towards fault tolerance in web services

compositions', in Proceedings of the 2007 workshop on Engineering fault

tolerant systems. Dubrovnik, Croatia: ACM.

49. Cristian, F., 1982. 'Exception Handling and Software Fault Tolerance', in

IEEE Transactions on Computers. Vol. 31. Issue 6: p. 531-540.

Bibliography

 128

50. Vieira, M., Laranjeiro, N., and Madeira, H., 2007. 'Assessing Robustness of

Web-Services Infrastructures'. in Proceedings of the 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks. IEEE

Computer Society Press.

51. Looker, N., Munro, M., and Xu, J., 2004. 'WS-FIT: A Tool for Dependability

Analysis of Web Services'. in Proceedings of the 28th Annual International

Computer Software and Applications Conference - Workshops and Fast

Abstracts - (COMPSAC'04). IEEE Computer Society Press, Vol. 02.

52. Randell, B., Romanovsky, A., Rubira, C.M.F., Stroud, R.J., Wu, Z., and Xu,

J., 1995. 'From recovery blocks to concurrent atomic actions', in Predictably

Dependable Computing Systems, H. Kopetz, J.C. Laprie, R. Brian, and B.

Littlewood, (editors). Springer-Verlag New York, Inc. p. 87-101.

53. Randell, B. and Xu, J., 1994. 'The Evolution of the Recovery Block Concept',

in Software Fault Tolerance, M. Lyu, (editor). J. Wiley. New York, p. 1-22.

54. Avizienis, A., 1985. 'The N-Version Approach to Fault-Tolerant Software', in

IEEE Transactions of Software Engineering. IEEE Computer Society Press.

Vol. 11, Issue 12: p. 1491-1501.

55. Knight, J.C. and Leveson, N.G., 1986. 'An experimental evaluation of the

assumption of independence in multiversion programming', in IEEE

Transactions on Software Engineering. IEEE Computer Society Press. Vol.

12, Issue 1: p. 96-109.

Bibliography

 129

56. Eckhardt, D.E., Caglayan, A.K., Knight, J.C., Lee, L.D., McAllister, D.F.,

Vouk, M.A., and Kelly, J.J.P., 1991. 'An Experimental Evaluation of Software

Redundancy as a Strategy for Improving Reliability', in IEEE Transactions on

Software Engineering. IEEE Computer Society Press. Vol.17, Issue 7: p. 692-

702.

57. Salas, J., Perez-Sorrosal, F., Patiño-Martínez, M., and Jiménez-Peris, R., 2006.

WS-replication: a framework for highly available web services, in

Proceedings of the 15th International Conference on World Wide Web

(Edinburgh, Scotland, May 23 - 26, 2006). WWW '06. ACM Press, New

York, NY, 357-366.

58. Townend, P., Groth, P., and Xu, J., 2005. 'A Provenance-Aware Weighted

Fault Tolerance Scheme for Service-Based Applications'. in Proceedings of

the Eighth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC'05). IEEE Computer Society Press.

59. OASIS. (2008). 'OASIS Web Services Reliable Messaging (WSRM) TC'.

[Retrieved: 30 Jan 2008]; Available from: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrm

60. AmberPoint Inc. (2003). Report: Managing Exceptions in Web Services

Environments.

61. Dobson, G., 2005. 'A container-based mechanism for service fault tolerance'.

[Retrieved: 30 March 2008]; Available from:

http://www.dirc.org.uk/research/DIRC-Results/ServiceFaultTolerance.html

Bibliography

 130

62. Ardissono, L., Furnari, R., Goy, A., Petrone, G., and Segnan, M., 2006. 'Fault

Tolerant Web Service Orchestration by Means of Diagnosis', in Proceedings

of the third European Workshop on Software Architecture. Series: Lecture

Notes in Computing Science. Springer Berlin / Heidelberg. pp. 2-16.

63. Serugendo, G.D.M., Fitzgerald, J., Romanovsky, A., and Guelfi, N., 2007. 'A

metadata-based architectural model for dynamically resilient systems'. in

Proceedings of the 2007 ACM symposium on Applied computing. Seoul,

Korea: ACM. p.566-572.

64. Goel, S., Talya, S.S., and Sobolewski, M., 2007. 'Service-based P2P overlay

network for collaborative problem solving', in Journal of Decision Support

Systems. Elsevier Science Publishers B. V. Vol. 42, Issue 2: p. 547-568.

65. Fitzgerald, J., Parastatidis, S., Romanovsky, A., and Watson, P., 2004.

'Dependability-explicit Computing in Service-oriented Architectures', in

Proceedings of the International Conference on Dependable Systems and

Networks. Florence, Italy. Vol. Supplement: p. 34–35.

66. Wiederhold, G., 1995. 'Mediation in information systems', in Journal of ACM

Computing Surveys. ACM.Vol.27, Issue 7: p. 265-267.

67. Goldberg, J., Greenberg, I., Clark, R., Jensen, D., Kim, K., and Wells, D.,

(1994). 'Adaptive Fault-Resistant Systems'. in SRI Technical Report. SRI

International. [cited 11 April 2008]; Available from:

http://www.csl.sri.com/papers/sri-csl-95-02/

Bibliography

 131

68. Fraga, J., Siqueira, F., and Favarim, F., 2003. 'An Adaptive Fault-Tolerant

Component Model'. in Proceedings of International Workshop on Object-

Oriented Real-Time Dependable Systems, 2003. WORDS 2003 Fall. 2003: p.

179-179.

69. Hecht, M., Hecht, H., and Shokri, E., 2000. 'Adaptive fault tolerance for

spacecraft'. in Proceedings of Aerospace Conference. Big Sky, MT, USA:

IEEE Computing Society press. Vol. 5: p. 521-533.

70. Avizǐenis, A. and Chen, L., 1977. 'On the Implementation of N-Version

Programming for Software Fault Tolerance During Execution', in Proceedings

of IEEE Ann. Int’l Computer Software and Applications Conf. (COMPSAC

77). Chicago, IL: IEEE Computer Society press. p. 149–155.

71. Sun Microsystems Inc. 'Web Services Overview'. [Retrieved: 30 Jan 2008];

Available from: http://java.sun.com/webservices/

72. Microsoft Corporation. '.NET Framework'. [Retrieved: 16 Jan 2008];

Available from: http://msdn2.microsoft.com/en-gb/netframework/default.aspx

73. Sun Microsystems Inc. 'Java EE at a Glance'. [Retrieved: 16 Jan 2008];

Available from: http://java.sun.com/javaee/index.jsp

74. NetBeans. 'Documentation, Training & Support'. [Retrieved: 16 Jan 2008];

Available from: http://www.netbeans.org/kb/

75. Glassfish Community. 'Project Description, Metro Project'. [Retrieved: 16 Jan

2008]; Available from: https://jax-ws.dev.java.net/

Bibliography

 132

76. W3C. (2006). 'Web Services Policy 1.2 - Framework (WS-Policy) '.

[Retrieved: 30 Jan 2008]; Available from:

http://www.w3.org/Submission/WS-Policy/

77. XMethods. 'Welcome to XMethods'. [Retrieved: 30 Jan 2008]; Available

from: http://www.xmethods.net

78. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., 1990.

'Basic local alignment search tool', in Journal of Molecular Biology. Issue

215: p. 403-410.

79. Virginia Bioinformatics Institute. (2007). 'Pathport, the pathogen portal

project'. [Retrieved: 30 Jan 2008]; Available from:

http://pathport.vbi.vt.edu/main/home.php

80. The Trustees of Princeton University. (2007) 'PLANETLAB'. [Retrieved: 30

Jan 2008]; Available from: https://www.planet-lab.org/

81. Gorbenko, A., Mikhaylichenko, A., Kharchenko, V., Romanovsky, A. (2007).

‘Experimenting With Exception Handling Mechanisms Of Web Services

Implemented Using Different Development Kits’, in CS-TR No 1010. School

of Computing Science, Newcastle University,

82. OASIS. (2006). ‘OASIS Web Services Security (WSS) TC’. [Retrieved: 19

April 2008]; Available from: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wss#announcements

Bibliography

 133

83. IBM, Microsoft. (2002). ‘Security in a Web Services World: A Proposed

Architecture and Roadmap.’ [Retrieved: 19 April 2008]; Available from:

http://www.ibm.com/developerworks/library/specification/ws-secmap/

84. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. (2007). 'Business

Process Execution Language for Web Services version 1.1'. [Retrieved: 30

March 2008]; Available from:

http://www.ibm.com/developerworks/library/specification/ws-bpel/

List of Abbreviations

 134

List of Abbreviations

AW: Airway company

BLP: Business logic processor

DA: Dependability assessment mechanism

DMM: Dependability monitoring mechanism

DS: Database system

FTMS: Fault-tolerance mechanisms

HT: Hotel

PS: Policy system

REDRM: Resilience-explicit dynamic reconfiguration mechanism

SMD: Sub-Mediator database

SMI: Sub-Mediator Interface

SMM: Sub-Mediator monitoring mechanism

SOA: Service-oriented architecture

TA: Travel agency

WS: Web Service

WSD: Web Services database

WSIM: Web Service invocation mechanism

WSM: Web Services monitoring mechanism

Appendix A – The WSsDAT tool

 135

Appendix A – The WSsDAT tool

Our work on the tool started with formulating the essential requirements which a

general Web Services dependability-monitoring tool needs to meet. The main

requirement is that such a tool should be able to monitor a Web Service continuously

for a preconfigured period of time and record various types of information in order for

the dependability of a service to be measured. Firstly, the tool should provide an

interface to accept user’s inputs and map these user inputs into internal processing

actions. Secondly, the tool has to be able to invoke the Web Service effectively and

wait for results; internal and external exceptions should be monitored during this

period. When the output of the service invocation is received, the response time for

the service should be recorded and analyzed. Ideally, the output of the service needs

to be assessed to determine whether the Web Service functioned properly and whether

it passed or failed according to the users’ demands. Moreover, when the test

invocation failed then any fault messages generated by the service should also be

documented. If available, these messages will provide insights behind the problems

causing the service failure. Finally, the tool should be able to produce reports of the

test and monitoring procedures.

Overview

The requirements of a general Web Services dependability-monitoring tool were

realised by the development of a Java-based application called Web Services

Dependability Assessment Tool (WSsDAT) which is aimed at evaluating the

dependability of Web Services. The tool supports various methods of dependability

testing by acting as a client invoking the Web Services under investigation. The tool

Appendix A – The WSsDAT tool

 136

enables users to monitor Web Services by collecting the following reliability

characteristics:

− Availability and Functionality: Calls are made to a Web Service at defined

intervals to check if the Web Service is functioning. The tool is able to test the

semantics of the response which are generated by the Web Service being

monitored. It is possible to pre-configure the tool using a regular expression

which represents the correct response expected by the scientist from a given Web

Service and ensure the service is functioning according to that expected by its

user. Results returned from a Web Service are recorded for further analysis

which can be manually carried out by a user.

− Performance: The WSsDAT measures the round-trip response time of calls

made to the Web Services. Average response time of successful calls is used as

performance metric of a Web Service.

− Faults and exceptions: The tool records any faults generated by a failed

invocation of a Web Service. Internal and external exceptions, for example,

networking timeout exceptions are also recorded for further analysis.

Further to the above metadata recorded by WSsDAT, the tool can also be used to test

and monitor the dependability of Web Services at geographically disparate locations

through the deployment of the tool on different computers. It is important to

understand the behaviour of a Web Service from the point of view of the clients, in

order to comprehend the networking consequences between the clients and the Web

Service.

Appendix A – The WSsDAT tool

 137

General principles and architecture

One of the problems with using public scientific Web Services is that their interfaces

differ from one resource to another. Therefore, testers would normally have to write a

customized invocation script for each service because of the different interfaces and

parameters required. The WSsDAT is an off-the-shelf tool offering general solutions

for monitoring the dependability of Web Services. This tool is implemented using

Apache Axis JAX-RPC style SOAP processing APIs.

Figure A-1: The architecture of the WSsDAT

The architecture of WSsDAT is shown in Figure A-1. It consists of three main

functional components, a graphical user interface (GUI), a Test Engine and a Data

Handler. The GUI captures the user’s request, and configures the test policy and

system settings. These inputs are modeled, mapped and stored in a database for

repeated use. The GUI is also a viewport which renders live dependability and

performance metrics of the Web Services being monitored. The Test Engine is

responsible for generating and executing invocation scripts using the modeled data

stored in the Web Services database to invoke Web Services. The Test Engine is able

Appendix A – The WSsDAT tool

 138

to run a batch of tests and measurements concurrently. The Data Handler processes

and models all test and observation measurements data. After statistical analysis,

these data are subsequently stored in a MySQL database or as plain text files; relevant

information is passed and rendered in the viewport on the GUI.

Figure A-2: GUI for Web Services information inputs

Graphical user interface (GUI)

We designed and implemented the GUI by which users can interact with the

WSsDAT. Users can input information of Web Services on the GUI, set test

parameters and configure test policies, as shown in Figure A-2. The WSsDAT is

capable of testing multiple Web Services simultaneously. Each time the GUI accepts

inputs for one Web Service. Once user’s inputs are validated, these data are modeled

and saved in a database, and the Web Service is entered into a test array. The Web

Appendix A – The WSsDAT tool

 139

Services in the test array are listed on the GUI and can be selected individually for

modification and information display. The viewport on the GUI renders information

of Web Services, such as errors, average response time, and graphs of response times.

The user can highlight a Web Service in the testing list for display. (See Figure A-3).

Figure A-3: GUI for test information display

Test engine

The Test Engine processes the user’s inputs and implements service invocation scripts

according to test policies. Tests on each Web Service are established as a single

thread and all tests are carried out in parallel. The number of test threads is only

restricted by the computer system’s capability or restriction. Figure A-4 is an UML

Appendix A – The WSsDAT tool

 140

diagram showing how the Test Engine cooperates with other components in the

WSsDAT. The mechanism of a test procedure described briefly as following:

− The Test Engine assembles an invocation script for a Web Service to be

monitored according to user’s inputs.

− The Test Engine invokes the Web Service with the test script. A timer is started

for measuring the response time. The start time of the invocation is logged.

− If a valid result is received from a Web Service, the result is passed to the Data

Handler along with other measurements such as start time and end time of the

invocation. The test is terminated and will be started again after the preset

interval.

− If an exception is detected during the invocation, the exception message is logged

along with other dependability and performance metrics. The test is terminated

and a new invocation will be initiated after the preset interval.

− If the Web Service does not return any response after a preset timeout period, the

timeout exception is logged. The test is terminated and will start again after the

preset interval.

− Relevant statistics and analysis are processed and logged after each invocation.

The Test Engine implements the SOAP message processing mechanism. It is able to

analyze the SOAP message received from the Web Services by reporting the error

message attached in the SOAP message and thereby allowing users of the tool to

understand what failures occurred during an unsuccessful invocation.

Appendix A – The WSsDAT tool

 141

Data handler

The Data Handler processes all data generated during the test. After statistical

analysis, these data are stored in a MySQL database, and passed to the GUI if

appropriate. If a MySQL database is not installed on the computer, the WSsDAT has

an option to save these data in formatted text files. The contents of these files are

commented and split clearly and can be easily converted into Microsoft Excel or some

other statistics software which can import data from formatted text files such as

SPSS4.

Figure A-4: Test procedure

4 http://www.spss.com/SPSS/

Appendix B – Implementation of Java Sub-Mediator Elite

 142

Appendix B – Implementation of Java Sub-Mediator Elite

We started implementing the Java WS-Mediator by using the UML modelling tool

[74] integrated in NetBeans to generate abstract classes of components. The

modelling technique allowed us to construct an abstract prototype of the WS-

Mediator and its components from scratch by defining attributes and operations to

present the functionalities and behaviours of components. Moreover, we were able to

validate the proposed system structure and components with Use Case and class

diagrams along with the modelling-based system validation techniques. The

modelling approach dramatically reduced the difficulty and complexity of the Java

WS-Mediator implementation. Figure B-1 presents the class diagram of the Sub-

Mediator Elite, illustrating the internal components of the implementation.

In the Sub-Mediator Elite, class Med_Elite_SOAPPort() acts as both service interface

and the BPL. The client application can invoke Java APIs implemented in the

Med_Elite_SOAPPort() class to request different services. This class interprets the

client’s requests and assigns jobs to the corresponding components. Figure B-2

illustrates the dependency of the Med_Elite_SOAPPorts() class. The WS_Bridge() and

the SubMed_Brisge() classes are the components for accessing the Web Service

database and the Sub-Mediator database. The Dynamic_Reconf_Engine() class

implements the Dynamic Reconfiguration Engine of the Sub-Mediator to process the

mediating service requests. The Med_Elite_PolicyPort() class interprets the global

execution policy, while the WS_ReqPolicy_Parser() class extracts individual

execution policies.

Appendix B – Implementation of Java Sub-Mediator Elite

 143

Figure B-1: Class diagram of the Sub-Mediator Elite

Appendix B – Implementation of Java Sub-Mediator Elite

 144

Figure B-2: The Service Processing Engine of the WS-Mediator Elite

Below we discuss a simple client application developed using the APIs provided by

the Sub-Mediator Elite. The client requests a mediating service and provides two Web

Services, ws1 and ws2, as candidates. The client application creates an instance of the

Med_Elite_PolicyPort() class, names it mesp, and then creates an instance of

SOAPProc() class, and names it soapProc. The SOAPProc() class implements various

methods for converting String and XML document into SOAP messages.

Method ws1() assembles the information about ws1. It invokes the

soapProc.bindingSOAP() method to convert String smRequest into a SOAP message,

and then uses soapProc.readFileCreatDocument() to generate an individual execution

policy from a XML file. The variable faults is a Java HashMap containing customized

error information for identifying specific error messages defined by the client. For

instance, faults.put("Result", "busy") means if “busy” appeared in Element “Result” of

the SOAP message, this SOAP message will be regarded as invalid and carrying error

message. mesp.insert () passes the information about ws1 to the Sub-Mediator Elite.

After capsulating the information about ws1 and ws2, mesp.setGlobalPolicy() sets the

global execution policy for this mediating service request. mesp.execute() starts the

Sub-Mediator Elite to execute a service request.

Appendix B – Implementation of Java Sub-Mediator Elite

 145

The result of the execution will be returned as a Java Vector. The first element of

Vector will be the final result in the response to a service request. If no valid result is

obtained from candidate Web Services, an error message is returned as the result. The

last element of Vector is an XML processing report explaining its structure and

content. The report can be interpreted by a XML processing program to achieve

automatic processing of the results. The rest of the elements in Vector stores the

results returned from candidate Web Services.

import com.mediator.mediator_Elite.Med_Elite_SOAPPort;
import com.mediator.mediator_Elite.SOAP_Proc;
public class TestCase {

private Med_Elite_SOAPPort mesp;
 private SOAP_Proc soapProc = new SOAP_Proc();

…
public static void main(String[args) {

mesp = new Med_Elite_SOAPPort();
ws1();
ws2();
globalPolicy= soapProc.readFileCreateDocument("C:\\ globalPolicy.xml");
mesp.setGlobalPolicy(globalPolicy);
Vector results = mesp.execute();

}
private void ws1(){
QName serviceQName = new QName("http://xml.nig.ac.jp:80/xddbj/Blast", "Blast");
QName portQName = new QName("http://tempuri.org/Blast", "Blast");
SOAPMessage soapMessage = soapProc.bindingSOAP((String) smRequest);
xmlPolicy = soapProc.readFileCreateDocument("C:\\ws1_Policy.xml");
HashMap faults = new HashMap();
faults.put("Result", "busy");
mesp.insert (serviceQName, portQName, soapMessage, xmlPolicy, faults);

}
private void ws2(){

 …
}

}

Figure B-3: Interpreting the global execution policy

Appendix B – Implementation of Java Sub-Mediator Elite

 146

Figure B-3 shows different types of execution policies extracted by the

Med_Elite_PolicyPort() class. As explained in chapter 3, the global execution policy

may change according to the execution mode. NVP_Policy, MR_Policy and

AR_Policy present execution policies associated with the N-version programming, the

Multi-Routing and the Service Alternative Redundancy execution modes respectively.

Figure B-4: The individual execution policy

As illustrated in Figure B-4, the WS_ReqPolicy_Parser() class extracts individual

execution policies from the service request SOAP message. An individual execution

policy is associated with each candidate Web Service. The Web Service Execution

Engine uses individual policies to decide how to invoke each of them.

Below is an example of an individual execution policy, followed with the explanation

of the entities.

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp = http://schemas.xmlsoap.org/ws/2004/09/policy

 xmlns:wsmip = "http://schemas.wsmediator.org/indevidualPolicy/policy">

 <wsp:ExactlyOne>

<wsp:All>

 <bindingMethod>SOAP11HTTP</bindingMethod>

 <invocationMode>Sync</invocationMode>

 <timeout>20000ms</timeout>

 <autotimeout>maximum</autotimeout>

Appendix B – Implementation of Java Sub-Mediator Elite

 147

 <retryAfterFailure>3</retryAfterFailure>

 <retryInterval>3000ms</retryInterval>

</wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

• <bindingMethod>: this indicates the binding method of the SOAP message.

Web Service invocation APIs should follow the binding method to invoke the

Web Service. Default value: SOAP11HTTP

• <invoactionMode>: this entity indicates the invocation method to the Web

Service. There are three types of invocation methods: synchronous,

asynchronous invocation and the conventional RPC (Remote Procedure Call)

invocation. Default value: Sync (Synchronous invocation)

• <timeout>: this sets the timeout parameter for an invocation. If it does not

complete in the timeout period, the invocation will be terminated and a

timeout exception will be raised. The value of the timeout parameter can be

automatically set by the Sub-Mediator if the value is set as 0ms.

• <autotimeout>: the Sub-Mediator can automatically set the timeout

parameter for invoking a particular Web Service according to dependability

metadata. There are three options: average, minimum and maximum,

representing average, minimum and maximum response time.

• <retryAfterFailure>: the Sub-Mediator implements the retry strategy to

tolerate temporary service and network failures. This entity sets the number of

retry invocations of a particular Web Service before giving up.

• <retryInterval>: this entity sets the interval between retries.

Appendix B – Implementation of Java Sub-Mediator Elite

 148

Class Dynanic_Reconf_Engine() implements the Dynamic Reconfiguration Engine of

the Sub-Mediator Elite. Figure B-5 illustrates the dependent components of the

Dynamic Reconfiguration Engine. The WS_Bridge() class implements methods to

allow access to the Web Service database. Currently, there are three fault tolerance

execution modes implemented in the Sub-Mediator Elite. AR_Engine(),NVP_Engine()

and MR_Engine() implement the Service Alternative Redundancy, the N-version

Programming (Service Diversity) and the Multi-routing execution mode.

Figure B-5: The Dynamic Reconfiguration Engine of the Sub-Mediator Elite

The modelled system design and implementation of the Sub-Mediator Elite allow

scalable and flexible adaptation of fault tolerance mechanisms by implementing them

as individual fault tolerance execution models.

Appendix B – Implementation of Java Sub-Mediator Elite

 149

Figure B-6: Service Alternative Redundancy F-T execution mode

Figure B-6 illustrates the Service Alternative Redundancy execution engine and its

dependent components. The AR_Policy execution policy constrains the execution of

the AR_Engine() class. Class WS_Metadata() implements methods to retrieve the

dependability metadata of Web Services. AR_Engine() checks the dependability

metadata of candidate Web Services, and then sorts them according to AR_Policy.

Class WS_Proc() implements methods for processing Web Services, such as sorting.

The SOAP_Proc() class helps AR_Engine() to collect the necessary information for

invoking Web Services. Dispatch_Engine() implements Dispatch<T> invocation API

for invoking Web Services. When AR_Engine() receives a result via

Dispatch_Engine(), it caches the result using the Results_Cache() class. If this result

fails the validity check, the AR_Engine() class will retry the Web Service or switch to

an alternative Web Service. If a valid result is received or all Web Services have been

tried, the AR_Engine() finalizes Result Cache and generates final results using the

Results_Proc() component.

Appendix B – Implementation of Java Sub-Mediator Elite

 150

Figure B-7: N-Version Programming execution mode

Figure B-7 illustrates the N-Version Programming execution engine and its dependent

components. It processes candidate Web Services according to NVP_Policy. Then it

invokes the defined number of Web Services synchronously. All of the results

returned from Web Services will be cached in Results_Cache(). The NVP_Engine()

also performs the validity check. If a valid result is received, it is an option for the

NVP_Engine() to terminate invocations and deliver the valid result as the first

received result to the client. If a number of valid results are expected, the

NVP_Engine() will wait until enough results have been received. If a Web Service

fails an invocation before the expected number of valid results has been received, the

NVP_Engine() will invoke alternative Web Services to continue execution. Valid

results can be voted by the voting mechanism implemented in NVP_Engine();

however, it is an optional procedure.

Figure B-8 illustrates the Multi-Routing execution engine and its dependent

components. The MR_Engine() interprets the MR_Policy to define the execution

Appendix B – Implementation of Java Sub-Mediator Elite

 151

procedure and checks the dependability of Sub-Mediators via the methods

implemented in class SubMed_Metadate(). Then MR_Engine() selects a defined

number of Sub-Mediators to implement the Multi-Routing Strategy. Similarly to the

N-Version Programming execution mode, execution can be terminated when a valid

result is received via a Sub-Mediator. Otherwise, MR_Engine() waits until all results

are returned from Sub-Mediators or timeout. The results can be voted using the voting

mechanism implemented in MR_Engine().

Figure B-8: The Multi-Routing Execution mode

The Dispatch_Engine() class implements dynamic Web Service invocation

mechanisms. It utilizes the powerful Dispatch<T> dynamic Web Service invocation

API provided by the JAX-WS 2.1 framework to achieve run-time dynamic integration

of Web Services. The Dispatch<T> API supports synchronous, asynchronous and

one-way invocation to suit different application scenarios. The Sub-Mediator Elite

fully supports various invocation methods. An invocation method can be selected by

an individual execution policy.

Appendix C – Dependability metadata

 152

Appendix C – Dependability metadata

Below is given an example of dependability metadata implemented in the XML

format. Element <ws> indicates the name of the Web Service using its endpoint. The

nested elements represent various dependability attributes.

<?xml version="1.0"?>

<!-- Endpoint of the Web Service -->

<ws service="{http://xml.nig.ac.jp:80/xddbj/Blast}Blast">

 <!-- dependability rank of the Web Service -->

 <dependability>85%</dependability>

<!-- the performance evaluation, e.g. the average response time -->

 <performance>24141</performance>

 <!-- The number of monitoring tests applied on the Web Services -->

 <numOfTests>340</numOfTests>

 <!-- The number of monitoring tests that returned valid results -->

 <succTests>290</succTests>

 <!-- the average response time of the valid invocations -->

 <aveResponseTime>24141ms</aveResponseTime>

 <!-- the minimum response time of the valid invocation -->

 <minimumResponseTime>1110ms</minimumResponseTime>

 <!-- the maximum response time of the invocations -->

 <maximumResponseTime>2750ms</maximumResponseTime>

</ws>

Appendix D – Dependability metadata database in XML

 153

Appendix D – Dependability metadata database in XML

During dependability monitoring of Web Services, a time series of dependability

metadata are kept in the dependability database. The changing dependability

behaviour of Web Services can be understood by tracing their dependability metadata

at different times, which helps the resilience-explicit decision-making mechanism to

select the most desirable component services. Below is shown a fraction of the time-

logged dependability metadata collected from one of our experiments.

<?xml version="1.0" encoding="UTF-8"?>

<report>

<Execution startTime="Wed Mar 14 12:38:58 GMT 2007">

 <wslist>

<ws

service="{http://www.ebi.ac.uk/collab/mygrid/service4/soap/se

rvices/alignment::blastn_ncbi}AnalysisWSAppLabImplService

">

 <dependability>58</dependability>

 <performance>62500</performance>

 <numOfTests>340</numOfTests>

 <succTests>200</succTests>

 <aveResponseTime>62500</aveResponseTime>

 <minimumResponseTime>9999</minimumResponseTi

me>

<maximumResponseTime>61485</maximumResponse

Time>

 </ws>

 <ws service="{http://xml.nig.ac.jp:80/xddbj/Blast}Blast">

 <dependability>85</dependability>

 <performance>24141</performance>

 <numOfTests>340</numOfTests>

Appendix D – Dependability metadata database in XML

 154

 <succTests>290</succTests>

 <aveResponseTime>24141</aveResponseTime>

 <minimunResponseTime>1110</minimunResponseTi

me>

 <maximumResponseTime>2750</maximumResponseT

ime>

 </ws>

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/servi

ces/blastbt}BlastbtService">

 <dependability>91</dependability>

 <performance>28990</performance>

 <numOfTests>340</numOfTests>

 <succTests>310</succTests>

 <aveResponseTime>28990</aveResponseTime>

<minimunResponseTime>9999</minimunResponseTi

me>

<maximumResponseTime>36297</maximumResponse

Time>

 </ws>

 </wslist>

 </Execution>

 <Execution startTime="Wed Mar 14 12:44:28 GMT 2007">

 <wslist>

<ws

service="{http://www.ebi.ac.uk/collab/mygrid/service4/soap/se

rvices/alignment::blastn_ncbi}AnalysisWSAppLabImplService

">

 <dependability>58</dependability>

 <performance>62500</performance>

 <numOfTests>341</numOfTests>

 <succTests>200</succTests>

 <aveResponseTime>62500</aveResponseTime>

Appendix D – Dependability metadata database in XML

 155

<minimunResponseTime>9999</minimunResponseTi

me>

<maximumResponseTime>61485</maximumResponse

Time>

 </ws>

 <ws service="{http://xml.nig.ac.jp:80/xddbj/Blast}Blast">

 <dependability>85</dependability>

 <performance>24141</performance>

 <numOfTests>341</numOfTests>

 <succTests>290</succTests>

 <aveResponseTime>24141</aveResponseTime>

<minimunResponseTime>1110</minimunResponseTi

me>

<maximumResponseTime>2750</maximumResponseT

ime>

 </ws>

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/servi

ces/blastbt}BlastbtService">

 <dependability>91</dependability>

 <performance>28983</performance>

 <numOfTests>341</numOfTests>

 <succTests>311</succTests>

 <aveResponseTime>28983</aveResponseTime>

<minimunResponseTime>9999</minimunResponseTi

me>

<maximumResponseTime>36297</maximumResponse

Time>

 </ws>

 </wslist>

 </Execution>

 <Execution startTime="Wed Mar 14 12:49:58 GMT 2007">

 <wslist>

Appendix D – Dependability metadata database in XML

 156

<ws

service="{http://www.ebi.ac.uk/collab/mygrid/service4/soap/se

rvices/alignment::blastn_ncbi}AnalysisWSAppLabImplService

">

 <dependability>58</dependability>

 <performance>62500</performance>

 <numOfTests>342</numOfTests>

 <succTests>200</succTests>

 <aveResponseTime>62500</aveResponseTime>

<minimumResponseTime>9999</minimumResponseTi

me>

<maximumResponseTime>61485</maximumResponse

Time>

 </ws>

 <ws service="{http://xml.nig.ac.jp:80/xddbj/Blast}Blast">

 <dependability>84</dependability>

 <performance>24141</performance>

 <numOfTests>342</numOfTests>

 <succTests>290</succTests>

 <aveResponseTime>24141</aveResponseTime>

<minimumResponseTime>1110</minimumResponseTi

me>

<maximumResponseTime>2750</maximumResponseT

ime>

 </ws>

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/servi

ces/blastbt}BlastbtService">

 <dependability>91</dependability>

 <performance>28977</performance>

 <numOfTests>342</numOfTests>

 <succTests>312</succTests>

 <aveResponseTime>28977</aveResponseTime>

Appendix D – Dependability metadata database in XML

 157

<minimumResponseTime>9999</minimumResponseTi

me>

<maximumResponseTime>36297</maximumResponse

Time>

 </ws>

 </wslist>

 </Execution>

</report>

Appendix E – Implementation of Java client application

 158

Appendix E – Implementation of Java client application

The Java code shown below is an example of the Java client application based upon

the Sub-Mediator Elite that uses three Blast Web Services as component services to

implement service diversity strategy by using the N-version programming fault

tolerance execution mode. We use comments in the code to explain how to implement

a Java client application with the APIs provided by the Sub-Mediator Elite.

/*

 * TestCases.java

 *

 * Created on 21 February 2007, 17:43

 *

*/

package com.mediator.test;

/* The Java application needs to import the necessary classes. Med_Elite_SOAPPort

is the interface of the Sub-Mediator Elite. SOAP_Proc and XML_Proc provide

optional methods for processing SOAP messages and XML files. * /

import com.mediator.mediator_Elite.Med_Elite_SOAPPort;

import com.mediator.mediator_Elite.SOAP_Proc;

import com.mediator.mediator_Elite.XML_Proc;

import java.io.FileOutputStream;

import java.io.PrintStream;

import java.util.Date;

import java.util.Vector;

import javax.xml.namespace.QName;

import javax.xml.soap.SOAPMessage;

import org.omg.CORBA.DATA_CONVERSION;

Appendix E – Implementation of Java client application

 159

import org.w3c.dom.Document;

/**

 * @Yuhui Chen

 */

public class TestCases {

 /* Creates the instance of the classes implemented in Sub-Mediator Elite. */

 private Med_Elite_SOAPPort mesp;

 private SOAP_Proc soapProc = new SOAP_Proc();

 private XML_Proc xmlp = new XML_Proc();

 /* Vector results is created for accepting the processing results returned from Sub-

Mediator Elite.*/

 private Vector results;

 public TestCases() {

 }

 /* The main method that implements the business logic */

 public static void main(String[args) {

 /* Creates a new instance of TestCases */

 TestCases tcs = new TestCases();

 /* Creates an instance of Log_Proc for logging the execution of the business

procedures */

 Log_Proc logproc = new Log_Proc();

 /* Initiates the logging buffer */

 logproc.init();

 /* Executes the business process */

Appendix E – Implementation of Java client application

 160

 tcs.execute(logproc);

 /* Prints the execution results returned from the Sub-Mediator Elite */

 tcs.printResult();

 }

 /* Assembling invocation to the Sub-Mediator Elite */

 private long execute(Log_Proc logproc){

 /* logs start time */

 long t1 = System.currentTimeMillis();

 mesp = null;

 /* Initiates the interface of the Sub-Mediator Elite */

 mesp = new Med_Elite_SOAPPort();

 /* Initiates the vector accepting the execution results*/

 results = new Vector();

 /* Assembling invocations to the candidate Web Services */

 ws1();

 ws2();

 ws3();

 /* Imports the global execution policy*/

 Document globalPolicy = null;

 try {

 globalPolicy =

xmlp.readFileCreateDocument("E:\\Projects\\Mediator\\doc\\Current\\globalP

olicy.xml");

 } catch (Exception ex) {

 ex.printStackTrace();

 }

Appendix E – Implementation of Java client application

 161

 /* Sets the global execution policy*/

 mesp.setGlobalPolicy(globalPolicy);

 Date startTime = new Date();

 /* Invokes the Sub-Mediator to execute the dynamic service composition */

 results = mesp.execute();

 /* Calculates the response time externally in the client application*/

 long t2 = System.currentTimeMillis();

 long responseTime = t2-t1;

 /* Logs the relevant results */

 logproc.append((Document)results.lastElement(), startTime,

String.valueOf(responseTime));

 logproc.writeLog("E:\\Projects\\Mediator\\doc\\output\\log.xml");

 System.out.println("***********************");

 System.out.println("* Response Time (ms) : " + responseTime);

 System.out.println("***********************");

 return responseTime;

 }

 /* Assembling the invocation to a candidate Web Service */

 private void ws1(){

 /* The Japanese DDBJ Blast Web Service */

 QName serviceQName = new QName("http://xml.nig.ac.jp:80/xddbj/Blast",

"Blast");

 QName portQName = new QName("http://tempuri.org/Blast", "Blast");

 /* String smRequest is the invocation SOAP message to DDBJ */

 String smRequest = "<soapenv:Envelope

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"><soapenv:Bod

Appendix E – Implementation of Java client application

 162

y><searchSimple

xmlns=\"http://xml.nig.ac.jp:80/xddbj/Blast\"><program>blastn</program><d

atabase>ddbjhum</database><arg2>ccccacatca ccactttgga taacgccaaa

tacaccttca acgggctagg atacttcctg ctggttcagg cccaggacag aaattcttcc ttcctgctgg

agggccgcac tgcccagact gattctgcca atgccacgaa cttcattgcc tttgcggccc aatacaacac

cagcagcctg aagtctccca tcacagttca gtggtttctt gagcccaatg acacaatccg agttgtacac

aataaccaaa cggtggcctt taacaccagc gacactgaag acttgcccgt attcaatgcc

actggtgtcc tactgatcca aaatggctcc caagtctcag ccaactttga tgggacagtg

accatctctg tgattgctct ctccaacatc cttcacgcct cctccagcct gtcagaggag

taccgcaacc acacaaaggg ccttctggga gtctggaatg acaatccaga agatgacttc

agaatgccca atggctccac catcccctcc aacacgtccg aggagactct tttccactat

ggaatgacat cggaaactaa cgggataggc ctccttgggg tgaggacaga ccctctgcct

tctgagttta ctcccatctt cttgtcccaa ctgtggaaca agagcggcgc cggtgaagac

ttgatctctg ggtgcaacga ggacgcacag tgcaagtttg acatcctggc cacaggaaac

agagacatcg gacaaagcac caactcaatc cttagaacat tccggcacgt gaatggcacg

ctcaaccagt acccaccccc tatccactac agcagcaaga ttcaagccta caaggggcga

gaacagtggc cattgagatc accagcaact ctaaggatgt cgtattcagc ctctccaaca

agtgcagtgg cctttgagct ctttgaaaac gggagtttgc acgtggacac caacatcccc

agaagaacgt acctggagat tctagcaagg gatgtcaaga ctaacttgtc atcggtactc

cagcctgaga cggtggcttg cttctgtagt aaggaggaac agtgtttgta caacgagacc

agcaaagagg gcaactcttc cactgaggtg accagctgca agtgcgatgg gaactccttc

ggccgcttgt gtgaacactc taaggacctc tgcactgagc catgcttccc taatgtggac

tgcattcctg ggaagggctg tcaggcctgc cctccaaaca tgactggaga tgggcgtcat

tgtgtagctg tggagatctc tgaattctgc cagaaccatt cctgtcctgt gaattactgc tataaccatg

gccattgcga catctctggg cctccagact gccagcccac ttgcacctgc gcccctgcct

tcactggtaa ccgctgcttc ctggccggga acaatttcac tcccatcatc tataaagagc ttcccttgag

gaccatcacg ctctctctca gggaggacga aaacgcctct aacgctgacg tcaatgcctc

ggtggcaaac gtactagaga acttggacat gcgggctttt ctctccaaca gcttagtgga

gctgatacga acctctcccg gagcaccagt ccttggcaag cccattcatc actggaaggt

cgtctcccac ttcaagtacc gtcccagggg acccctcatc cactatctga acaaccaact

gataagcgcc gtgatggagg ccttcctcct ccaggctcgg caggagaggc ggaagaggag

tggagaagcc aggaagaacg tccgcttctt ccccatctcg agggcagacg tccaggacgg

gatggccctg aacctaagta tgctggacga gtacttcacg tgcgatggct acaaaggcta

ccacttggtc tacagccccc aggatggcgt cacctgtgtg tccccatgta gtgagggcta

Appendix E – Implementation of Java client application

 163

ctgtcacaat ggaggccaat gcaagcacct gccagatggg ccccagtgca cgtgcgcaac

cttcagcatc tacacatcct ggggcgaacg ctgtgagcat ctaagcgtga aacttggggc

attcttcggg atcctctttg gagccctggg tgccctcttg ctactggcca tcttagcatg tgtggtcttt

cacttctgcg gctgctccat gaacaagttc tcctaccctc tggactcaga

actgtga</arg2></searchSimple></soapenv:Body></soapenv:Envelope>";

 /* String xmlPolicy contains the individual execution service policy */

String xmlPolicy= "<wsp:Policy

xmlns:wsp=\"http://schemas.xmlsoap.org/ws/2004/09/policy\"

xmlns:wsmip=\"http://schemas.wsmediator.org/indevidualPolicy/policy\"><w

sp:ExactlyOne><wsp:All><!-- Binging method --

><bindingMethod>SOAP11HTTP</bindingMethod><!-- Invocation mode:

RPC | Sync | Async --><invocationMode>Sync</invocationMode><!-- time

out parameter --><timeout>20000</timeout><!-- auto-set time out parameter:

average | max --><autotimeout>average</autotimeout> <!-- How many time

to retry after failure--><retryAfterFailure>3</retryAfterFailure><!-- Interval

between retries --><retryInterval>30</retryInterval><!-- apply multi-routing,

and number of routes --><multirouting>0</multirouting><!-- start to monitor

this Web Service locally? no | locally | remotely--

><monitorThisWS>no</monitorThisWS><!-- find identical Web Services?

how many?--

><searchIdenticalWS>2</searchIdenticalWS></wsp:All></wsp:ExactlyOne>

</wsp:Policy>";

 /* The endpoint address of DDBJ */

 String endpointAddress = "http://xml.nig.ac.jp:80/xddbj/Blast";

/* Binding the invocation message to DDBJ in the invocation SOAP message

sending to the Sub-Mediator Elite */

 SOAPMessage message = soapProc.bindingSOAP(smRequest);

/* Binding relevant information for invoking the Sub-Mediator Elite*/

 mesp.insertWS(endpointAddress, serviceQName, portQName, message,

xmlPolicy);

Appendix E – Implementation of Java client application

 164

 }

 /* Assembling the invocation to another candidate Web Service */

 private void ws2(){

 String smRequest = "<soapenv:Envelope

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"><soapenv:Bod

y><getFFEntry

xmlns=\"http://www.themindelectric.com/wsdl/DDBJ/\"><accession>AB0000

50</accession></getFFEntry></soapenv:Body></soapenv:Envelope>";

 QName serviceQName = new QName("http://xml.nig.ac.jp/xddbj/DDBJ",

"DDBJ");

 QName portQName = new QName("http://xml.nig.ac.jp/xddbj/DDBJ",

"DDBJ");

 String xmlPolicy= "<wsp:Policy

xmlns:wsp=\"http://schemas.xmlsoap.org/ws/2004/09/policy\"

xmlns:wsmip=\"http://schemas.wsmediator.org/indevidualPolicy/policy\"><w

sp:ExactlyOne><wsp:All><!-- Binging method --

><bindingMethod>SOAP11HTTP</bindingMethod><!-- Invocation mode:

RPC | Sync | Async --><invocationMode>Sync</invocationMode><!-- time

out parameter --><timeout>30000</timeout><!-- auto-set time out parameter:

average | max --><autotimeout>average</autotimeout> <!-- How many time

to retry after failure--><retryAfterFailure>3</retryAfterFailure><!-- Interval

between retries --><retryInterval>30</retryInterval><!-- apply multi-routing,

and number of routes --><multirouting>0</multirouting><!-- start to monitor

this Web Service locally? no | locally | remotely--

><monitorThisWS>no</monitorThisWS><!-- find identical Web Services?

how many?--

><searchIdenticalWS>2</searchIdenticalWS></wsp:All></wsp:ExactlyOne>

</wsp:Policy>";

 String endpointAddress = "http://xml.nig.ac.jp/xddbj/DDBJ";

 SOAPMessage message = soapProc.bindingSOAP(smRequest);

 mesp.insertWS(endpointAddress,

serviceQName,portQName,message,xmlPolicy);

 }

Appendix E – Implementation of Java client application

 165

 /* Assembling the invocation to another Web Service */

 private void ws3(){

 String smRequest = "<soapenv:Envelope

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"><soapenv:Bod

y><execute

xmlns=\"http://www.themindelectric.com/wsdl/BlastDemo/\"><accession>AB

000050</accession></execute></soapenv:Body></soapenv:Envelope>";

 QName serviceQName = new QName("http://xml.nig.ac.jp/xddbj/BlastDemo",

"BlastDemo");

 QName portQName = new QName("http://xml.nig.ac.jp/xddbj/BlastDemo",

"BlastDemo");

 String xmlPolicy= "<wsp:Policy

xmlns:wsp=\"http://schemas.xmlsoap.org/ws/2004/09/policy\"

xmlns:wsmip=\"http://schemas.wsmediator.org/indevidualPolicy/policy\"><w

sp:ExactlyOne><wsp:All><!-- Binging method --

><bindingMethod>SOAP11HTTP</bindingMethod><!-- Invocation mode:

RPC | Sync | Async --><invocationMode>Sync</invocationMode><!-- time

out parameter --><timeout>60000</timeout><!-- auto-set time out parameter:

average | max --><autotimeout>average</autotimeout> <!-- How many time

to retry after failure--><retryAfterFailure>3</retryAfterFailure><!-- Interval

between retries --><retryInterval>30</retryInterval><!-- apply multi-routing,

and number of routes --><multirouting>0</multirouting><!-- start to monitor

this Web Service locally? no | locally | remotely--

><monitorThisWS>no</monitorThisWS><!-- find identical Web Services?

how many?--

><searchIdenticalWS>2</searchIdenticalWS></wsp:All></wsp:ExactlyOne>

</wsp:Policy>";

 String endpointAddress = "http://xml.nig.ac.jp/xddbj/BlastDemo";

 SOAPMessage message = soapProc.bindingSOAP(smRequest);

 mesp.insertWS(endpointAddress, serviceQName, portQName, message,

xmlPolicy);

 }

 /* Method for printing execution results */

Appendix E – Implementation of Java client application

 166

private void printResult(){

 System.out.println();

 System.out.println("=============================");

 System.out.println("* Final result: *");

System.out.println(soapProc.SOAPToXMLString((SOAPMessage)results.first

Element()));

 System.out.println("=============================");

 System.out.println("* Final report: *");

 try {

 xmlp.printNodeToConsole((Document)results.lastElement());

 System.out.println();

 //xmlp.printXML((Document)obj);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 //System.out.println();

 System.out.println("=============================");

 }

 /* Logs execution results in a file */

 private void wrtFile(long rst){

 FileOutputStream out; // declare a file output object

 PrintStream p; // declare a print stream object

 try

 {

 // Create a new file output stream

 // connected to "myfile.txt"

 out = new FileOutputStream("E:\\Projects\\Current\\testCase.txt");

 // Connect print stream to the output stream

Appendix E – Implementation of Java client application

 167

 p = new PrintStream(out);

 p.append(String.valueOf(rst));

 //p.close();

 }

 catch (Exception e)

 {

 System.err.println ("Error writing to file");

 }

 }

}

Appendix F – Example of the valid result from DDBJ

 168

Appendix F – Example of the valid result from DDBJ

Here we show a valid result expected from the DDBJ Blast Web Service, which

contains a gene sequence being used in bioinformatics research.

A. Invoking DDBJ Web Service

Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/DDBJ} DDBJ

Received response:

com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@422d0b

B. The result returned from DDBJ.

=============================
* Final result: *
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><soap:Body><n:g
etFFEntryResponse xmlns:n="http://tempuri.org/DDBJ"><Result
xsi:type="xsd:string">LOCUS AB000050 1755 bp DNA linear
VRL 05-FEB-1999
DEFINITION Feline panleukopenia virus DNA for capsid protein 2, complete cds.
ACCESSION AB000050
VERSION AB000050.1
KEYWORDS capsid protein 2.
SOURCE Feline panleukopenia virus
 ORGANISM Feline parvovirus
 Viruses; ssDNA viruses; Parvoviridae; Parvovirinae; Parvovirus.
REFERENCE 1 (bases 1 to 1755)
 AUTHORS Horiuchi,M.
 TITLE Direct Submission
 JOURNAL Submitted (22-DEC-1996) to the DDBJ/EMBL/GenBank databases.
 Motohiro Horiuchi, Obihiro University of Agriculture and
 Veterinary Medicine, Veterinary Public Health; Inada cho, Obihiro,
 Hokkaido 080, Japan (E-mail:horiuchi@obihiro.ac.jp,
 Tel:0155-49-5392, Fax:0155-49-5402)
REFERENCE 2 (bases 1 to 1755)
 AUTHORS Horiuchi,M.
 TITLE Evolutionary pattern of feline panleukopenia virus differs from
 that of canine parvovirus
 JOURNAL Unpublished (1997)

Appendix F – Example of the valid result from DDBJ

 169

COMMENT
FEATURES Location/Qualifiers
 source 1..1755
 /isolate="94-1"
 /lab_host="Felis domesticus"
 /mol_type="genomic DNA"
 /organism="Feline panleukopenia virus"
 CDS 1..1755
 /product="capsid protein 2"
 /protein_id="BAA19011.1"

/translation="MSDGAVQPDGGQPAVRNERATGSGNGSGGGGGGGSGGVGIST
GT

FNNQTEFKFLENGWVEITANSSRLVHLNMPESENYKRVVVNNMDKTAVKGN
MALDDTH

VQIVTPWSLVDANAWGVWFNPGDWQLIVNTMSELHLVSFEQEIFNVVLKTV
SESATQP

PTKVYNNDLTASLMVALDSNNTMPFTPAAMRSETLGFYPWKPTIPTPWRYYF
QWDRTL

IPSHTGTSGTPTNVYHGTDPDDVQFYTIENSVPVHLLRTGDEFATGTFFFDCKP
CRLT

HTWQTNRALGLPPFLNSLPQSEGATNFGDIGVQQDKRRGVTQMGNTDYITEA
TIMRPA

EVGYSAPYYSFEASTQGPFKTPIAAGRGGAQTDENQAADGDPRYAFGRQHG
QKTTTTG

ETPERFTYIAHQDTGRYPEGDWIQNINFNLPVTNDNVLLPTDPIGGKTGINYTN
IFNT

YGPLTALNNVPPVYPNGQIWDKEFDTDLKPRLHVNAPFVCQNNCPGQLFVK
VAPNLTN

EYDPDASANMSRIVTYSDFWWKGKLVFKAKLRASHTWNPIQQMSINVDNQF
NYVPNNI
 GAMKIVYEKSQLAPRKLY"
BASE COUNT 618 a 271 c 346 g 520 t
ORIGIN
 1 atgagtgatg gagcagttca accagacggt ggtcaacctg ctgtcagaaa tgaaagagct
 61 acaggatctg ggaacgggtc tggaggcggg ggtggtggtg gttctggggg tgtggggatt
 121 tctacgggta ctttcaataa tcagacggaa tttaaatttt tggaaaacgg gtgggtggaa
 181 atcacagcaa actcaagcag acttgtacat ttaaatatgc cagaaagtga aaattataaa
 241 agagtagttg taaataatat ggataaaact gcagttaaag gaaatatggc tttagatgat
 301 actcatgtac aaattgtaac accttggtca ttggttgatg caaatgcttg gggagtttgg
 361 tttaatccag gagattggca actaattgtt aatactatga gtgagttgca tttagttagt

Appendix F – Example of the valid result from DDBJ

 170

 421 tttgaacaag aaatttttaa tgttgtttta aagactgttt cagaatctgc tactcagcca
 481 ccaactaaag tttataataa tgatttaact gcatcattga tggttgcatt agatagtaat
 541 aatactatgc catttactcc agcagctatg agatctgaga cattgggttt ttatccatgg
 601 aaaccaacca taccaactcc atggagatat tattttcaat gggatagaac attaatacca
 661 tctcatactg gaactagtgg cacaccaaca aatgtatatc atggtacaga tccagatgat
 721 gttcaatttt atactattga aaattctgtg ccagtacact tactaagaac aggtgatgaa
 781 tttgctacag gaacattttt ttttgattgt aaaccatgta gactaacaca tacatggcaa
 841 acaaatagag cattgggctt accaccattt ttaaattctt tgcctcaatc tgaaggagct
 901 actaactttg gtgatatagg agttcaacaa gataaaagac gtggtgtaac tcaaatggga
 961 aatacagact atattactga agctactatt atgagaccag ctgaggttgg ttatagtgca
 1021 ccatactatt cttttgaagc gtctacacaa gggccattta aaacacctat tgcagcagga
 1081 cgggggggag cgcaaacaga tgaaaatcaa gcagcagatg gtgatccaag atatgcattt
 1141 ggtagacaac atggtcaaaa aactactaca acaggagaaa cacctgagag atttacatat
 1201 atagcacatc aagatacagg aagatatcca gaaggagatt ggattcaaaa tattaacttt
 1261 aaccttcctg taacaaatga taatgtattg ctaccaacag atccaattgg aggtaaaaca
 1321 ggaattaact atactaatat atttaatact tatggtcctt taactgcatt aaataatgta
 1381 ccaccagttt atccaaatgg tcaaatttgg gataaagaat ttgatactga cttaaaacca
 1441 agacttcatg taaatgcacc atttgtttgt cagaataatt gtcctggtca attatttgta
 1501 aaagttgcgc ctaatttaac gaatgaatat gatcctgatg catctgctaa tatgtcaaga
 1561 attgtaactt attcagattt ttggtggaaa ggtaaattag tatttaaagc taaactaaga
 1621 gcatctcata cttggaatcc aattcaacaa atgagtatta atgtagataa ccaatttaac
 1681 tatgtaccaa ataatattgg agctatgaaa attgtatatg aaaaatctca actagcacct
 1741 agaaaattat attaa
//
</Result></n:getFFEntryResponse></soap:Body></soap:Envelope>
=============================

Appendix G - Execution sequence of unsuccessful process

 171

Appendix G - Execution sequence of unsuccessful process

Here we give an example of a logged execution sequence. The logged file is

commented on during the execution and can be easily understood. In this example, no

valid results were received from candidate Web Services, as reported in the final

report section of the log.

init:
deps-jar:
compile-single:
run-single:

====== Parsing Web Service Request Policies ======

Binding Method: SOAP11HTTP
Invocation mode: Sync
timeout (ms): 60000
Auto timeout rule: average
Retry times: 3
Retry interval: 30
Monitor this Web Service: no
Search identical Web Services: 2

====== Parsing Web Service Request Policies ======

Binding Method: SOAP11HTTP
Invocation mode: Sync
timeout (ms): 60000
Auto timeout rule: average
Retry times: 3
Retry interval: 30
Monitor this Web Service: no
Search identical Web Services: 2

====== Parsing Web Service Request Policies ======

Binding Method: SOAP11HTTP
Invocation mode: Sync
timeout (ms): 60000
Auto timeout rule: average
Retry times: 3
Retry interval: 30
Monitor this Web Service: no
Search identical Web Services: 2

Appendix G - Execution sequence of unsuccessful process

 172

====== Parsing Global Policies ======

Number of Web Services: 3
Priority: dependability
Dependability Acceptance: 80
Performance Acceptance: 300
Timeout: 1000
Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
url: http://xml.nig.ac.jp:80/xddbj/Blast
dependability: 50
performance: 300

--
Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
url: http://xml.nig.ac.jp/xddbj/DDBJ
dependability: 80
performance: 400

--
Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
url: http://xml.nig.ac.jp/xddbj/BlastDemo
dependability: 80
performance: 500

--
Sorting Web Services according Dependability metadata.
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@dfd90f

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@dfd90f

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@dfd90f

Waiting for reply...

Appendix G - Execution sequence of unsuccessful process

 173

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/BlastDemo}BlastDemo
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@cefde4

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/BlastDemo}BlastDemo
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@cefde4

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/BlastDemo}BlastDemo
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@cefde4

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@79b7b0

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@79b7b0

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp
Invoking Web Service (Sync): {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@79b7b0

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

Appendix G - Execution sequence of unsuccessful process

 174

=============================
* Final result: *
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body><soap:Fault>
<faultcode>soap:Mediator</faultcode><faultstring>No valid result
received!</faultstring><detail/></soap:Fault></soap:Body></soap:Envelope>
=============================
=============================
* Final report: *
<?xml version="1.0" encoding="UTF-8"?><report><ws
service="{http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/BlastDemo}BlastDemo"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/BlastDemo}BlastDemo"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/BlastDemo}BlastDemo"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp:80/xddbj/Blast}Blast"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp:80/xddbj/Blast}Blast"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp:80/xddbj/Blast}Blast"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws></report>
=============================

* Response Time (ms) : 2012

BUILD SUCCESSFUL (total time: 2 seconds)

Appendix H - Execution sequence of successful process

 175

Appendix H - Execution sequence of successful process

Here we give an example of a logged execution sequence of a successful business

process. In this example, a valid result was received from the DDBJ Web Service,

which terminated the entire execution, as the quickest response was expected. Details

can be found in the final report section of the log.

init:
deps-jar:
compile-single:
run-single:

====== Parsing Web Service Request Policies ======

Binding Method: SOAP11HTTP
Invocation mode: Sync
timeout (ms): 60000
Auto timeout rule: average
Retry times: 3
Retry interval: 30
Monitor this Web Service: no
Search identical Web Services: 2

====== Parsing Web Service Request Policies ======

Binding Method: SOAP11HTTP
Invocation mode: Sync
timeout (ms): 60000
Auto timeout rule: average
Retry times: 3
Retry interval: 30
Monitor this Web Service: no
Search identical Web Services: 2

====== Parsing Web Service Request Policies ======

Binding Method: SOAP11HTTP
Invocation mode: Sync
timeout (ms): 60000
Auto timeout rule: average
Retry times: 3
Retry interval: 30
Monitor this Web Service: no
Search identical Web Services: 2

Appendix H - Execution sequence of successful process

 176

====== Parsing Global Policies ======

Number of Web Services: 3
Priority: dependability
Dependability Acceptance: 80
Performance Acceptanc: 300
Timeout: 1000
Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
url: http://xml.nig.ac.jp:80/xddbj/Blast
dependability: 50
performance: 300

--
Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
url: http://xml.nig.ac.jp/xddbj/DDBJ
dependability: 80
performance: 400

--
Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast}Blast
url: http://xml.nig.ac.jp/xddbj/BlastDemo
dependability: 80
performance: 500

--
Sorting Web Services according Dependability metadata.
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ
Outbound SOAP message:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@b48392

Waiting for reply...

Received response:
com.sun.xml.messaging.saaj.soap.ver1_1.Message1_1Impl@422d0b

=============================
* Final result: *
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><soap:Body><n:g
etFFEntryResponse xmlns:n="http://tempuri.org/DDBJ"><Result
xsi:type="xsd:string">LOCUS AB000050 1755 bp DNA linear
VRL 05-FEB-1999
DEFINITION Feline panleukopenia virus DNA for capsid protein 2, complete cds.
ACCESSION AB000050
VERSION AB000050.1
KEYWORDS capsid protein 2.

Appendix H - Execution sequence of successful process

 177

SOURCE Feline panleukopenia virus
 ORGANISM Feline parvovirus
 Viruses; ssDNA viruses; Parvoviridae; Parvovirinae; Parvovirus.
REFERENCE 1 (bases 1 to 1755)
 AUTHORS Horiuchi,M.
 TITLE Direct Submission
 JOURNAL Submitted (22-DEC-1996) to the DDBJ/EMBL/GenBank databases.
 Motohiro Horiuchi, Obihiro University of Agriculture and
 Veterinary Medicine, Veterinary Public Health; Inada cho, Obihiro,
 Hokkaido 080, Japan (E-mail:horiuchi@obihiro.ac.jp,
 Tel:0155-49-5392, Fax:0155-49-5402)
REFERENCE 2 (bases 1 to 1755)
 AUTHORS Horiuchi,M.
 TITLE Evolutionary pattern of feline panleukopenia virus differs from
 that of canine parvovirus
 JOURNAL Unpublished (1997)
COMMENT
FEATURES Location/Qualifiers
 source 1..1755
 /isolate="94-1"
 /lab_host="Felis domesticus"
 /mol_type="genomic DNA"
 /organism="Feline panleukopenia virus"
 CDS 1..1755
 /product="capsid protein 2"
 /protein_id="BAA19011.1"

/translation="MSDGAVQPDGGQPAVRNERATGSGNGSGGGGGGGSGGVGIST
GT

FNNQTEFKFLENGWVEITANSSRLVHLNMPESENYKRVVVNNMDKTAVKGN
MALDDTH

VQIVTPWSLVDANAWGVWFNPGDWQLIVNTMSELHLVSFEQEIFNVVLKTV
SESATQP

PTKVYNNDLTASLMVALDSNNTMPFTPAAMRSETLGFYPWKPTIPTPWRYYF
QWDRTL

IPSHTGTSGTPTNVYHGTDPDDVQFYTIENSVPVHLLRTGDEFATGTFFFDCKP
CRLT

HTWQTNRALGLPPFLNSLPQSEGATNFGDIGVQQDKRRGVTQMGNTDYITEA
TIMRPA

EVGYSAPYYSFEASTQGPFKTPIAAGRGGAQTDENQAADGDPRYAFGRQHG
QKTTTTG

ETPERFTYIAHQDTGRYPEGDWIQNINFNLPVTNDNVLLPTDPIGGKTGINYTN
IFNT

Appendix H - Execution sequence of successful process

 178

YGPLTALNNVPPVYPNGQIWDKEFDTDLKPRLHVNAPFVCQNNCPGQLFVK
VAPNLTN

EYDPDASANMSRIVTYSDFWWKGKLVFKAKLRASHTWNPIQQMSINVDNQF
NYVPNNI
 GAMKIVYEKSQLAPRKLY"
BASE COUNT 618 a 271 c 346 g 520 t
ORIGIN
 1 atgagtgatg gagcagttca accagacggt ggtcaacctg ctgtcagaaa tgaaagagct
 61 acaggatctg ggaacgggtc tggaggcggg ggtggtggtg gttctggggg tgtggggatt
 121 tctacgggta ctttcaataa tcagacggaa tttaaatttt tggaaaacgg gtgggtggaa
 181 atcacagcaa actcaagcag acttgtacat ttaaatatgc cagaaagtga aaattataaa
 241 agagtagttg taaataatat ggataaaact gcagttaaag gaaatatggc tttagatgat
 301 actcatgtac aaattgtaac accttggtca ttggttgatg caaatgcttg gggagtttgg
 361 tttaatccag gagattggca actaattgtt aatactatga gtgagttgca tttagttagt
 421 tttgaacaag aaatttttaa tgttgtttta aagactgttt cagaatctgc tactcagcca
 481 ccaactaaag tttataataa tgatttaact gcatcattga tggttgcatt agatagtaat
 541 aatactatgc catttactcc agcagctatg agatctgaga cattgggttt ttatccatgg
 601 aaaccaacca taccaactcc atggagatat tattttcaat gggatagaac attaatacca
 661 tctcatactg gaactagtgg cacaccaaca aatgtatatc atggtacaga tccagatgat
 721 gttcaatttt atactattga aaattctgtg ccagtacact tactaagaac aggtgatgaa
 781 tttgctacag gaacattttt ttttgattgt aaaccatgta gactaacaca tacatggcaa
 841 acaaatagag cattgggctt accaccattt ttaaattctt tgcctcaatc tgaaggagct
 901 actaactttg gtgatatagg agttcaacaa gataaaagac gtggtgtaac tcaaatggga
 961 aatacagact atattactga agctactatt atgagaccag ctgaggttgg ttatagtgca
 1021 ccatactatt cttttgaagc gtctacacaa gggccattta aaacacctat tgcagcagga
 1081 cgggggggag cgcaaacaga tgaaaatcaa gcagcagatg gtgatccaag atatgcattt
 1141 ggtagacaac atggtcaaaa aactactaca acaggagaaa cacctgagag atttacatat
 1201 atagcacatc aagatacagg aagatatcca gaaggagatt ggattcaaaa tattaacttt
 1261 aaccttcctg taacaaatga taatgtattg ctaccaacag atccaattgg aggtaaaaca
 1321 ggaattaact atactaatat atttaatact tatggtcctt taactgcatt aaataatgta
 1381 ccaccagttt atccaaatgg tcaaatttgg gataaagaat ttgatactga cttaaaacca
 1441 agacttcatg taaatgcacc atttgtttgt cagaataatt gtcctggtca attatttgta
 1501 aaagttgcgc ctaatttaac gaatgaatat gatcctgatg catctgctaa tatgtcaaga
 1561 attgtaactt attcagattt ttggtggaaa ggtaaattag tatttaaagc taaactaaga
 1621 gcatctcata cttggaatcc aattcaacaa atgagtatta atgtagataa ccaatttaac
 1681 tatgtaccaa ataatattgg agctatgaaa attgtatatg aaaaatctca actagcacct
 1741 agaaaattat attaa
//
</Result></n:getFFEntryResponse></soap:Body></soap:Envelope>
=============================
=============================
* Final report: *

=============================XML Message
=============================
<?xml version="1.0" encoding="UTF-8"?>
<report>
 <ws service="{http://xml.nig.ac.jp/xddbj/DDBJ}DDBJ" validResult="true">

Appendix H - Execution sequence of successful process

 179

 <responseTime>5264</responseTime>
 <errorMessage>null</errorMessage>
 </ws>
</report>
===
=========

* Response Time (ms) : 7814

BUILD SUCCESSFUL (total time: 9 seconds)

Appendix I – Dependability metadata of VBI

 180

Appendix I – Dependability metadata of VBI

Below are shown the dependability metadata of VBI stored on six Sub-Mediators

deployed on Planetlab:

• Sub-Mediator, Shanghai, China

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt}Bla

stbtService">

 <dependability>85</dependability>

 <aveResponseTime>54607</aveResponseTime>

<maximumResponseTime>87267</maximumResponseTime>

 </ws>

• Sub-Mediator, Beijing, China

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt}Bla

stbtService">

 <dependability>65</dependability>

 <aveResponseTime>59460</aveResponseTime>

<maximumResponseTime>88506</maximumResponseTime>

 </ws>

• Sub-Mediator, Newcastle upon Tyne, UK

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt}Bla

stbtService">

 <dependability>91</dependability>

 <aveResponseTime>28990</aveResponseTime>

<maximumResponseTime>36297</maximumResponseTime>

 </ws>

Appendix I – Dependability metadata of VBI

 181

• Sub-Mediator, Cambridge, UK

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt}Bla

stbtService">

 <dependability>88</dependability>

 <aveResponseTime>26573</aveResponseTime>

<maximumResponseTime>32675</maximumResponseTime>

 </ws>

• Sub-Mediator, Washington, USA

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt}Bla

stbtService">

 <dependability>96</dependability>

 <aveResponseTime>23945</aveResponseTime>

<maximumResponseTime>29267</maximumResponseTime>

 </ws>

• Sub-Mediator, New York, USA

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt}Bla

stbtService">

 <dependability>96</dependability>

 <aveResponseTime>24901</aveResponseTime>

<maximumResponseTime>31297</maximumResponseTime>

 </ws>

