
Maximum Likelihood and Bayesian Practicals

Peter G. Foster
Natural History Museum, London

Rio de Janeiro, March 2009

These practicals provide exposure to a few programs
and methods in model-based phylogenetic analysis. Files
are provided for the individual practicals in numbered di-
rectories in the directory PeterPracticals; the numbers
of the directories correspond to the section numbers in this
guide. The data sets are small, and should run fast. Read
and try to understand both the files that are given and the
files that are produced during the analyses. The first few
practicals are for review and orientation, and the rest deal
with ML and Bayesian methods.

2 paup pars boot

3 repair tree

4 add node

5 choose model

6 modeltest

7 paup search

8 phyml

9 paup search sh test

10 p4 tree-hetero ml

11 mrbayes tutorial

12 mrbayes

13 p4 tree-hetero mcmc

14 twoPartitions

15 asdoss

2 Parsimony Bootstrap in PAUP

This review practical in 2 paup pars boot shows how to
do a parsimony bootstrap analysis in paup.

cd 2_paup_pars_boot

Tab completion. Instead of typing out these long direc-
tory and file names in full, you can take advantage of the
“tab completion” feature of the bash shell. Instead of typ-
ing the entire name (eg. 2 paup pars boot) you can type
just the beginning (eg. 2) and then hit the <tab> key – if
the beginning part that you have typed is unambiguous,
then the shell will finish typing the file or directory name
for you (or program name, if what you typed is the first
item in the command). This feature of course does not
work inside interactive programs such as PAUP – it only
works in the shell (although it will work in MrBayes if
you have built it with the readline library).

Now that you are in the right directory, look at the files.
Read (cat) the commands.nex file, which is a series of com-
mands to give to paup in the form of a NEXUS file. It has
comments to explain the various steps.

Execute the file. You can run it by saying, to your com-
mand line:

paup commands.nex

The example data file contains only 12 taxa and will run
quickly. An alignment of 100 taxa might take a few hours
to run. At the end of the analysis, you will have a tree
in a Nexus file, where internal nodes are decorated with
bootstrap support values. The program will also make a
log file as requested. Read it, and try to make sense out of
it.

You can then import the resulting tree file into a tree-
drawing program. If you want to import it into Treeview
X, the file needs to be modified slightly – the zero just be-
fore the final semi-colon in the tree description needs to
be removed. In this analysis, branch lengths are meaning-
less and so a “cladogram” format, where all of the leaf
nodes line up on the right, is appropriate. Treeview X can
place the bootstrap support values on the internal nodes.
You can print it to a file for further manipulation. (A copy
of an example output is in the file bootTreeM.pdf in the
Treeview subdirectory.)

You can draw the tree to the terminal screen using p4

with the command

p4 -d bootTree.nex

(note the spaces). (The program p4 is a phylogenetics
toolkit that also implements tree-heterogeneous models
that we will use below. It is written in the Python lan-
guage, and can use the Python interactive shell. You can
get out of the interactive p4 with control-d.)

3 Editing a tree file

To do this practical, go, ie cd, to the directory
PeterPracticals/3 repair tree.

That directory contains a file called t.nex, a Nexus file
containing one tree. It has a mistake in the Newick tree
description. Find the mistake and correct it using a text
editor. You can read the file with paup, and if it is read suc-
cessfully you can draw it with the showtrees command.
Or you can draw it using p4.

ML and Bayesian Practicals

4 Adding a bifurcating root node

The files for this practical are in the directory
PeterPracticals/4 add node, so you need to go

there, ie cd there. In that directory there are two tree files,
both with the same tree—t1.nex without branch lengths,
and t2.nex with branch lengths. In the first, add a node to
make a bifurcating root node, as shown below. Make sure
it is readable, and draw it with p4. (It is a little awkward
to draw it with its bifurcating root with PAUP. How would
you do that?)

out1

out2

in1

in2

in3

in4

⇒

out1

out2

in1

in2

in3

in4

Do the same with the tree in t2.nex, but take branch
lengths into account. Divide the length of the branch
that goes between the outgroup and the ingroup evenly
between the two forks of the bifurcation. (Note that p4

-d distorts branch lengths, making shorter branch lengths
longer in the picture, for clarity — this is a feature, not a
bug.)

5 Choosing a model with the AIC

In this practical we will use PAUP to choose a model for
an alignment of bacterial 16S genes. The data are found

in a file PeterPracticals/bacterial 16S.nex. It has only
5 taxa, and 1273 sites. It is a well-known dataset, having
been used in a few studies, famous because it gives the
wrong tree with most methods due to heterogeneous com-
positional bias.

Aquifex

Deinococcus
Thermus

Bacillus

Thermotoga

Aquifex

Deinococcus
Bacillus

Thermus

Thermotoga

True Wrong

The strategy that will be used is to evaluate the likelihood
of the neighbor-joining tree with a series of different mod-
els. Then we will calculate the AIC for each model, which
will tell us the best model.

We will be making much use of 2 commands in PAUP –

lset to set the likelihood model
lscore to get the optimized likelihood of a single tree

Recall that commands have options, and we can get the
current settings of those options, and other possible set-
tings of those options, with the built-in help in PAUP.

lset ?

lscore ?

For example,

paup> lset ?

Usage: LSet [options...] ;

Available options:

Keyword ---- Option type -------------- Current default setting

NST 1|2|6 2

TRatio <real-value>|Estimate|Previous 2

RMatrix (<rAC><rAG><rAT><rCG><rCT>)|

Estimate|Previous (1 1 1 1 1)

RClass (<cAC><cAG><cAT><cCG><cCT><cGT>) (a b c d e f)

Variant HKY|F84 HKY

BaseFreq Empirical|Equal|Estimate|

Previous|(<frqA><frqC><frqG>) Empirical

Rates Equal|Gamma|SiteSpec Equal

Shape <real-value>|Estimate|Previous 0.5

NCat <integer-value> 4

RepRate Mean|Median Mean

PInvar <real-value>|Estimate|Previous 0

SiteRates Partition[:<charpartition-name>]|

Rateset[:<rateset-name>]|Previous <none>

Wts RepeatCnt|Ignore RepeatCnt

InitBrLen Rogers|LS|<real-value> Rogers

LCollapse No|Yes Yes

MaxPass <integer-value> 20

Delta <real-value> 1e-06

UseApprox No|Yes Yes

ApproxLim <real-value> 5

AdjustAppLim No|Yes Yes

LogIter No|Yes No

ZeroLenTest No|Full|Crude No

Recon Marginal|Joint Marginal

AllProbs No|Yes No

Clock No|Yes No

UserBrLens No|Yes No

MinMemReq No|Yes No

StartVals ParsApprox|Arbitrary ParsApprox

ParamClock Standard|Rambaut|BrLens|

SplitTimes|MDRambaut|Thorne Standard

MLDistforLS No|Yes No

ShowQMatrix No|Yes No

paup> lscore ?

Usage: LScores [tree-list] [/ options...] ;

Score-output options:

Keyword ---- Option type --- Current default setting --

SiteLikes No|Yes No

CategLikes No|Yes No

StoreAsWts No|Yes No

ParsApprox No|Yes *No

<...more...>

The overall strategy is to

• Make a NJ tree
• Evaluate the likelihood of that tree with the JC, F81,

HKY, and GTR models
• Evaluate the likelihood of that tree with different

among-site rate variation models with the chosen rate
matrix, in this case the GTR model

• Use the likelihoods to calculate the AIC and choose
the best model

Fill in this table as you go.

2

ML and Bayesian Practicals

ln L n − ln L + n −2 ln L + 2n

JC -4671.72506 0 -4671.72506 -4671.72506
F81 3
HKY85 4
GTR 8
GTR+I 9
GTR+G 9
GTR+IG 10

1. Go to the PeterPracticals directory (this time, not
to a subdirectory). Start the PAUP program and read
in the data. Say

paup bacterial_16S.nex;

Then make a neighbor-joining tree. This will be the
tree that we evaluate over and over with different
models. When you first start up PAUP the default
optimality criterion is parsimony, so we need to reset
it to likelihood.

nj

set criterion=likelihood

2. Evaluate the likelihood under the Jukes-Cantor model
lset nst=1 basefreq=equal

lscore 1

This sets the number of substitution types to 1, and
the composition to 25% each nucleotide. This is the JC
model. Among-site rate variation is left at the default
values, which is none. Then the NJ tree is evaluated
and branch lengths optimized under this model. The
log likelihood is -4671.72506, and is our first entry in
the table above.

3. Is the composition not equal?
lset basefreq=estimate

lscore 1

Here nst “carries over” from the previous setting, and
remains nst=1. This is the F81 model (Felsenstein,
1981), the same as the JC model except that the com-
position parameters are allowed to be free. There are
4 nucleotides, so there are 3 parameters and 3 degrees
of freedom. Make a note of the log likelihood and put
it in the AIC table.

4. Is there a transition/transversion ratio bias?

lset nst=2 tratio=estimate

lscore 1

This is the HKY85 (Hasegawa, Kishino, Yano, 1985)
model. Now nst=2, with one additional parameter.
Note the log likelihood in the AIC table, for this and
the other models tested below.

5. Now try the GTR model.

lset nst=6 rmatrix=estimate

lscore 1

The GTR (nst=6) model has 5 more parameters than
the F81 model, and 4 more than the HKY85 model.
The basefreq remains at estimate. It is the most
parameter-rich rate matrix that PAUP has to offer.

This setting has no ASRV, but below we superimpose
ASRV on the GTR model.

6. Among-site rate variation I. This is the GTR+I model.

lset pinvar=estimate

lscore 1

Allowing a proportion of sites to be invariant
(pinvar=estimate) adds one free parameter.

7. Among-site rate variation II. This is the GTR+G
model. We turn pInvar off.

lset pinvar=0.0 rates=gamma shape=estimate

lscore 1

Allowing Γ-distributed rates adds one free parameter
over the GTR model.

8. Among-site rate variation: III. This is the GTR+GI
model. We turn pInvar back on.

lset pinvar=estimate

lscore 1

9. Quit PAUP.

Having collected the likelihoods you can calculate the AIC
values in the table. Choose the model with the lowest AIC.
Is it the model that gives the highest likelihood?

Now we will do a similar series of models, but
using a file with paup commands. Go to the
PeterPracticals/5 choose model directory and read the
file commands.nex

This file has the following contents – try to make sense out
of each command:

#nexus

begin paup;

execute ../bacterial_16S.nex;

nj;

set crit=like;

set warntsave=no;

log start file=paupLog replace;

lset basefreq=estimate;

lset nst=2 tratio=estimate;

lscore 1;

lset nst=6 rmatrix=estimate;

lscore 1;

lset rates=gamma shape=estimate;

lscore 1;

lset rates=gamma shape=estimate

pinvar=estimate;

lscore 1;

log stop;

quit;

end;

Execute it by saying, to your command line,

paup commands.nex

What models were tested? Look at the log file that was
produced.

Using a commands file containing a paup block of com-
mands makes running a series of commands easier, when
you know what you are doing. One example of this is the
commands file used by ModelTest, in the next section.

3

ML and Bayesian Practicals

6 ModelTest and SS ASRV

The program ModelTest can help remove some of the
tedium of choosing a model. It uses PAUP to

evaluate many different models using the PAUP block
modelblockPAUPb10. Read it and try to make sense out
of it. The results of the likelihood evaluations are fed to
the program ModelTest, which assesses the likelihood val-
ues and suggests a model. So it is a two step process—first
generating the likelihood scores using PAUP, and second
assessing those scores with the ModelTest program proper.

We will use a simulated dataset with 7 taxa and 900 sites,
in a file simcdn900.nex. It has a sets block at the end,
which can be used by PAUP and other Nexus compliant
programs (but not MrBayes) to partition the data.

1. Start PAUP and read in the data. Say

paup simcdn900.nex

2. Execute the modelblock. Say

execute modelblockPAUPb10

modelblockPAUPb10 makes a NJ tree with JC dis-
tances, and then evaluates that tree with several differ-
ent models. This will take a couple of minutes. Don’t
quit yet, as we will need the tree again later.
PAUP makes 2 files:

a) model.scores, a concise output from PAUP
b) modelfit.log, a verbose output from PAUP

3. Since we keep paup running, we need to log in to
the server with a second shell. Do that, and cd

to this directory. In this second shell, process the
file model.scores with the modeltest program. You
could say

modeltest < model.scores

which will print out the results to the screen. How-
ever, you can capture the output into a file using “out-
put redirection” with the > operator, as

modeltest < model.scores > outfile

You can then read outfile without re-running
modeltest. Read outfile and note the chosen model
and likelihood as suggested by the AIC.

4. ModelTest does not consider site-specific among-site
rate variation (SS ASRV), so you need to do that “by
hand”. But first, redundantly, we repeat the evalua-
tion with the HKY+G model, which was the best that
ModelTest found.

lset nst=2 rates=gamma shape=estimate

lset basefreq=estimate tratio=estimate

lscores 1;

Do you get the same likelihood? It may differ slightly
due to numerical round-off error.

5. Now we do the site-specific model. PAUP has read in
the partition definition in the data file, and now we
ask PAUP to apply it. Do the lset command all on
one line.

lset nst=2 rates=sitespec

siterates=partition:by_codon

lscores 1;

Does the HKY+SS model have a higher likelihood
than the HKY+G model? To assess whether it is
better using the AIC, you may need to know that if
data are partitioned into n parts, and the parts are al-
lowed their own overall rates (as is the case here), then
there are n− 1 free parameters due to the site-specific
among site rate variation. Don’t forget that in this
evaluation the gamma distributed ASRV is turned off.
Is the HKY+SS model better using the AIC?

7 An heuristic search

See the file commands.nex in the directory for this prac-
tical. It uses the bacterial 16S data, with the GTR+G

model. The output from ModelTest was simply pasted in
for the hsearch. (Usually we would need to use a “succes-
sive approximation” search, but this search is so easy that
we only need to do it once. However, we do check that
further searches are not needed.)

#nexus

begin paup;

execute ../bacterial_16S.nex;

log start file=paupLog replace;

set crit=like;

set autoclose=yes;

Lset Base=(0.2287 0.2621 0.3426) Nst=6

Rmat=(0.5147 1.3958 0.9436 1.4810 3.3455)

Rates=gamma Shape=0.3731 Pinvar=0;

hsearch swap=tbr;

lset basefreq=est rmatrix=est shape=est;

lscore 1;

savetrees file=bestTree.nex format=altnex

brlens=yes replace;

log stop;

quit;

end;

Execute the file with paup.
In this set of commands, we search for the best tree with

the hsearch command. We start with the model and pa-
rameters values suggested by ModelTest, and search with
those parameters. After the search, we make the parame-
ters free again (xxx=estimate) and optimize on the result-
ing tree. We do this because we want to reassure ourselves
that we have made the (last) search based on fully opti-
mized parameters. If so, the hsearch tree and the final
tree should have the same likelihood, although they might
differ by a small amount due to numerical round-off error.
Is this so? Is the tree that is obtained biologically reason-
able? If not, why not? How could you analyze these data
that might give you the correct tree?

8 Tree search with phyml

Here we will use the bacterial 16S data again, and do a
search with phyml. The data file, bacterial 16S.nex

is in Nexus format, but phyml needs a modified phylip
format. (The phyml format can handle taxon names up
to 50 characters, but cannot handle spaces in names. It

4

ML and Bayesian Practicals

requires a space between the taxon name and the sequence,
which the original phylip format does not.)

We could do the format conversion to phylip format
using the readseq web server, available as a link in the
PeterPracticals/sites.html file, but we will use a sim-
ple p4 script to do the conversion. Go to the correct direc-
tory and say

p4 p4_me_to_get_data.py

This makes a file d.phy with the data in phylip format.
Start phyml. Read in the fasta data file and set up the
GTR+G model (appropriate for these data), with esti-
mated composition, and estimated gamma shape parame-
ter. The program is fast enough that we can do a bootstrap
analysis– do 200. Look at the output files.

9 Successive approximation search and SH
test

In this practical, we look at 3 new strategies —

• Successive approximation search
• Topology-constrained search
• Shimodaira-Hasegawa test

This practical uses a different, simulated, dataset. Using
it, we demonstrate successive approximation in the hsearch
strategy. This strategy is usually needed for searches us-
ing PAUP, but is not needed in phyml as it is built-in to
the phyml search strategy. It is important for speed that we
do not search and optimize parameters at the same time.
In the successive approximation strategy, we alternate be-
tween fixing parameter values and searching, and freeing
parameter values and re-optimizing on the tree resulting
from the search. This is continued long enough that we
know that the last search used fully optimized parameters.

This exercise also demonstrates searching with a topo-
logical constraint. We search with and without a constraint
for monophyly of a group of taxa, and obtain 2 different
trees. We then ask if those trees are significantly different
by the SH test.

I have already chosen a model to use; it is the TVMef+I
model, chosen by the AIC in ModelTest. Read and execute
commands.nex.

When we do the heuristic search for the ML tree, we
notice that all the ‘A’ taxa (A1, A2, and so on) are not in
the same split. It is not possible that the A-taxa are mono-
phyletic in the ML tree. But let us say that we expected
them to group together, and we expected the ‘B’ taxa to be
all together in their own split. So we are a little surprised
by our ML tree. We ask whether we can really reject mono-
phyly of the A-taxa – perhaps it is only due to noisy, in-
decisive data? To find out, we find the best tree where the
A-taxa are constrained to be in the same group, and ask,
using the Shimodaira-Hasegawa test, whether that con-
strained tree is significantly worse than the ML tree.

So after finding the ML tree, we start over again, but this
time with a topological constraint

constraints monoA = ((A1, A2, A3, A4, A5, A6, A7, A8));

When we do the hsearch with this constraint, we find a
best tree, which is of course slightly less likely than the
ML tree. Is this difference significant?

We assess significance using the SH test. We read in both
trees (having saved them before) and ask for the lscore

under the current model, and also we ask for an shtest:
gettrees file=ml_tree.nex;

gettrees file=constrained_tree.nex mode=7;

lsc 1-2/ shtest=rell;

Above, in the gettrees command, the default mode is 3,
which replaces trees in memory with the trees from the file.
So here the first gettrees command wipes out any trees in
memory. Of course we do not want to do that when we do
the second gettrees command, so we use mode 7, which
adds the trees in the file to the trees in memory. At the
end of the second gettrees command we have two trees
in memory.

In the completed SH test, the P value that we get tells us
that the constrained tree is not significantly worse than the
ML tree, and so we do not have enough evidence, using
this test and using these data, to reject monophyly of the
A-taxa. However, note that the SH test depends on the
number of trees compared and does not work well if there
are only two trees; it should compare more plausible trees.

When the PAUP job is finished, look at the log file, and
try to relate the contents of the log file with the commands
in the file commands.nex. Were all of the steps of the suc-
cessive iteration necessary?

10 ML with a heterogeneous model using p4

Here we re-analyse the bacterial 16S data with a hetero-
geneous model that allows a separate composition

for the thermophiles, and a separate composition for the
mesophiles. We only compare 2 trees, the true tree and the
attract tree. Python commands determine which branches
get which composition.

To analyse the data, say
p4 s.py

(For a description of the program, type in p4 with no argu-
ments. Quit with ctrl-d.)

The s.py Python script reads in the data, and the two
trees. It then defines the model and places the two differ-
ent composition vectors on the tree. Then, for each tree,
it calculates the maximum likelihood of the tree under
the model. How the results are written out can be spec-
ified by the user; here we draw the two trees, and write
out their ML values. Is the ML value under the heteroge-
neous model better than the ML value under the GTR+G
model? How many more parameters does this heteroge-
neous model have relative to the GTR+G model? Is it a bet-
ter model by the AIC? Did use of a heterogeneous model
allow recovery of the true tree as the ML tree?

11 MrBayes wiki tutorial

The tutorial is available in the MrBayes wiki man-
ual, which is available as a link in the sites.html

5

ML and Bayesian Practicals

file. The tutorial section is also included as a standalone
Tutorial.html file, incuded in the directory for the prac-
tical. Do the tutorial using the file primates.nex, also in
that directory. The executable for MrBayes v3.1.2 is called
mb. You can start the program and run it interactively by
typing that command at the terminal. You can stop it with
the quit command, or use control-c.

12 Bayesian analysis with MrBayes

You can run MrBayes interactively as in the tutorial, but
here we will use a command file, in Nexus format,

with a MrBayes block containing all the commands. At the
moment, it contains the following.

begin mrbayes;

execute ../bacterial_16S.nex;

log start filename=mbout.log replace;

set autoclose=yes;

lset foo=bar;

mcmc ngen=10000 printfreq=500 samplefreq=50

nchains=4 savebrlens=yes filename=mbout;

sump filename=mbout burnin=101;

sumt filename=mbout burnin=101;

log stop;

end;

It is correct and complete except that the line specifying the
model is wrong. Recall that we want the GTR+G model for
the bacterial data. Set it correctly, on the lset line. Hint:
you can, using interactive MrBayes, issue the help lset

command to show you how to do that. You can quit Mr-
Bayes with the quit command.

When you have corrected the model and saved the file,
start the program by saying

mb commands.nex

Here is what the commands tell MrBayes to do —

• We ask that the chain run for 10000 generations, sam-
pling every 50, for a total of 200+1 samples. We run 4
parallel chains in the MCMCMC. There are 2 separate
concurrent runs, by default.

• We start with a random tree topology by default.

• At the end of the MCMC, after a burnin of 101 sam-
ples (not generations), the parameters are summa-
rized using the sump command. Also, the trees in
both the tree files are summarized, making a consen-
sus tree mbout.con and a list of tree bipartitions in
mbout.parts. Note that high confidence is given to
the wrong tree.

The authors of MrBayes recommend that proposal accep-
tance rates be between 10 and 70%. Are they? I have no-
ticed when I run these data that the chain swap acceptance
is a little high sometimes. Is that the case? How would
you lower the acceptance rate? (Hint: help mcmc)

How would you tell if the MCMC has converged?

13 Bayesian analysis with p4

To analyse the bacterial 16S data using a heterogeneous
model, say

p4 s.py

Read the Python script to try to make some sense of it.
Here is what happens — First the script tells p4 to read in
the data. A random tree is made, and then the model is de-
fined. To start, the two compositions are assigned to nodes
randomly. A Bayesian MCMC run is set up, and some
adjustments are made to the “tunings”. A run of 10000
generations is done, and a consensus tree made from the
sampled trees. Although the two compositions were as-
signed to branches randomly, the branches are allowed to
choose either composition as part of the MCMC, allowing
the two compositions to change what nodes they are as-
signed to in the tree while simultaneously adjusting their
parameter values. What consensus tree is found? Is it bio-
logically correct? How well supported is it?

14 More than one data partition with MrBayes

Here we analyse combined DNA and protein se-
quences. Look at the data file, two datatypes.nex.

MrBayes requires combining the 2 datasets into 1 align-
ment, and uses the Nexus incompatible

datatype=mixed(dna:1-200,protein:201-300)

1. Start MrBayes and read in the data file by

execute two_datatypes.nex

2. Set up a character partition, and tell MrBayes to use it.

charset one = 1-200

charset two = 201-300

partition p1 = 2:one,two

set partition = p1

3. Let the two partitions have their own relative rates.
The weighted mean rate will be 1.

prset ratepr=variable

4. Set the model for the DNA, the first partition

lset applyto=(1) nst=6 rates=equal

5. Set up the model for the protein partition, which is
partition 2. This is done partly by setting the priors,
but the ASRV is set via lset. We tell MrBayes to use
the empirical composition of the data. (Do the prset

all on one line)

prset applyto=(2) aamodelpr=fixed(wag)

statefreqpr=fixed(empirical)

lset applyto=(2) rates=propinv

6. Check the model settings.

showmodel

In the previous step you told MrBayes to use empirical
composition for the protein partition, and it did not
complain. Did it make that setting?

6

ML and Bayesian Practicals

7. Do the mcmc, collecting 201 samples. Do this com-
mand all on one line.

mcmc ngen=10000 samplefreq=50 printfreq=1000

nchains=1 filename=mbout savebrlens=yes

8. Digest the results, with a burnin of half the samples.

sump filename=mbout burnin=101

sumt filename=mbout burnin=101

How much faster is the overall rate of the DNA partition
relative to the protein partition? Were the proposal accep-
tance rates good?

15 ASDOSS between two MCMC runs

In this practical you will calculate an ASDOSS point.

1. Start MrBayes interactively and read in the data,
star.nex

mb -i star.nex

2. Set the model

lset nst=6

3. Do a very short MCMC. It is too short to converge
well.

mcmc ngen=1000 samplefreq=5

4. Quit. Note the files that were made. Two runs were
done, and a tree file was made for each run.

5. Restart the program and read in the data file again.
6. Digest the tree file for the first run, with a burnin of

half the samples.

sumt nruns=1 filename=star.nex.run1 burnin=101

Note the table of partitions.
7. Digest the tree file for the second run, again with a

burnin of half the samples.

sumt nruns=1 filename=star.nex.run2 burnin=101

Again note the table of partitions.
8. Quit the program.
9. Make a table with 4 columns, where the first column is

the partition, in dot-star notation, the second column
is the support (probability) for that partition in the
first run, and the third column is the support for that
(same!) partition in the second run. There is no need
to consider partitions where there is only 1 dot or 1
star. It may be that one of the two runs has a partition
in the list but the other does not – in that case the run
without the partition listed has a support of 0.0 for
that partition.

10. Plot the support for run2 against the support for run1
for each partition. Do the points approximate a line
on top of the y = x line?

11. Calculate the standard deviation for each partition,
putting the values in the fourth column in your table.

12. Calculate the average standard deviation of the split
supports.

The average standard deviation of split supports (or split
frequencies) can be used as a convergence diagnostic. In a
pair of runs that are similar the ASDOSS will be low, and
when that happens it is assumed or hoped that the runs
have both converged to the posterior distribution.

7

