

泯

https://research.ncl.ac.uk/upstream

WaterBox Fact Sheet (1)

- What is the WaterBox? The WaterBox is a low-cost water quality sensing device. It can monitor water quality parameters continuously and transmits data in near real-time.
- What can the WaterBox measure? The basic WaterBox measures three parameters: conductivity, pH and temperature. Additional parameters can be measured by attaching more sensors to it, as detailed in the table at the end of this document.
- Who developed it? It was developed in Taiwan by Location Aware Sensing System (LASS), a social enterprise founded in 2015 that develops sensors for and with citizens.
- Customisation and 'open' principles are at the heart of the WaterBox: The WaterBox is fully customisable. LASS and the WaterBox are founded on 'open' principles, meaning that the device and its software can be used and modified freely, and its design is publicly accessible.

By enabling citizens to collect local and actionable environment data, LASS aims to engage, empower and enable action, ultimately improving water quality.

Figure 1: Images of WaterBoxes recording water quality. Photos taken at Dadongshi Creek (大東勢 溪) in Miaoli (苗栗) and Dongbiankeng Creek (東汴坑 溪) in Taichung (台中).

https://research.ncl.ac.uk/upstream

WaterBox Fact Sheet (2)

科技部

• COST

Ŕκ

The <u>basic unit</u>, which measures pH, temperature and electrical conductivity, currently costs 8,000 NTD/£205. Costs of the additional sensors are given on page 4.

DATA STORAGE AND TRANSMISSION

WaterBox data can be stored on the device's internal MicroSD card and/or transmitted wirelessly to the WaterBox manufacturer's (LASS) server via LoRA (long-range, low-power), NB-IoT (narrow band IoT) or LTE-M (Long-Term Evolution Machine-Type Communication). The potential to use any of the three most widely-used wireless transmission platforms for Internet of Things (IoT) applications allows flexibility and supports long-term use of the WaterBoxes.

The LASS server has default APIs, which means that data can be easily embedded into another organisation's website or readily extracted for analysis.

• POWER

The latest WaterBox has two power options:

- A fixed internal lithium battery that can be recharged continuously by solar panel.
- A replaceable battery without solar panel. The battery case is for two rechargeable 18650 batteries (see photo right). The WaterBox can run for around 9 days without changing the battery.

Figure 2: WaterBox setup with replaceable batteries

• MAINTENANCE

The sensors rely on interference with the sensing electrodes that are attached to the probe. As such, it is recommended that the WaterBox is checked and cleaned weekly where possible to ensure that it is free of debris.

《科技部

https://research.ncl.ac.uk/upstream

WaterBox Fact Sheet (3)

FUTURE DEVELOPMENTS

Ŕκ

Through the UpStream project, we're gathering suggestions about how the WaterBox can be improved and are working with developers to make improvements.

We'll be updating this fact sheet as the project develops – check our website for the latest developments.

Code	13 Pull requests ③ Actions Projects	🖽 Wiki 💿 Security 🗠 Insights		
	P master + P1 branch ⊗0 tags		Go to file Add file - Code	About
	This branch is 4 commits ahead, 14 commits b	ehind kylecat master.	11 Contribute	LASS IS YOURS Readme
	🚯 kylecat Merge pull request #1 from Jyny	/master and	destbarf on Jan 18, 2020 🗿 16 comm	- MIT License
	ArduinoLibrary/libraries	update LASS API	2 years a	^{jo} Releases
	Docs/assets/images	move image to github & fix fail image	2 years a	10 No releases published
	UnitTest	modify ArduinoLibrary	2 years ag	10
	Verification	add data directory	2 years ag	Packages
	firmware/LASSWaterBox_Linkit7697_v	modify LASS API	2 years ag	0 No packages published
	gitattributes	Initial commit	2 years a	10
	🗅 .gitignore	Initial commit	2 years ag	o Languages
	D LICENSE	Initial commit	2 years ag	go C++ 87.6% C 7.1%
	README.md	move image to github & fix fail image	2 years as	30 Jupyter Notebook 4.1%

Figure 4: LASS's WaterBox GitHub project: https://github.com/LinkItONEDevGroup/LASS_WaterBoxV2

Figure 3: The WaterBox kit

MORE INFORMATION

LASS has set up a GitHub page with further details and source code for the WaterBox (see image and link left).

For more information on the WaterBox please contact <u>Amy.Jones@rpsgroup.com</u> (UK) or

lpwang@ntu.edu.tw (TW).

Opportunities to get involved in the UpStream Project

- Attend a workshop or catchment walkover to learn more about the project
- Help install and/or maintain water quality sensors within our pilot sites
- Explore our website, including the 'knowledge exchange hub', to access virtual outputs
- Volunteer to monitor data collected, spot pollution spikes and report to the wider community
- Continue the knowledge exchange process by sharing your own experiences relevant to UpStream

Please email <u>eleanor.starkey1@ncl.ac.uk</u> (UK) <u>lipen.wang@rainplusplus.com</u> (TW) to register your interest.

https://research.ncl.ac.uk/upstream

WaterBox Fact Sheet (4)

Sensors that can be added to the WaterBox										
Parameter	Provider	Data Communication Protocol	Hardware Interface ¹	Sample Code ²	Buy	Indicative cost ³				
рН	Atlas Scientific ⁴ DFRobot	I2C, UART Voltage analogue Voltage analogue	<u>I2C, UART</u> <u>Voltage analogue</u> 2.54mm Dupont Line	I2C and UART Voltage analogue Voltage anaolgue	<u>Link</u> Link	£80+ £51+ £29				
Conductivity	Atlas Scientific ⁴ DFRobot	I2C, UART Voltage analogue	EZOTM conductivity circuit 2.54mm Dupont Line	<u>I2C</u> and <u>UART</u> <u>Voltage analogue</u>	<u>Link</u> Link	£145+ £51				
Oxidation Reduction	Atlas Scientific	I2C, UART Voltage analogue	EZOTM ORP circuit Voltage analogue	I <u>2C</u> and <u>UART</u> Voltage analogue	<u>Link</u>	£87+ £57+				
Temperature	Atlas Scientific ⁴ DFRobot	I2C, UART Voltage analogue	EZOTM RTD circuit 2.54mm Dupont Line	<u>I2C</u> and <u>UART</u> <u>Voltage analogue</u>	<u>Link</u> Link	£52+ £5				
Dissolved Oxygen	Atlas Scientific	I2C, UART Voltage analogue	EZOTM dissolved oxygen circuit Voltage analogue	<u>I2C</u> and <u>UART</u> <u>Voltage analogue</u>	<u>Link</u>	£141+ £104+				
Colour	DFRobot Atlas Scientific	Voltage analogue I2C, UART	2.54mm Dupont Line 2.54mm Dupont Line	Voltage analogue	<u>Link</u> Link	£122 £38				
Pressure	Atlas Scientific DFRobot	I2C Voltage analogue	2.54mm Dupont Line 2.54mm Dupont Line	<u>I2C</u> and <u>UART</u> <u>Voltage analogue</u>	<u>Link</u> <u>Link</u>	£80 £9				
Flow	Atlas Scientific	I2C	EZOTM embedded flow meter totalizer	I2C and UART	<u>Link</u>	£128+				
Level	MaxBotix	PWM	2.54mm Dupont Line	No	<u>Link</u>	£79+				
Turbidity	DFRobot	Voltage analogue/digital	2.54mm Dupont Line	Voltage analogue	<u>Link</u>	£7				
Ammonium	Vernier	Voltage analogue/digital	SparkFun Vernier		<u>Link</u>	£198				
Calcium Nitrate	Vernier	ier Voltage analogue/digital Voltage ier analogue/digital	Interface Shield Or Vernier Arduino®	<u>Using Vernier</u> <u>Analog (BTA)</u> <u>Sensors with</u>	<u>Link</u>	£198				
	Vernier				<u>Link</u>	£198				
Chloride	Vernier	Voltage analogue/digital	Or	<u>Arduino®</u>	<u>Link</u>	£198				
Potassium	Vernier	Voltage analogue/digital	Digital / Andiog duaptor		<u>Link</u>	£198				

¹Plugs, sockets, cables and electrical signals that pass between the unit and the communications network; ²Example code for interacting with the sensor; ³Costs based on exchange rates Jun'21; ⁴Standard sensors included in WaterBox

IS Technology

Ŀ

