“Design & Analysis of an Anaerobic Digester to Feed a Biogas Fuelled Boiler for a Medium Sized Industrial Enterprise”

Matthew Butcher
19/08/10

Supervisors: Dr Yaodong Wang, Professor Tony Roskilly, Dr Barbara Sturm
Contents

• Introduction
• Objectives
• Literature Review
• Audit
• Digester System Design
• NNFCC
• Micro Analysis
• ECLIPSE
• Analysis
• Financial
• Conclusions
• Recommendations
Introduction

• The Brewery
• Reduce emissions, waste and expenditure
• Energy intensive process
 – Heat (Oil)
 – Cooling (Electrical)
 – Electricity
• By products not utilised
• Anaerobic digester
 – Use waste products
 – Biogas to fuel boiler
 – Maybe excess to sell or use elsewhere
• Explore the potential of on-site digester
Objectives

• Understanding and analysis of industrial brewing processes (With colleagues)
• Audit of current heating, cooling and electricity usage (With colleagues)
• Literature review of current anaerobic digester technology
• Design and analysis of an onsite anaerobic digester and storage system suitable for biogas production to fuel a boiler using NNFCC & ECLIPSE software
Literature Review

- Industrial brewing process
- Anaerobic digestion process and variables
- Technology and equipment
- Feedstock
- Anaerobic digestion products
- Biogas properties and uses
Production Process
Audit

• Investigate current usage
 – Heat
 • Heat water in hot liquor tank and heat wort in copper
 • Steam from Fulton 200 kW boiler
 • Required boiler rating
 – Based on firing rate - 198 kW (used for biogas requirement)
 – Based on 1568 L oil/month - 131 kW
 – Audit demand - 91 kW
 • Indicates ~ 70 % efficiency (91/130)
 – Cooling
 • Chill cold liquor tank, conditioning vessels, rooms
 • 23.7 kW installed rating
 • 7.6 kW theoretically required
 • 32 % of capacity theoretically used
 • Thermal losses
 Audit

- **Electricity**
 - Cooling equipment, pumps, motors, etc
 - Meter readings 242 kWh/day
 - 19.8 kW rating required
 - 0.2 % difference in meter and audit
 - 62 % of electricity used for cooling

- **Boiler Conversion**
 - 23 m3 natural gas/hr
 - Biogas lower CV (1.9x lower)
 - 44.1 m3 biogas/hr required
 - 220 m3 biogas/day required
 - 57,304 m3 biogas/yr
• Initial thought of slurry pit, but then separate digester
• Approx 1300 kg grain/day, 130 kg hops/day (1450 kg/day)
• 16 % volatile solids so 243 kg/day
• 220 m3 biogas/day required
• 4.1 m3/m3 digester
• Therefore 54 m3 digester required
• 7 m diameter, 1.5 m height
• 5.7 kg/m3 digester feed rate
• More feed needed – slurry
• 600 kg/day ‘raw’ slurry needed
• Storage needed for weekend
Digester System Design

- Complete system
- 21 kWh/day lost through digester walls
NNFCC

- Biogas Calculator by National Non Food Crops Centre
- Max biogas production
- 5 scenarios explored
 - Actual capacity
 - Required feedstock
 - Extra brew
 - Over capacity (x2)
- CHP design
 - Need 498 m³ biogas

<table>
<thead>
<tr>
<th></th>
<th>Actual Cap</th>
<th>Required</th>
<th>1 Extra Brew</th>
<th>Over Cap 1</th>
<th>Over Cap 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Cow Slurry (t/yr)</td>
<td>0</td>
<td>500</td>
<td>600</td>
<td>1900</td>
<td>4500</td>
</tr>
<tr>
<td>Brewers Waste (t/yr)</td>
<td>377.5</td>
<td>377.5</td>
<td>453</td>
<td>377.5</td>
<td>377.5</td>
</tr>
<tr>
<td>Total Biogas/yr (m³)</td>
<td>45,240</td>
<td>57,884</td>
<td>69,553</td>
<td>93,286</td>
<td>159,034</td>
</tr>
<tr>
<td>Biogas per Brewing Day (m³)</td>
<td>174</td>
<td>222.63</td>
<td>222.93</td>
<td>358.79</td>
<td>611.67</td>
</tr>
<tr>
<td>Biogas/t Feedstock (m³)</td>
<td>120</td>
<td>66</td>
<td>66</td>
<td>41</td>
<td>32.6</td>
</tr>
<tr>
<td>Max Retention Period (days)</td>
<td>88/176</td>
<td>37/75</td>
<td>31/63</td>
<td>14/29</td>
<td>14/27</td>
</tr>
<tr>
<td>Irregular Feed (%)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Min Digester Capacity (m³)</td>
<td>100/200</td>
<td>100/200</td>
<td>100/200</td>
<td>100/200</td>
<td>300/400</td>
</tr>
</tbody>
</table>
Micro Analysis

- Needed elemental analysis for ECLIPSE
- Samples taken, dried and crushed
- Run through analyser twice
- Get C, H, N and O

<table>
<thead>
<tr>
<th>Sample</th>
<th>Test</th>
<th>N (%)</th>
<th>C (%)</th>
<th>H (%)</th>
<th>O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hops</td>
<td>1</td>
<td>5.41</td>
<td>47.25</td>
<td>7.48</td>
<td>39.86</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.54</td>
<td>47.15</td>
<td>7.84</td>
<td>39.47</td>
</tr>
<tr>
<td>AV</td>
<td></td>
<td>5.475</td>
<td>47.20</td>
<td>7.66</td>
<td>39.665</td>
</tr>
<tr>
<td>Malted Barley</td>
<td>1</td>
<td>4.33</td>
<td>46.69</td>
<td>7.71</td>
<td>41.27</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.20</td>
<td>46.15</td>
<td>8.07</td>
<td>42.58</td>
</tr>
<tr>
<td>AV</td>
<td></td>
<td>3.765</td>
<td>46.42</td>
<td>7.89</td>
<td>41.925</td>
</tr>
<tr>
<td>Dairy Cow Slurry</td>
<td>1</td>
<td>2.81</td>
<td>40.23</td>
<td>5.09</td>
<td>51.87</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.45</td>
<td>35.56</td>
<td>4.66</td>
<td>57.33</td>
</tr>
<tr>
<td>AV</td>
<td></td>
<td>2.63</td>
<td>37.895</td>
<td>4.875</td>
<td>54.6</td>
</tr>
</tbody>
</table>
ECLIPSE

- Used for two purposes
 - Explore biogas production (as with NNFCC)
 - Investigate heat transfer for production processes (x2)
- Elemental analysis results entered into compound database
- Three flow diagrams constructed
- Technical data entered
- Mass & energy balances completed
- Results gained
ECLIPSE Results

- 3 scenarios explored for comparison with NNFCC
 - Actual capacity
 - Required feedstock
 - Over production
- Base model heat transfer
- Biogas model heat transfer

Scenario 1 Overall Gas Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>39.93%</td>
</tr>
<tr>
<td>CH₄</td>
<td>56.01%</td>
</tr>
<tr>
<td>N₂</td>
<td>4.05%</td>
</tr>
<tr>
<td>O₂</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

| Volume (m³) | 90.73 |

Scenario 2 Overall Gas Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>45.35%</td>
</tr>
<tr>
<td>CH₄</td>
<td>50.97%</td>
</tr>
<tr>
<td>N₂</td>
<td>3.66%</td>
</tr>
<tr>
<td>O₂</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

| Volume (m³) | 220.48 |

Scenario 3 Overall Gas Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>45.35%</td>
</tr>
<tr>
<td>CH₄</td>
<td>50.98%</td>
</tr>
<tr>
<td>N₂</td>
<td>3.66%</td>
</tr>
<tr>
<td>O₂</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

| Volume (m³) | 411.54 |

<table>
<thead>
<tr>
<th>Heat Exchanger</th>
<th>Heat Transfer (kW)</th>
<th>Audit Requirement (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss H</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Exhaust H</td>
<td>50 (Copper) / 41 (HLT)</td>
<td></td>
</tr>
<tr>
<td>Boiler</td>
<td>205 (Copper) / 213 (HLT)</td>
<td>200</td>
</tr>
<tr>
<td>Copper</td>
<td>175</td>
<td>173</td>
</tr>
<tr>
<td>HLT</td>
<td>196</td>
<td>193</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Exchanger</th>
<th>Heat Transfer (kW)</th>
<th>Audit Requirement (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss H</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Exhaust H</td>
<td>52 (Copper) / 51 (HLT)</td>
<td></td>
</tr>
<tr>
<td>Boiler</td>
<td>201 (Copper) / 200 (HLT)</td>
<td>200</td>
</tr>
<tr>
<td>Copper</td>
<td>174</td>
<td>173</td>
</tr>
<tr>
<td>HLT</td>
<td>193</td>
<td>193</td>
</tr>
</tbody>
</table>
Analysis – Production

- Both methods produce enough biogas
- NNFCC calculator higher estimation for all cases
 - 174 m³ compared to 91 m³
 - 500 T compared to 1820 T of extra slurry
 - 611 m³ compared to 411 m³ (67% of NNFCC)
- NNFCC uses fixed moisture content and ‘standard’ feedstock
- ECLIPSE takes these into account
- NNFCC represents absolute maximum
- ECLIPSE represents likely biogas production
Analysis – Transfer

• Both models satisfy the heat transfer requirements
• Base model
 – 265 kW from combustion
 – 50-60 kW lost as heat (mostly in exhaust)
 – Boiler efficiency 77-80 %
• Biogas model
 – 263 kW from combustion
 – Very similar losses as with base model
 – Overall efficiency around 76 %
• Large losses in exhaust as expected from visits and audit
Financial

- Initial capital cost likely to be £50,000-100,000
- Minimum RHI income of £6,697 per annum
- Saving in oil purchases of around £8,844 per annum
- Based on £100,000 capital cost, 6.5 year payback
- Then 3.5 further years of £6,697 income and lifetime of digester savings of £8,844 per annum
- Represents a good return on the initial investment
- Excess biogas could bring further income
Conclusions

• Audit
 – High use of thermal energy
 – Not used efficiently
 – Results in unnecessary cooling

• Digestion system capable of providing biogas requirements
 – Shown with basic calculations
 – Proven with two pieces of software
 – Both show an over-production

• Heat transfer required can be provided by new system
 – Proven with two ECLIPSE models
 – Minimal impact to boiler efficiency

• Financially viable, even attractive
• Lower fossil fuel use and reduce running costs
Recommendations

• Accurate fuel metering
 – Give more detail on ‘actual’ fuel use

• Detailed digester design and costing
 – Exact equipment required and costs

• Detailed financial outline
 – Look into total capital costs, payback periods, potential income

• Heat recovery from boiler
 – Heat exchanger on exhaust to pre-heat water in HLT
 – Increase overall system efficiency
Thank You For Listening
Any Questions?