GLOBAL SECURE

Sustainable Energy through China-UK Research Engagement (SECURE)

Principal Investigator: Professor AP Roskilly

Project Duration: 12 Months
Funding Body: EPSRC

http://research.ncl.ac.uk/globalsecure/
China-UK Seminar on Sustainable Energy & New Power-Train System Technologies

Beijing Institute of Technology (BIT) in China

23-24 March 2013

Organised by BIT, University of Newcastle Upon Tyne (UNEW) & Chinese Society for Internal Combustion Engine (CSICE)
Theme 6 ‘Thermal energy management in processing industries’

Dr Yaodong Wang

Professor Haisheng Chen

Sir Joseph Swan Centre for Energy Research
Newcastle Institute for Research on Sustainability
Newcastle University

Institute of Engineering Thermodynamics
Chinese Academy of Sciences
1. Introduction

• Background

The project is highly relevant to the priority areas of Energy and Environmental Change issues.

Fossil fuels are the main sources of energy we use today.
• **Background**

Large amount of low grade heat wasted from industries.

Thermal Power Plant efficiency < 40%;

> 60% of energy wasted as low grade heat.
• **Objective:** Investigation of the opportunities to improve thermal energy utilisation within processes of processing industries and ‘over-the-fence’ options to reduce overall energy demand.
• Project partners:

(1) Institute of Engineering Thermophysics of Chinese Academy of Sciences

(working on a soy sauce plant)
• Project partners:

(2) Jishou University, Hunan
(working on spirit plant)
• Project partners:

(3) Guizhou Institute of New Technology, Guizhou University (working on thermal power plant)
• Project partners:

(4) Guangxi University
(working on paper and sugar plant)
2. Principle of Thermal energy management in processing industries

- Process analysis
- Energy consumption evaluation
- Waste heat identification
- Renewable integration
- Waste utilisation
- Process optimisation
3. Case studies

- Beijing: Soy Source Plant
- Hunan Province: Spirit Plant
- Guizhou Province: Coal Power Plant
- Guangxi Province: Paper Plant
- Guangxi Province: Sugar Plant
(1) Beijing: Soy Source Plant
Beijing: Soy Sauce Plant
(2) Hunan Province: Spirit Plant
Hunan Province: Spirit Plant
Hunan Province: Spirit Plant
(3) Guizhou Province: Coal Power Plant
Guizhou Province: Coal Power Plant
Guizhou Province: Coal Power Plant
(4) Guangxi Province: Paper Plant
(5) Guangxi Province : Sugar Plant
Guangxi Province : Sugar Plant
4. Results and outcomes
(1) Soy Sauce Production System Set Up
Changes Required

• **Space heating**
 – New hot water radiator system
 – Reduction of the volume heated (currently 7 m high)
 – Consideration of covering the fermentation vats

• **Vat heating**
 – Replacement of the open steam distribution system by close loop water system

• **Insulation**
 – Production halls
 – Cooker

• **Heat store**
(2) Process flow diagram of the spirit plant

- Open tank
- Fermentation bed
 - Ambient temperature (22°C)
- Air cooling to 22°C
- Manually transferred
- Manually transferred

- Distiller waste
 - Manual transfered

- Raw materials 4000 kg total

- Water 22°C

- Condenser
 - Cooling water in 18°C
 - Cooling water out 55°C

- Steam 127°C

- Distiller tank
 - Reception tank
 - 75 kg approx. (x5)

- 1 hour preparation 1 hour distillation (x 5)

- 1 hour

- 60 days
(4) Paper Plant PFD
Plant Energy Use

KWh per shift (8 hours)

- Cookers (165deg.C)
- Heating white liquor (95deg.C)
- 4-stage wash water (85deg.C)
- Drop flow tower #1 heating (50deg.C)
- Drop flow tower #2 heating (60deg.C)
- Total
- BL Boiler Flue (140deg.C)
- Waste Flash Steam (120deg.C)
Waste heat recovery opportunities

• Flash steam:
 – Condense and use as wash water
 – Difficult to use directly due to batch-to-continuous scheduling

• BLB flue gas:
 – Conversion to electricity (organic Rankine cycle)
 – Difficult to recover for heating
 • If use the flue gas to replace a steam heating duty then less steam is required by the plant, therefore less flue gas available
Outcomes

• A report of a plant energy and process evaluation has been produced. It is found that there are some processes may be improved to increase the thermal efficiency of the plant and reduce emissions.

• It is possible and intended to produce joint-papers
5. Conclusions

• It is found that there are huge potential to reduce thermal energy consumptions with improvement of management

• Optimisation of thermal energy management is necessary

• Further studies with relevant industries required – if funding available
6. Future work - project roadmap report and 5 year engagement plan

- Project roadmap:
 - Further study by simulation and experiment will be carried on
 - Economic evaluation or Life cycle analysis
 - Optimisation and integration
 - Application to different processing industries
5 year engagement plan:

• **Further study by simulation and experiment** will be carried on – work with Institute of Engineering Thermophysics (IET), Jishou University (JU); Guangxi University (GXU), Guizhou Institute of New Technology (GINT), Guizhou University (GZU)

• **Economic evaluation or Life cycle analysis**: work with IET, JU, GXU, GINT and GZU

• **Optimisation and integration**: work with IET, JU, GXU, GINT and GZU

• **Application to different processing industries**: work with IET, JU, GXU, GINT and GZU