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1 Modelling sequence change over time

ow have gene and protein sequences evolved over
H time? Of the many forms that mutations can take,
here we will focus on nucleotide or amino acid replace-
ments only, and not deal with such things as insertions,
deletions, and rearrangements. We will try to model those
replacements, that is to attempt to describe the important
aspects of the underlying process of evolution that might
have generated the sequences that we see.

A few decades ago when gene sequences started to ap-
pear, the scientific community was comfortable with the
idea of Darwinian evolution by random mutation followed
by selection of the fittest, and it was assumed that process
applied to molecular evolution as well. However, when
the genes were examined, there appeared to be more ran-
domness than the sort of selection that had been seen in
morphological evolution. One of the earliest observations
about sequence evolution was that there was a somewhat
linear relationship between evolutionary separation of the
organisms and the amount of sequence difference, the
“molecular clock” of Zuckerkandl and Pauling. It was an
easy extrapolation to imagine, or model, molecular change
as a random process, perhaps something like radioactive
decay. Soon a picture emerged of the large role of neu-
tral evolution and the small role of selection in molecular
evolution.

However, the process is not simple, as we have slow
genes and fast genes, and slow and fast sites within genes.
To explain these different rates we can recognize that dif-
ferent genes are more or less free to change, and different
sites within genes are more or less constrained. At one
extreme we have genes that are recognizably homologous
throughout the entire tree of life, and at the other extreme
we have pseudogenes that are no longer under selection,
that are quickly randomized to unrecognizability. Within
genes, some sites in proteins are absolutely essential and
never change, but third codon positions are free to change
rapidly.

2 Hidden mutations and parsimony

HYLOGENETIC reconstruction using parsimony is excel-
P lent when divergences are small. If the divergences
are very small, it might even be difficult to fit a model
due to lack of variation in the data. However, model-based

methods such as ML (maximum likelihood) and Bayesian
analysis offer advantages when divergences are large.

How might sequences evolve? If we start with a bit of
DNA sequence, duplicate it as in a speciation, and allow
each copy to evolve, various things might happen to the
nucleotides.
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At the end of our evolutionary period we have 2 sequences,
which we can recognize as being homologous, and we can
align them and perhaps try to infer their history. The 2
present-day sequences conceal much of the complexity of
their history.

The approach taken by a parsimony analysis is that the
history and underlying process of evolution is unknow-
able, and so we should not try to look for a common
mechanism. So, for example, if two sequences in an anal-
ysis differ at half of their sites, the parsimony approach
is to base conclusions only on these observed data at face
value. However, it is reasonable to suspect that if half the
sites differ, and mutations happen at random, then more
than likely some sites have been hit more than once, and to
say that the only changes that have occurred are the ones
that we can see would be an underestimate. This other
point of view carries the explicit assumption that there is
a common mechanism — that mutations happen randomly
— and makes inferences based on that, something that par-
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simony is not willing to do. Parsimony is not willing to
say what the mechanism of evolution is, but it is willing to
say that whatever it is, it is not random. Parsimony, disal-
lowing a common mechanism, instead makes the large set
of unstated assumptions that each site evolves under its
own unknown mechanism. Many people have pointed out
that this is not a very parsimonious explanation at all, and
allowing a single common mechanism is really the more
parsimonious explanation.

A prediction of parsimony is that a character that evolves
on a long branch will have the same expectation of change
as on a short branch. A prediction of a common mech-
anism of random change is that a character that evolves
on a long branch will have a greater probability of change
than on a short branch. Which prediction is borne out in
real molecular sequences?

2.1 Long branch attraction in parsimony

This is a well-known problem in phylogenetics, where un-
related long branches can end up being put together in a
parsimony analysis.

long1 long1
short1 long2
long2 short1
short2 short2
True Recovered

Imagine the evolution of one site on the tree shown be-
low. At the root of the tree, the character state is an A.
Over the short branches, to short1 and short2, it remains
an A. However, on the longer branches it has had time to
be hit by mutations. The ancestral state A will be preserved
in short1 and short2, but the character states will differ in
taxa long1 and long2. Four different patterns might arise
in the leaf taxa. Those patterns will be where character
states in long1 and long2 are —

1 both the same as short1 and short2
2 one the same and one different
3 both different and different from each other
4  both different but the same as each other
12 3 4
A A C G
A A A A
A
A G G G
A A A A
1 AAAA  parsimony uninformative
2 AAGA parsimony uninformative
3 CAGA parsimony uninformative
4 GAGA parsimony misinformative

All the possible patterns are either uninformative or mis-
informative. A parsimony analysis will tend to group the
long branches together, and tend to do so more if you add
more data (this explanation after SOWHg6, in Hillis "96).

3 Simple likelihood calculations

N general, the likelihood is (proportional to) the proba-
bility of the data given the model. In phylogenetics, we
can say, loosely, that the tree is part of the model, and so
the likelihood is the probability of the data given the tree
and the model. We call it the likelihood rather than the
probability to emphasize that the model is the variable,
not the data.

The likelihood supplies a natural order of pref-
erences among the possibilities under considera-
tion.

-R.A. Fisher, 1956

Imagine flipping a coin, and getting a “head”. What is
the probability of that datum? The probability depends
on the model, and if you think it is a fair coin, then the
probability of a head is 0.5. However if you think it is a
double-headed coin then the probability will then be 1.0.
The model that you use can have a big effect on the likeli-
hood.

The models that we use in molecular phylogenetics take
into account a few attributes of the underlying process.
These include such “loaded dice” aspects as the equilib-
rium composition of the character states, and the rate of
change between character states, and the among-site rate
variation that reflects negative selection on the sequence.

We need to know the composition implied by the model,
which may or may not be the composition of the data. We
also need to know the relative rates of change between
character states. If we look at an alignment of sequences
such as this,

acgcaa
acataa
atgtca
gegtta

O Qwr=

we can see that for this particular dataset transitions (a < g
and ¢ < t) appear to occur more often than transversions
(a or g <> c or t). We can have our model accommodate
that. Even better, we can have our particular data tell the
model how much transition-transversion bias to use.

In complex data the relative rates of change between nu-
cleotide pairs might all be different, and these parameters
can be estimated by ML.

The models that we use in molecular phylogenetics al-
low us to calculate the probability of the data. The simplest
model for DNA sequence evolution, is the one formulated
by Jukes and Cantor in 1969, and is known as the Jukes-
Cantor or JC model. It is not a biologically realistic model,
but it is a good place to start. In it, the model composition
is equal base frequencies, and the rates of change between
all bases are the same. We keep it simple and so have no
among-site rate variation — all sites are assumed to be able
to vary equally.

We can use this model to calculate probabilities of DNA
sequence data even without a tree, and without any evo-
lutionary changes. For example, lets do a first likelihood
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calculation. The datum is “a”. That’s all — one sequence
with one nucleotide, and no tree. So we don’t even need
to know about the rates of change between bases in our
model, all we need is the composition part of the model.
Its an easy calculation — the likelihood of our a using the
JC model is 0.25.

The likelihood depends on the model that we use, and if
we had used another model with a different composition,
then we would have a different likelihood. If the model
had a composition of 100% a, then the likelihood would
have been 1. If the composition of the model was 100% c,
a model that does not fit our data well at all, the likelihood
would be zero.

We can do a second likelihood calculation, this time
where the data are ac — 1 sequence, 2 bases long. We as-
sume that the 2 events (bases) are independent, and so to
calculate the probability we multiply. Using the JC model,
that would be 1/4 x 1/4 = 1/16. That is the likelihood of
ac under the JC model. Likelihoods under other models
will differ.

Now we will try to calculate the likelihood of a one-
branch tree. The data will be 2 sequences, each 1 base
long,

one
two ¢

For this calculation we need the part of the model that
describes the rate of change between bases, as we need to
know how to calculate the probability of base a changing
to c. With the models that we use, the probability depends
on the branch length, v. The branch length is measured
in mutations (“hits”) per site, averaged over the data. We
can describe this part of the JC model with 2 equations
as shown below, one for the probability of a base staying
the same at a given branch length, and the other for the
probability of a base changing to some other base at a given
branch length. For our data we will need the latter, as we
are looking at base a changing to c.

1 _
Psame (V) = — + 33V
4 4
1 1 _4
Pdifferent(V) = Z - Ze i

These curves show that at a branch length of zero, the
probability of a base staying the same is 1, and the prob-
ability of changing to another base is zero, which seems
reasonable. As branch lengths get longer, the probability
of staying the same drops, and the probability of changing
to something else rises, which again seems reasonable. As
the branch length gets very long, the probability of both
of these approaches 0.25, so at very long branches there is
equal probability of any base changing to any other base,
or staying the same; this will randomize any sequence that
evolves under this model over very long branches. The
random sequence will have the model composition, in this
case all equal.
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JC model

probability
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branch length, v

We need a branch length, so lets say that our branch
length v = 1, and s0 Pggferent (1) = 0.184. In that case, with
our one branch tree above, the probability of the base a by
itself is 0.25, and the probability of the change to c is 0.184,
and so the probability of the whole tree is 0.046. Had we
started with c the result would have been the same, as we
used a reversible model.

We can try to calculate the likelihood of another one-
branch tree, this time with more data. The data alignment
that we will use will be

one
two

ccat

ccgt

and again we will use a branch length of 1. For this calcu-
lation we need the probability of a base staying the same at
a branch length of 1, and that is Psame(1) = 0.448. We can
start with sequence one, and using the composition (often
notated as 71, eg 71¢), the Psame, and the Pyjferent, We can
calculate the probability of the tree, as

= 7t¢ Peso 11¢ Peosye 7, Pa—»g i Py
= 0.25 X 0.448 X 0.25 X 0.448
X 0.25 X 0.184 X 0.25 X 0.448
= 0.0000645
Now we have a likelihood of our tree at a branch length
of 1 hit/site. Our data matrix has 3 out of 4 sites that are
constant, and only 1 out of 4 change, so a branch length of

1 seems long. We can calculate the likelihood of the tree at
various branch lengths and plot them.

branch length  likelihood
0.0  0.0000000
0.2  0.0001281
0.4  0.0001326
0.6  0.0001088
0.8 0.0000840
1.0  0.0000645
0.000150 —
0.000125
o
o 0.000100 —
o]
% 0.000075 |
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=
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branch length, v
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We can use numerical approximation to find the ML
branch length, which is at 0.304099 hits/site, at which the
likelihood is 0.000137. There was only 1 of the 4 posi-
tions that had an observable change, which would make
the branch length o0.25 if there were no hidden changes.
This model is telling us that the maximum likelihood is a
little more than o.25, implying that it assumes that there
are hidden changes.

We can check that PAUP gets it right.

#NEXUS

begin data;
dimensions ntax=2 nchar=4;
format datatype=dna;
matrix
A ccat
B ccgt;

end;

begin paup;
set criterion=distance;
lset mnst=1
basefreq = equal;
dset distance=ml;
showdist; [got 0.30410]
end;

We can find ML branch lengths described above, and
we can optimize other model parameters as well. In this
example, the ML estimate for « is 2.11, at which the log
likelihood is -14376.37
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In molecular phylogenetics in practise, the data are an
alignment of sequences. On every tree, we optimize model
parameters and branch lengths to get the maximum likeli-
hood. We are probably most interested in the ML topology,
but we need to deal with these extra “nuisance parame-
ters”. Each site has a likelihood, and the total likelihood is
the product of the site likelihoods. That is usually a very
small number! —too small for computers, and so we use
the sum of the log of the site likelihoods. The maximum
likelihood tree is the tree topology that gives the highest
(optimized) likelihood under the given model.

Here is an incomplete list of phylogenetics programs
that use ML -

e PAUP*

- $%, not open source, fast, well tested and de-
bugged, DNA only

e Phylip, especially proml

puzzle, aka Tree-Puzzle. Uses quartet puzzling.
Phyml, very fast, has a web server

RAXML, very fast

TreeFinder, very fast, not open source

PAML

P4

Leaphy

IQPNNI

HyPhy

References
e Swofford, Olsen, Waddell, and Hillis, 1996. in Hillis et
al, Molecular Systematics.

o Felsenstein 2004. Inferring Phylogenies

4 An ML search

s described above, we can optimize branch lengths and
A model parameters on a given tree to find the ML for
that tree. Ideally, to find the ML tree, we would repeat that
with all trees, optimizing parameters and branch lengths
on each, and looking for the tree that gives the highest
value.

However, that is too computationally demanding. Not
only is a thorough search of tree space generally impossi-
ble, but it is far too expensive to optimize model parame-
ters on each tree. Although optimizing branch lengths is
fast, optimizing model parameters is slow. This means that
practically, we search tree space with fixed model parame-
ters.

A workable strategy is to start with a good tree and
optimize parameters on it, and then fix those parameters
before searching tree space. Searching tree space would
generally be an heuristic search, and have branch length
optimization. At the end of the tree search, having found
a better tree, parameters are re-optimized on that current
best tree and the tree search is repeated. Alternating be-
tween optimizing model parameters on the current best
tree and searching tree space with fixed model parameters
is continued until no further improvement is seen; this will
be evident when the last search does not find a better tree
than the second-last search.

This strategy is built-in to phyml, but to do the same in
paup requires explicit instructions. This has been called
successive approximation in paup. Often the model for a
search in paup will be as suggested by Modeltest (see be-
low), and done with fixed parameters as given by Model-
test. If the paup search finds a better tree than the NJ tree
used by Modeltest, then it is possible that the paup search
is not complete.

5 Simple models of evolution

Model is an attempt to describe the important aspects

of the underlying process that might have generated

the data; a model is a mental picture of the way that you
think that things might work. For likelihood, we need



models that allow you to calculate the probability of data.
That would include models like JC, F81, GTR, and so on,
but it would not include LogDet distances. There is a way
to calculate a likelihood for parsimony, although this rarely
done, and so our list might rarely include parsimony.

We model sequence change as a continuous time Markov
process. For the sort of models that are used in the
common phylogenetic programs, models are described in
terms of the rate matrix, the composition, and the ASRV
(among-site rate variation).

For example, in PAUP, we might describe a model for
DNA as

lset nst=2 tratio=3.4 basefreq=empirical rates=equal;

which says to use a 2-parameter rate matrix, take the com-
position of the model from the data, and assume that all
sites evolve at the same rate.

Rates of change between bases can be described with a
rate matrix. PAUP and MrBayes use nst, the number of
substitution types, to describe the type of rate matrix for
DNA. The number of parameters is nst minus 1. JC and
F81 models are nst=1, with no free rate matrix parameters;
it is assumed in JC and F81 that the rate of change among
bases is equal.

Assuming equal rates of change between bases is not
biologically realistic, and a better approach is to allow dif-
ferent rates in transitions and transversions. K2P and HKY
models are nst=2, with a kappa or tRatio. For example,
in PAUP you might say 1set nst=2 tratio=5.7;, which
describes a 2-parameter rate matrix. You may come across
the F84 model; it is similar to the HKY85 model, and both
allow different base compositions with a 2-parameter rate
matrix.

The “general time-reversible” or GTR rate matrix al-
lows different rates of change between all bases. How-
ever, it is symmetrical, and that makes it time-reversible. In
PAUP and MrBayes, the GTR is nst=6, with 5 parameters.
In PAUP you might say 1set nst=6 rmatrix=estimate;,
which tells the program to estimate the parameters of the
rate matrix. The GTR matrix, being symmetrical, can be
described with 6 numbers, (2 to f below), but if you know
5 of those 6 then the 6th can be calculated, and so there are
really only 5 free parameters.

- a b ¢
a — d e
R=1y a4 - 7
c e f -

Using this notation, we can imagine restrictions of the
GTR matrix that use fewer parameters. For example if a =
¢ =d = f and b = ¢, we really only have 2 parameters, and
only one free parameter, and it would describe the nst=2
2-parameter models such as K2P. There are many possible
restrictions of the GTR matrix, some of which have names,
and are tested in MoODELTEST. Only some programs, such
as PAUPD, are able to use these restrictions.

Composition, the second aspect of how models are de-
scribed, can be described in several ways. The sim-
plest way is to say that the base frequencies are all
equal, 25% each for DNA. In PAUP you can say lset
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Table 1: Simple DNA models.

nst=1 nst=2
equal composition JC K2P
unequal composition ~ F81  HKY/F84

basefreg=equal, which would be for the JC or K2P mod-
els. Another way to describe the composition, not often
used, is to specify it completely as a series of frequencies.
In PAUP you can say for example 1set basefreq=(.1 .2
.3). The best way, but also the slowest, would be to use
ML values of the base frequencies, and in PAUP you can
specify this by saying lset basefreq=estimate. Using
empirical composition is fast, and is usually a good ap-
proximation of the ML composition. You can specify it in
PAUP with 1set basefreq=empirical. You would most
often use empirical composition in your analysis, or ML if
you have the computational time.

The simplest DNA models that we have mentioned so
far with nst=1 and nst=2 can have equal composition, or
have unequal (usually free) composition. Their names are
tabulated below. For DNA, if the composition is free then
there are only 3 free parameters; this is because if you
know 3 of the 4 composition frequencies then the 4th can
be calculated.

Among-site rate variation, or ASRYV, is the third aspect
of how models are described. ASRV can be described in
terms the of pInvar, gamma-distributed ASRV, or both.
Using pInvar, the proportion of invariant sites, notated as
eg GTR+], allows a proportion of the constant sites in the
alignment to be invariant. In PAUP it is set by, for example
lset pinvar=estimate;. Note that a site may be constant,
but not invariant, because it is potentially variable but has
not yet varied, and that the ML estimated pInvar will of-
ten be less than the proportion of constant sites. Discrete
gamma-distributed ASRV is notated as G, or I, eg HKY+G
or GTR+I+G. This allows the rates of different sites to be
modelled as a range of rates, and is described using only
one parameter, &, the shape parameter in PAUP, as 1set
rates=gamma shape=estimate;.

Rate variation among data partitions is accommodated
by some programs. This is sometimes called site-specific
ASRYV, but it might better be called among partition rate
variation. This would be useful for looking at separate
codon positions, or when using concatenated genes when
the genes are different enough to model them separately.
Each data partition can have a relative rate, eg third codon
positions are fast, second codon positions are slow. The av-
erage relative rate, over all partitions, is generally by defi-
nition unity. PAUP has what it calls a site-specific model,
but in PAUP other parameters (RMatrix etc) are homoge-
neous across all data partitions. The only thing that varies
is the partition rate. Other programs, (MrBayes and p4) are
more flexible with heterogeneous data, and allow different
datatypes, rMatrices, composition, and ASRV in different
partitions.

The most common models for amino acid data are em-
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Table 2: Number of free parameters for various model

components

rate matrix

JC, F81 none
K2P, HKY, F84 1
GTR 5
Restrictions of GTR 2-5
protein ignore
composition
equal none
ML or empirical DNA 3
Protein 19
ASRV
plnvar 1

GDASRV

pirical protein models. As there are 20 amino acids, these
use a 20 X 20 rate matrix. There are usually too few data
with which to reliably estimate the 189 rate matrix param-
eters needed for an ML rate matrix (and it would be too
slow!), so a reasonable compromise is to make an ML rate
matrix from a large data set once, and apply it to your data.
Such rate matrices include Dayhoff78, JTT, WAG, MTREV,
and several others. These models have an inherent compo-
sition from the large data set from which they were made,
and some programs (notably MrBayes) can only use that
composition. Often it is better to use empirical composi-
tion, based on your data, if that is allowed by the program
that you are using.

6 Gamma distributed among-site rate variation

UsT as there are fast genes and slow genes, there are fast
sites and slow sites within genes. Sites differ in how
much they are free to vary. A site may be under strong
selection and highly constrained; other sites, such as third
codon positions, might be relatively unconstrained.

If we could reliably separate the fast sites from the slow
sites and analyze the two sets separately, ideally we would
get the same tree topology, but the branch lengths would
be proportionally bigger in the fast sites. An example
might be to separate the first and second codon sites of
a protein-coding gene and analyze them separately from
the third codon position.

B E
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Tree made using Tree made using
slow sites only fast sites only

We could then analyze both sets of sites together in a
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Figure 1: Gamma curves at various a values

single analysis using a site-specific ASRV strategy. This
strategy is often used with separate codon positions, and
with different genes in an analysis with a few genes. It
generally forces the branch lengths in the partitions to be
proportional. The slow sites partition would have a slow
partition rate, and the fast partition would have a fast par-
tition rate. These partition rates can be found from the data
by ML. These partition rates can be thought of as branch
length multipliers, where the average of the multipliers is
1. Using this strategy gives a much better fit of the model
to the data; not using this strategy forces all sites to be an-
alyze with a one-size-fits-all branch length that is a com-
promise between the slow and fast rates, and fits neither
one well.

The problem with this is that there is usually too much
uncertainty in the separation of the sites into slow and fast
categories. One very clever strategy that can be used here
is to apply a mixture model. In this sort of model we do not
separate the data into partitions, but instead we analyze
every site as if it was in each rate category, and average the
results.

If we look at the relative rates of sites in different genes
we can notice that for some genes there is extreme ASRV,
with many very slow sites, and a few sites that are very
fast. In other genes there is a smaller range, where all
the sites are more or less close to the average rate. To ac-
commodate this variation in ASRYV, it has been proposed
that we model ASRV based on a gamma distribution. The
gamma (or I') distribution is usually described with 2 num-
bers, a and S, that define the shape and mean of the distri-
bution, but for our purposes we always want the mean to
be 1, and so we only need the shape parameter «. That
mean of 1 is the average branch length multiplier, and
the fast and slow sites are relative to it. The shape of the
gamma curve changes widely depending on «. For small
values of « the curve is “L”-shaped, and for larger values
it is a hill centred on 1. There is nothing compellingly bi-
ological about describing ASRV this way, but it does allow
a wide range of rate-shapes with only a single parameter.
That parameter is usually a free parameter in our mod-
els, and so it does not need to be provided, as it can be
estimated from the data by ML.

It is possible to do the analysis by integrating over the
site rates of the continuous gamma density, but it is just as
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Figure 2: Discrete gamma divisions for # = 1

ttctaacgggacagtgegeccactcacgecacctggtcactgtatgegagt
tgcgaaggtgctattgegageattcacgecagatggtaactgtatgtgaga
tgcgaaggtgttattgeccacattcgegeggaaggtaacactatgtgaga
tcccatagegacatggegecatactgactcctatggatactgtatgegagt
tgcgaaggcgacattgegecacattcacgecatatggttactgtacgtgagt
tgcgaaggeggeattgegtccattcaccecgeatggagactttatgtgaga
tgcgaagtcgacattacgetcttttacgecacagggtcactttatgggaca
* *
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Figure 3: Example data for GDASRYV calculation

good and much faster to use a discrete approximation to
the continuous curve. These strategies were developed by
Ziheng Yang in the mid-1990’s. The idea is that we can ap-
proximate the continuous curve by dividing up the curve
into a number of discrete categories, and then we only
need to average over those categories rather than integrat-
ing over the continuous curve. Four categories is usually
considered to be sufficient.

Paup will tell you the borders and the means of the cate-
gories with the gammaplot command. For example, for the
gamma curve where & = 1, the output from gammaplot is

category lower upper rate (mean)
1 0.00000000 0.28768207 0.13695378
2 0.28768207  0.69314718 0.47675186
3 0.69314718  1.38629436 1.00000000
4 1.38629436 infinity 2.38629436

which we can plot as in Figure 2. The mean of the mean
rates is 1.0. We can show how the calculation works using
an example, which we can analyze using a JC+G model.

In the data in Figure 3, the last line shows the number
of different character states in the alignment column. This
should imperfectly reflect the site rate. If we analyze these
data on a particular tree with a JC model, the log likelihood
is -307.57; under the JC+G model, with a shape of & = 1, it
is -305.70, a slight improvement.

We will look at site 1 (all t) as an example of a slow
site, and site 11 (all 4 nt) as an example a fast site. With
no gamma model, these site likelihoods are 0.0848452 and
0.0000111865, respectively, and with the gamma model
they are 0.117246 and 0.0000150721.
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site rate category  site rate likelihood
1 1 0.137 0.215112
2 0.477 0.148608
3 1.000 0.084845
4 2.386 0.020420
mean 0.117246
11 1 0.137 0.0000000628
2 0.477 0.0000019392
3 1.000 0.0000111865
4 2.386 0.0000471000
mean  0.0000150721

Here we average over the states of our uncertainty, and es-
timate a site rate that gives a better fit of the model to the
data. The slow category contributes most to the slow site,
and the fast category contributes most to the fast site. This
strategy comes at a cost of 4 times the likelihood calcula-
tions, and 4 times the memory requirement.

7 Choosing a model

AST century, it was common to assume a model without
L justification. However, we should choose a model that
fits our data, and be able to justify that choice.

Models differ in their free, ie adjustable, parameters.
More parameters are often necessary to better approximate
the complex reality of evolution. Usually, the more free pa-
rameters in the model, the better the fit (as measured with
a higher likelihood) of the model to the data; this would
be a good thing. However, the more free parameters, the
higher the variance, and the less power we have to dis-
criminate among competing hypotheses; this would be a
bad thing. Also, some parameters might not be important,
or might only model meaningless noise in the data; gener-
ally we do not want that: we do not want to “over-fit” the
model to the data.

By analogy, we can ask What is the best way to fit a line
(a model) through these points?

A linear fit would capture some of the trend. A quadratic
fit would be better. It would be possible for a higher-order
fit to go through every point — but then you would only be
fitting noise, ie “over-fitting” the data, not capturing extra
important trends in the data.

We take a similar approach to choosing a model in phy-
logenetics. We want to choose a model that describes im-
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portant trends in the data, but without describing noise.
While it is easy and intuitive to see over-fitting in a plot
such as that above, it is less easy in the phylogenetic con-
text. The way we choose among available models in phy-
logenetics is to start with a reasonably good tree, such as
the NJ or MP tree, and then evaluate the likelihood (ML
for that tree) for all the models that you want to test. Since
the same tree is used over and over, there is no tree search
involved, so it is relatively fast. Then we choose as the best
model the model that has enough parameters, but not too
many. This may be the ML model, or it might not be.

We want to choose a model that gives the highest like-
lihood, but penalized by the number of free parameters.
This is formalized in the AIC, the Akaike Information Cri-
terion, —2log L + 21, where n is the number of free param-
eters in the model. We make a table of AIC values and the
best choice of model is the one with the lowest AIC value.
Informally, the AIC says that adding a useless parameter
generally increases the log likelihood by about 1 unit, and
so if adding a parameter increases the log likelihood by
more than 1, it is not useless.

A table of AIC values might be like this —

InL n —2InL+2n
JC -5211.7 O 10423.4
F81 -5166.6 3 10339.2
HKY85  -5125.0 4 10258.0
GTR -5092.5 8 10201.0
GTR+I -4946.1 9 9910.2
GTR+G  -4937.8 9 9893.6
GTR+IG  -4937.2 10 9894.4

In ranking the models by the AIC, we penalize each like-
lihood by the number of free parameters. In the exam-
ple above, the GTR+G is the best model, even though the
GTR+IG had a higher likelihood.

It is important to know the number of free parameters

in models. Here are some examples —

rate matrix ~ composition ASRV total

Model parameters parameters parameters ~ parameters
JC69 o o [ o

F81 o 3 o 3
HKY+G 1 3 1 5
TNo3 2 3 o 5
GTR+IG 5 3 2 10
JTT+F [ 19 o 19
WAGHIG o o 2 2

Choosing a model in phylogenetics is done often, and so
attempts have been made to automate that choice. One of
the most common is Modeltest (D. Posada and K. A. Cran-
dall 1998. “MODELTEST: testing the model of DNA substi-
tution” Bioinformatics 14: 817-818.) It uses PAUP to do the
likelihood calculations, and uses both the AIC and the like-
lihood ratio test to evaluate those likelihoods. However,
it only tests the models that it tests, and it does not test
clock models or “site-specific” models included in PAUP,
nor does it test models that are not in PAUP. Other pro-
grams to automate model choice include ProtTest, Model-
generator, and MrModelTest.

Besides the suggested model, an interesting output of
Modeltest is the table if Akaike weights, which can give
some idea of the ambiguity surrounding model choice.

7.1 Does the model fit?

x x x
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Imagine that we have some complex data, but all we have
available are two models - linear and quadratic. We can
choose the quadratic model as the better of the two avail-
able, but even though it is the best of the two it does not
fit well. What is really needed is a better model. In the
case of this scatterplot it is easy to see the inadequacy, but
it would be less obvious with phylogenetic data. When
you choose a model, you often “max out” and choose the
most complex model available — often the GTR+IG model.
That should make you suspect that you might have chosen
a better model had one been available.

We should apply statistical methods such as posterior pre-
dictive simulation to assess the fit of the model to the data.
However, the question of whether the data fits is rarely
even asked, let alone answered.

8 A survey of some other models

HE simple DNA models described above are standard
T and widely used, but there are many other models
and variations. A few are described below.

Identifying selection using codon models. Codon
models can be used to model the evolution of DNA se-
quences of codons of protein coding genes. This does not
use a 64 X 64 rate matrix — simplifications are used and
far fewer parameters are estimated. Using these mod-
els we can have two kinds of change — synonymous
changes where the amino acid would not change, and non-
synonymous where the amino acid does change.

Expressing these as rates, we have dg as the number of
synonymous substitutions per synonymous site, and dy
as the number of non-synonymous substitutions per non-
synonymous site. The ratio w = dy/dg measures selection
at the protein level. For neutral evolution we would expect
w = 1. However, mostly we find w < 1, indicating pu-
rifying (negative) selection. Occasionally we see w > 1,
showing diversifying (positive) selection. PAML imple-
ments these models.

Other mixture models. Gamma ASRV described above
is one kind of mixture model, made to accommodate het-
erogeneity of rates among sites. We can have other mix-
ture models, to accommodate heterogeneity of composi-
tion among sites, and heterogeneity of the rate matrix
among sites. As usual you do not divide the data — rather,
for each site, you average over the possible states. Such
models are implemented in PhyloBayes and BayesPhylo-
genies.



Covarion model We can con consider the covarion
model to be a generalization of the pInvar model. The
covarion allows a site can change from invariable to vari-
able and back over time. This appears to be biochemically
realistic as it may describe the way that paralogs evolve. It
is a mixture model — a site at a given position in the tree
can be either on or off, but since we cannot know which,
we evaluate assuming both. It has only two extra param-
eters: the rates rog ,on, and ron_of. It is implemented in
MrBayes.

Tree-heterogeneous models Most models are homoge-
neous over the tree. However, we know that the process
of evolution can and does differ over the tree. This is easy
to see when homologous genes differ in composition. To
describe this evolution we can allow the characteristics of
the model, for example the model composition, to change
over the tree. Such models are implemented in PAML, p4,
PhyloBayes (with the CAT-BP model) and phase.

Recoding data Some parts of sequences become satu-
rated faster than others. Saturated sequences are noisy,
often biased, and difficult to model. One approach to less-
ening the effects of saturation is to recode the data. An
old method is to use RY-recoding, where A and G are re-
coded as R, and C and T are recoded as Y The recoded data
would use a 2-state model, describing transversions only.
A newer approach is to use grouped amino acids, where
for example the amino acids are recoded into the six Day-
hoff groups (C, STPAG, NDEQ, HRK, MILV, FYW) where
the amino acids tend to exchange faster within the groups
than between the groups. This allows a GTR-like 6 x 6 rate
matrix with free parameters. This is implemented in p4
and PhyloBayes.

Modelling RNA stems In structural RNA stems we have
3 kinds of stable pairs — A:U, G:C, and G:U. We also see
mismatches (A:G etc). It seems reasonable to model these
pairs as a unit, and use a 16 X 16 rate matrix for all possible
combinations. These models are implemented in phase.

Clock models and molecular dating There is obviously
some truth in the clock-like behaviour of evolutionary
change, and it is common to attempt to date divergences
with molecular data, calibrated with fossil dates. The strict
molecular clock model, where the tips of the tree are con-
strained to line up at the present, rarely applies; relaxed
clock models seem to work better. Such models are imple-
mented in BEAST, and PAML.

8.1 Using multi-partition data models

What programs can do multi-partition models?

ML
PAUP yes, but limited
Phyml no
RAXML yes
P4 yes, but no search
Bayesian
MrBayes yes
P4 yes

ML AND BAYESIAN PHYLOGENETICS

9 Simulating evolution

model is your idea of the way that you think that

things work. Armed with this it is possible to simu-
late sequences and evolve those on a tree to simulate evo-
lution. This can be useful to test the methods and models.
When you simulate data you simulate on a given model
and on a given tree, and since you know these you can use
the simulated data to test methods. You can also use simu-
lations to test models; if you simulate data on a model that
you are using for your real data and the simulated data are
not similar to the original data, you can conclude that the
model does not fit.

Simulation can help us to visualize evolutionary ideas.
For example we can look a the problem of sequence satu-
ration. Saturation is loss of phylogenetic signal due to su-
perimposed mutations. When sequences become saturated
phylogenetic signal has been randomized and trees that
are made from those data are not reliable. One way to visu-
alize saturation is to plot p-distances vs model-based sim-
ulation or inferred distances between all sequence pairs.
P-distances are the simple face-value differences between
sequences, calculated by the number sequence differences
divided by the sequence length. With the JC model, the
maximum p-distances will be 0.75, which we will see if
we compare two random sequences with equal base fre-
quencies. It is 0.75 and not 1.0 because even in random
sequences 1/4 of the bases will happen to be the same in
both sequences compared.

If we make random sequences and evolve those se-
quences based on the JC model for ever increasing dis-
tances, the p-distances between the original and the
evolved sequences increase at first, but eventually level off
when the sequences become saturated, and the p-distances
can no longer increase. With the JC model saturation hap-
pens when the sequences have been mutated by about 2.5
or 3 hits per site.

If we evolve the sequences under a JC+G model, that is
with among-site rate variation, the onset of saturation is
delayed. Here the mutations are being concentrated in the
fast sites, and they would become well saturated early on,
but the slow sites are relatively untouched.

You can visualize saturation in real data in the same way,
by plotting pairwise p-distances vs model-based distances
(such as the sum of the branch lengths on the tree path
between the taxon pairs in a ML tree). If the plot shows
the tell-tale plateau then you have saturation.
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10 Simulation and the likelihood ratio test

PREVIOUSLY we have used the AIC to compare models.
Another way to compare models is to use the likeli-
hood ratio test. It will be demonstrated using simulations.

If we have some data, a tree, and a model, it will have
a certain likelihood. If we use the same data and tree, but
measure the likelihood under a more complex model, we
will find that we get a higher likelihood. The question
is whether that increase is significant, which will tell us
whether the more complex model is the better model.

An increase in likelihood under the more complex model
will be expected regardless of whether the extra param-
eters are important; we will expect a small increase due
to noise alone, and a larger increase if the more complex
model really is better. So how much of an increase is big
enough? To answer that, we need to know how much we
would expect the likelihood to increase due to noise alone.
Then, if our increase is more than that, it is significant.

Lets use an example — we have some data and a tree,
and under the HKY model we get a log likelihood of -
1328.04985. Using the same data and tree, we optimize pa-
rameters under the GTR model and find a log likelihood of
-1325.67926. That difference, 2.37059, is the likelihood ratio,
and we ask whether it is significant. To assess its signifi-
cance, we simulate data the same size as our original data,
using our tree and the HKY model. Using the newly simu-
lated data, and our same tree, we optimize parameters and
branch lengths using both the HKY and the GTR models.
For example, on one simulated data set, we get an increase
of 2.67, and we know that is due only to noise. To deter-
mine if that is typical, we can simulate and analyze 1000
data sets, and plot the log of the likelihood ratio (A)
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It looks like the increase that we got with the original data
(2.37, shown with |}) was about the same as we generally
got with the simulated data. So in our case, with the orig-
inal data, the GTR was not a significant improvement.

We need not do simulations, because twice the log like-
lihood ratios are x? distributed, and so we can use the x*
curve with the degrees of freedom given by the difference
in the number of free parameters to assess significance.
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In our example above, the GTR model has 5 free parame-
ters and the HKY model has 1 free parameter, and so twice
the log likelihood ratio is expected to be Xﬁ of=4 distributed,
as shown here
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Using twice the log likelihood ratio from above (2 x 2.37 =
4.74), we can assess its significance using x7, ya where
P = 0.31, which is not significant at the P = o0.05 level.

The likelihood ratio test only works well for nested mod-
els; nested models are models where one model is a special
case of another, e¢g HKY is a special case of GTR. Some-
times the LRT does not work well even for nested models,
eg comparing models with and without GDASRV.

11 Bayesian phylogenetic analysis

HYLOGENETIC analysis using a Bayesian approach has
P become very widely used in the few years since its in-
troduction. It has a acceptable speed, and can handle big
datasets with parameter-rich models. Here we will look at
differences between ML and Bayesian approaches in gen-
eral, and in the next section we will look at Bayesian phy-
logenetic methods in practise.

One of the main ways that the Bayesian approach dif-
fers from ML is that the Bayesian approach deals with un-
certainty in a more explicit way. For example, nuisance
parameters such as branch lengths and model parameters
will each have some uncertainty associated with them. The
ML approach is to find the ML values for all of those nui-
sance parameters, but the Bayesian approach is to retain
that uncertainty in the result. This means that the result
of a Bayesian analysis is usually not a single point, but
rather is a probability density or distribution. Being a dis-
tribution might mean that it is awkward to summarize the
result to pick out the message that you want to get from
it, but even so it can be considered an advantage over ML.



While in ML a picture of the uncertainty involved is often
done after the analysis, often laboriously, as in for example
the bootstrap, in a Bayesian analysis the uncertainty is part
of the initial result.

Another difference is that Bayesian analysis explicitly re-
lies on prior probabilities. The prior probability might be
known with confidence, but for many problems we have
only a vague idea of what the prior probabilities are, and
since a Bayesian analysis forces us to be explicit about them
we may have to make something up. Requiring a prior
probability can be considered both a strength and a weak-
ness, and is certainly controversial.

Of course the implementation details differ between
Bayesian and ML analysis. ML uses hill-climbing algo-
rithms to get the result to any required precision, while
Bayesian analyses generally require an approximating al-
gorithm such as the MCMC. From a computational point
of view, the Bayesian MCMC can handle more parameters
than ML, which means that you can solve bigger problems
with more realistic models.

While ML expresses itself in terms of the probability of
the data given the model, the Bayesian approach expresses
the result as the probability of the model given the data.
The probability of the model, or hypothesis, is more likely
what the investigator wants, and this directness is one of
the main attractions of Bayesian analysis.

11.1 Rare diseases and imperfect tests

Lets say that we are testing for a disease — Really Awful
Stinkfoot, or RAS, and we know that 1% of the population
suffer from it. We have a test for RAS that is fairly accurate
— if you suffer from RAS then the test will tell you so 90%
of the time. The test sometimes gives false positives — if
you do not suffer from the disease, the test will tell you
that you do suffer from it 10% of the time. Lets say that
one of your patients tests positive for RAS. What is the
probability that they actually have the disease?

It is perhaps easiest to explain it if we imagine giving
the test to 1000 people. Of those, 10 will have the disease,
and g will test positive. The remaining 990 do not have the
disease, but 99 of them will test positive anyway. So after
testing 1000 people we get 108 positives, but we know we
only have g true RAS sufferers in those 108 people. So the
probability of having RAS if you test positive is only 9/108,
about 8%. That’s all!

The surprisingly low probability depends mostly on the
low background frequency of RAS in the population. That
is the prior probability of RAS, that is the probability that
you would expect somebody to have RAS before you see
the result of the test. The probability of somebody having
RAS if they test positive, 8%, is the probability after you
see the test result — it is the posterior probability. We have a
prior opinion, and we modify our opinion in the light of
new information. Our prior opinion is a major player in
the calculation; we cannot base our calculation only on the
test results. Our prior opinion is not replaced by the new
information provided by the test, rather it is adjusted by it.
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(RAS[®) = P(®) " 0.108
=  The posterior probability of having RAS
given a positive test.
P(®|RAS) =  The likelihood. The probability of a posi-
tive test if you have RAS. The probability
of true positive tests, 0.9
P(RAS) = The prior probability of RAS, 0.01

P(®) = The marginal likelihood. The probability of

getting the data, a positive test, under all
circumstances. That would include true
positives and false positives.

= P(®|RAS)P(RAS)+
P(&|healthy)P(healthy)

= (0.9 x0.01)+ (0.1 X 0.99)
= 0.108

P(®|healthy) =  The probability of a positive test if you are

healthy. The probability of a false positive,
0.1

P(healthy) =  The prior probability of not having RAS,

1— P(RAS) = 0.99

This is formalized in Bayes” Theorem. Bayes” Theorem
says that the relative belief that you have in some hypoth-
esis given some data is the support that the data provide
for the hypothesis times the prior belief in the hypothesis,
divided by the support times the prior for all hypotheses.

Before you give a test to somebody, you think that they
might have RAS with a probability of 1%. If they test pos-
itive, you use that information to adjust your estimate to
8%. But you want to be more sure, so you give them an-
other test. Then, starting from your current estimate of 8%,
you incorporate the result of the new test to adjust your es-
timate up or down. If they test positive on that second test,
then you will be somewhat more sure that they are a RAS
sufferer, but you still won’t be completely sure based on the
results of only 2 imperfect tests.

As you do more tests on your patient, the accumulated
test results tend to overwhelm the original prior of 1%. If
you have a lot of test results then even if your original prior
had been somewhat wrong it will not matter much. If you
do not have many data then the result may be noticeably
influenced by the prior, but if you have a lot of data then
the result will be mostly data-driven.

11
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11.2 Prior distributions and nuisance parameters

In the analysis above, lets say that we are not really sure
about our point estimate of the incidence of RAS in the
population. While most studies place the incidence of RAS
at 1-2%, one study places it at 5%, while another contro-
versial study places it at over 10%. We should expect some
uncertainty in those estimates — after all, those estimates
are based on tests like ours, and we know they are imper-
fect. So our prior probability is no longer a single point at
1% — it now becomes a prior distribution. To do the cal-
culations we need to be explicit about it, and describe the
distribution completely. This may mean choosing a uni-
form range, or perhaps, if it seems more suitable, a curve
such as the beta distribution. If we do that, then when we
calculate the posterior probability it will also be a distribu-
tion. Now if you were a doctor and one of your patients
tested positive for RAS, what would you tell them? The
complete answer, the whole posterior probability distribu-
tion, might be not be welcome by the patient, who really
just wants a simple answer. You might instead choose to
give your answer as a range or an average taken from the
distribution.

If you are not sure of the prior, you might think that to
be fair and objective you should assume a uniform prior
probability from o — 100%. However, that might not be
satisfactory, as then the posterior distribution will also be
from o — 100%. If you then choose to state the posterior as
a range, you might find yourself telling your patient that
based on their positive test they have a 0 — 100% probability
of having RAS — hardly a satisfactory answer.

The test for RAS might involve nuisance parameters
such as the age, gender, or background of the patient that
might affect their susceptibility to RAS, and we can for-
mulate a model involving these parameters to allow us to
calculate the likelihood of the data in the RAS test under
various conditions. The probability of the data given the
model is the likelihood, and it will be a multidimensional
distribution. The nuisance parameters will all have prior
distributions, and so the prior probability will be a multi-
dimensional distribution as well.

12 Bayesian phylogenetic analysis in practise

PHYLOGENETIC applications of a Bayesian approach will
use complex models and have many parameters, and
are too big to calculate analytically. The likelihoods and
the prior probabilities at various points in the distribution
are relatively easy to calculate, but the marginal likelihood
of these multidimensional distribution problems becomes
complex and intractable. Fortunately there are ways to
approximate the posterior distribution that do not require
calculation of the marginal likelihood, and the most com-
mon way uses a Markov chain Monte Carlo (MCMC) ap-
proach using the Metropolis-Hastings algorithm. This ap-
proach depends only on making posterior probability ra-
tios, and so while the likelihoods and priors need to be
calculated, the marginal likelihoods in the ratio cancel out,
and need not be calculated.
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The MCMC is a computational machine that takes sam-
ples from the posterior distribution. The more samples you
let it take, the better it's approximation, like pixels build-
ing up a picture until you can recognize it. It is able to
handle complex models and lots of parameters, and so we
can make our models realistic. The result of an MCMC
is a large number of samples, and that leaves us with the
easily surmountable problem of how to digest and sum-
marize those samples to extract some meaning. A bigger
and more difficult problem is to find out whether it has
run well, and whether it has run long enough.

We can interpret the results in a very direct way. For
example, the highest posterior probability tree is the one
that gets sampled most often, and the posterior probability
of a split is simply its frequency in the samples.

As with any Bayesian analysis, we absolutely need to
have prior probabilities for all our parameters. Everything
needs priors, including branch lengths, composition pa-
rameters, rate matrix parameters, ASRV parameters, APRV
parameters, and tree topologies. However, usually we have
so much data that the prior gets overwhelmed by the like-
lihood - so generally we don’t need to worry about priors
much. Rarely, if the data are few or not decisive, then the
prior may have an influence and we may need to pay closer
attention to it.

A good reference for Bayesian analysis is Mark Holder
and Paul O. Lewis. 2003. Phylogeny estimation: Tradi-
tional and Bayesian approaches. Nature Reviews Genetics
4: 275—284.

The first papers and demonstration programs for
Bayesian analysis in phylogenetics were in the mid-1990’s.
The first practical program was BAMBE, by Larget and Si-
mon, in 1999. In 2000 MrBayes was released, a program by
John Huelsenbeck and Fredrik Ronquist. Other programs
that do Bayesian analysis in phylogenetics are p4, BEAST,
BayesPhylogenies, Phycas, and PhyloBayes.

As described above, the Markov chain Monte Carlo is a
computational machine; it can be thought of as a chain of
phylogenetic states. After the chain equilibrates, it visits
tree space and parameter space in proportion to the poste-
rior probability of the hypotheses, ie the tree and parame-
ters. We let the chain run for many thousands or millions
of cycles so that it builds up a picture of the most probable
trees and parameters. We sample the chain as it runs and
save the tree samples and parameters to a file. The result
of the MCMC is a sampled representation of the parame-
ters and tree topologies. The samples mostly come from
regions of highest posterior probability.

To get the MCMC going, we need to start somewhere,
with a defined model, tree topology, and branch lengths.
That “somewhere” will have a likelihood and a prior;
here the likelihood is not the optimized, maximum like-
lihood. To take the first step we randomly propose a new
state. In that proposal, perhaps we might adjust one of the
branch lengths, or adjust the model parameters, or perhaps
change the topology slightly. Without actually committing
to going to the new state, the likelihood (unoptimized) and
prior of the new state is then calculated. If the new state
has a better likelihood x prior, the chain goes there.



However, if the proposed state has a worse probability,
the chain does not automatically go there. A decision is
made by the following process — First we need to calculate
the posterior probability ratio between the current and the
proposed states. That ratio will be between o and 1. Then
we choose a random number between o and 1. If the ran-
dom number is less than the the probability ratio of the
two states, then the proposed state is accepted. So if the
probability of the proposed state is only a little worse, it
will sometimes be accepted. This means that the chain can
cross probability valleys.

This process has been described in a cartoon by Paul
Lewis.

MCMC robot's rules

Drastic "off the cliff"
downhill steps are almost
*, never accepted

Slightly downhill steps {1 o

= | 1

N Pk\

are usually accepted .

With these rules, it is easy to
see that the robot tends to
stay near the tops of hills

Uphill steps are
always accepted

© 2004 Paul O. Lewis

Woods Hole Workshop on
Molecular Evolution
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The chain goes from state to state to state. Proposals
are made, sometimes accepted, but often rejected. Branch
lengths, topology, and model parameters change.
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We save samples to digest later. Sampled trees are writ-
ten to a file during the chain. At the end of the run we
can summarize those samples. Trees in the file can be ana-
lyzed for tree partitions, from which a consensus tree can
be made. The proportion of a given tree partition in the
trees is the posterior probability of that partition. The pro-
portion of a given tree topology in these trees is the pos-
terior probability of that tree topology. Other parameters
are written to a different file. These continuous parameters
may be averaged, and the variance calculated.

Making a majority-rule consensus tree

We can represent any tree as a list of splits, in ‘dot-star’
notation.

ABCDEF
L LRkokk
LRk,
LRk,

By convention the first position is always a dot. Terminal
branches may or may not be included —
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ABCDEF
L Kkokokok
R N

Trees and lists of splits can be inter-converted. They are
equivalent.
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We can combine lists of splits from several trees, and then
make a consensus tree from the most common (majority
rule) splits in the combined list. This is typically done to
summarize the sampled trees of an MCMC. The internal
nodes of the consensus tree are usually decorated with the
frequency of the splits in the combined list, showing the
posterior probability of those splits.
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Running the MCMC

Burn-in. The start of the chain is random and poor, so the
first proposals tend to make the probability much better
quickly. If we plot the likelihood of the chain at 2 different
X-axis scales —
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mcmc generation mcmc generation
we see the typical fast rise in likelihood, and eventual noisy
plateau. The chain really only works properly after it has
converged or equilibrated. Since it generally starts out
poorly, the first samples (100? 1000?) are discarded as
“burn-in”. You can plot the likelihood of the chain to see
if it has reached a plateau, and only use the samples from
the plateau; this is a widely-used but unreliable way of
assessing convergence — there are better ways.

Thinning the chain Often proposed states are not ac-
cepted, so the chain does not move; this is not good for
getting a good picture of the probability distribution. Or
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perhaps the proposals are too near the current state, caus-
ing autocorrelation, which decreases the effective sample size.
To ameliorate these, rather than sampling the chain at ev-
ery generation, the chain is sampled more rarely, eg every
100 or every 500 generations. These sampled states will
more likely be different from each other, and so be more
useful.

Adjusting the prior The prior probability should usu-
ally be a distribution, such as a uniform or exponential
distribution. The prior can also be fixed to single values,
but this generally is not a good idea, as it does not give a
good picture of the posterior probability. An exception is
that we generally do fix the rate matrix for proteins, eg in
MrBayes we might say prset aamodelpr=fixed(wag).

In MrBayes, the default prior on branch lengths is ex-
ponential, fe~ %, where v is the branch length. The mean
is 677, and by default, § = 10. One effect of this is that if
the data are indecisive, then branch lengths will tend to 0.1
because of the prior.
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Acceptance rates. If we look at the output from a Mr-
Bayes run, we can see a table of proposal acceptances like
this —

Acceptance rates for the moves in the "cold" chain of run 1:

With prob. Chain accepted changes to
53.40 % param. 1 (revmat) with Dirichlet proposal
8.42 J  param. 2 (state frequencies) with Dirichlet proposal
97.94 % param. 4 (prop. invar. sites) with sliding window
84.28 Y  param. 5 (rate multiplier) with Dirichlet proposal
26.85 %  param. 6 (topology and branch lengths) with extending TBR
18.15 %  param. 6 (topology and branch lengths) with LOCAL

Acceptance rates for the moves in the "cold" chain of run 2:

With prob. Chain accepted changes to
54.08 % param. 1 (revmat) with Dirichlet proposal
7.12 %  param. 2 (state frequencies) with Dirichlet proposal
98.07 % param. 4 (prop. invar. sites) with sliding window
84.12 %  param. 5 (rate multiplier) with Dirichlet proposal
28.47 Y,  param. 6 (topology and branch lengths) with extending TBR
17.33 %  param. 6 (topology and branch lengths) with LOCAL

We want good mixing. We can get some idea of the mixing
from the proposal acceptance rates. Proposals that take
baby steps that are too close to the current state will tend
to have high acceptances. Proposals that take giant steps
that are too far from the current state will tend to have low
acceptances. We want medium steps for good mixing. A
rule of thumb is to aim for 10% — 70% acceptance for good
mixing. If there are problems in the acceptances one can
sometimes change the tuning parameters of the MCMC,
for example using the propset command in MrBayes.
MCMCMC. MrBayes introduced Metropolis-coupled
MCMC. In this strategy, several chains are run in paral-
lel; all but one is “heated”. Heated chains are adjusted so
that acceptance probabilities are increased, which allows
easier crossing of likelihood valleys. Heated chains act as
“scouts” for the cold chain (thanks to Paul Lewis for this
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analogy). Chains are allowed to swap with each other, so
the cold chain may exchange identity with a heated chain.
Only the cold chain is sampled.

The star tree paradox

If we simulate data on a star tree with 4 taxa, where each
branch has a length of o0.05, then there will be about 1
mutation every 20 characters. If we simulate datasets of
100,000 characters, there will be plenty of information,
however since the simulation used a star tree, in an ideal
analysis there should be no clear favourite, and any
favoured resolution that we might see must be an artifact,
presumably due to noise. We can do Bayesian runs with
MrBayes and look at the support for all 3 possible trees.
Whereas you might expect that the 3 possible trees would
be supported about equally, about 1/3 each, that is not
what is found. The following is from 100 simulations
and Bayesian runs, and shows the support for all 300
trees. Note that if one or two trees in an analysis have
high support, then the other tree or trees must have low
support, and since we see quite a few high supports, we
also see many very low supports.
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Priors on trees MrBayes assumes equal prior probability
for all trees. On the surface, this might seem like the ob-
vious thing to do. However, MrBayes only considers fully
resolved trees. For a given number of taxa, about half of
all possible trees are not fully resolved. It turns out that
the MrBayes “equal” prior on tree topologies is not equal
at all, as it gives polytomous trees a prior of zero.

It is possible to have an MCMC that allows polytomies.
(See Lewis, Holder, and Holsinger, 2005. Polytomies and
Bayesian phylogenetic inference, Syst Biol 54(2): 241-253.
Their polytomy prior is implemented in p4 and in phy-
cas). We might give equal prior probability to any tree,
resolved or not. Alternatively we might decide to have a
higher prior probability for unresolved trees — then if you
do get resolution, driven by the data, it will be more con-
vincing. Allowing polytomies seems to eliminate the star
tree paradox, and can reduce artefactually high support for
some poorly-supported nodes in real data sets.

Assessing convergence

In the early days of Bayesian analysis in phylogenetics, it
was common to plot the likelihood or other parameters of
the run and so identify the burn-in and the typical plateau
area, and if you had an obvious plateau that was taken



support support standard

split I I deviation
L RREK 0.90 0.95 0.035
L 0.85 0.80 0.035
C ok 0.60 0.80 0.141
LKE K 0.30 0.20 0.071
LKk 0.15 0.01 0.099
KRRk 0.10 0.15 0.035
SRk 0.07 0.06 0.007
KLk 0.06 0.07 0.007
SRKK 0.05 0.04 0.007

average standard deviation = 0.049
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to indicate convergence. However, in time it became evi-
dent that this was not a reliable indicator of convergence.
Now it is more common to do more than one independent
run, perhaps each starting from different random trees,
and to assess convergence based on agreement between
runs. This agreement is measured with the PSRF (poten-
tial scale reduction factor) between numerical parameters
and branch lengths, and with the average standard devia-
tion of split frequencies (or split supports — ASDOSS). (The
PSRF will not be described here.)

If we look at various splits from 2 runs, each run will
have the split at similar but slightly different frequency.
Each average frequency has a standard deviation.

The average standard deviation in split support (split
frequency) summarizes the topological agreement between
2 runs in the form of a single number.

MrBayes now does 2 separate runs by default to encour-
age this strategy of assessing convergence based on agree-
ment between runs. The cumulative average standard de-
viation of the difference in split supports (or split frequen-
cies) (ASDOSS) between the two runs is calculated peri-
odically and printed out. Since it is cumulative, it should
approach zero. This is a good topology convergence diag-
nostic.

13 Bayes factors

Recall our version of Bayes” Theorem

P(®|RAS)P(RAS)

P(RAS|®) = 3

The denominator here is the support times the prior for all
hypotheses. It is the marginal likelihood. The Bayes factor
Bio can be defined as the ratio of marginal likelihoods of
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2 hypotheses H1 and Ho. We can use Bayes factors to
compare hypotheses (for us, models or trees).

marginal likelihood A
marginal likelihood B

Bayes factor =

The problem is that for complex problems marginal likeli-
hoods are difficult to compute; they need to be estimated.
The “harmonic mean estimator” is a reasonably good, eas-
ily computed, but somewhat controversial way of estimat-
ing the marginal likelihood.

The harmonic mean of a series of numbers is

1
G+ tst+ o talxa

Xn

my =

eg the harmonic mean of 2 and 4 is

1 1 8

[1/24+1/4] x1/2

3/8 3

The harmonic mean estimator is the harmonic mean of
likelihoods sampled from the posterior distribution. Be-
cause it is calculated from likelihoods, not log likelihoods,
it is a little tricky to calculate because of numerical un-
derflow (MrBayes and p4 will calculate it). It is generally
presented in log form. We should be clear that Bayes factor
(B1o) is ratio of marginal likelihoods, while the log Bayes
factor is the difference between log marginal likelihoods.
We can use the following table for interpretation of log
Bayes factors (after Kass and Raftery, 1995, based on Jef-
freys 1961).

2log,(Bio) log,(Bio) Evidence against Hy

oto2 oto1 Not worth more than
a bare mention

2to6 1to3 Positive

6 to 10 3tos Strong

>10 >5 Very strong

We can compare models and trees in a Bayesian frame-
work using Bayes factors. To compare models, it is per-
haps simplest to use a fixed tree topology in the Bayesian
run, but allowing the branch lengths to be free. Turning
off topology moves and turning on branch length moves is
possible in MrBayes (v 3.1.2 using the props command in-
teractively, and in v 3.2 using the propset command) and
in p4. Comparing models this way might be faster and
easier than comparing models using ML, for some models
such as those with multiple data partitions. Runs can be
short, as tree space is not explored. One run is done for
each model being compared, or for each tree being com-
pared, after which the estimated marginal likelihoods are
compared.

(&|RAS)P(RAS) + P(&|healthy)P(healthy) 14 Model fit

IN the section on model choice above, we touched on as-
sessment of model fit, motivated using a scatterplot of
X-Y data. With scatterplots and fitted lines, it is easy to
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see if the model fits badly, but with phylogenetic data and
models, it is not so obvious.

Assessing whether the composition part of the model fits
the data is the easiest. One very easy way to do that is with
the x? test in the basefreq command in PAUP. This is a
test for homogeneity of composition in the sequences. One
problem with this test is that it assumes that the sequences
are not related — and of course in phylogenetic data they
certainly are related. Due to this, this test suffers from a
high probability of Type-II error.

To assess the fit of other aspects (or of composition) of
the model to the data, you can use simulations. The strat-
egy is to find some aspect of your data that you measure,
that is affected by your model. Then you measure that
in your original data and in your simulations, and ask
whether the original data point fits in the range generated
by the simulations. In a Bayesian setting this is called pos-
terior predictive simulation. Choosing a good test quantity is
not trivial. Below the (hypothetical) test quantity is mea-
sured in the original data and in simulations using two
different models. The test quantity for the original data
is shown by the arrow, and of course is the same for both
models, while the simulated values differ depending on
the model. The test on the left shows a model that does
not fit, while the model in the test on the right appears to
fit for this test quantity.
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