
Maximum Likelihood and Bayesian Practicals

Peter G. Foster
Natural History Museum, London

Rio de Janeiro, March 2008

F
or these practicals you will need the directory of data

files, called PeterPracticals, which should be in

your home directory. It has several subdirectories, one for

each of the exercises. Do them in turn. You will usually

need to go into, that is cd, to those directories. The data

sets are small due to time constraints. Read and try to un-

derstand both the files that are given and the files that are

produced during the analyses. The first few practicals are

for review and orientation, and the rest deal with ML and

Bayesian methods.

1 paup pars boot

2 repair tree

3 add node

4 choose model

5 modeltest

6 paup search

7 phyml

8 paup search sh test

9 p4 tree-hetero ml

10 mrbayes tutorial

11 mrbayes

12 p4 tree-hetero mcmc

13 twoPartitions

14 asdoss

Start up a terminal window. The current working direc-

tory in the shell should be your home directory. To start,

say

cd PeterPracticals

and then issue the ls command at the terminal to see what

is there. To get to the right place to do the first practical,

cd 1_paup_pars_boot

Tab completion.
Instead of typing out these long directory and file names

in full, you can take advantage of the “tab completion” fea-

ture of the bash shell. Instead of typing the entire name (eg.

1 paup pars boot) you can type just the beginning (eg. 1)

and then hit the <tab> key – if the beginning part that you

have typed is unambiguous, then the shell will finish typ-

ing the file or directory name for you (or program name, if

what you typed is the first item in the command). This fea-

ture of course does not work inside interactive programs

such as PAUP – it only works in the shell (although it will

work in MrBayes if you have built it with the readline

library).

1 Parsimony Bootstrap in PAUP

T
he practical in 1 paup pars boot shows how to do a

parsimony bootstrap analysis in paup. Look at the files

in this directory. Read the commands.nex file, which is a

series of commands to give to paup in the form of a NEXUS

file. It has comments to explain the various steps.

Execute the file. You can run it by saying, to your com-

mand line:

paup commands.nex

The example data file contains only 12 taxa and will run

quickly. An alignment of 100 taxa might take a few hours

to run. At the end of the analysis, you will have a tree

in a Nexus file, where internal nodes are decorated with

bootstrap support values. The program will also make a

log file as requested. Read it, and try to make sense out of

it.

You can then import the resulting tree file into a tree-

drawing program. If you want to import it into Treeview

X, the file needs to be modified slightly – the zero just be-

fore the final semi-colon in the tree description needs to

be removed. In this analysis, branch lengths are meaning-

less and so a “cladogram” format, where all of the leaf

nodes line up on the right, is appropriate. Treeview X can

place the bootstrap support values on the internal nodes.

You can print it to a file for further manipulation. (A copy

of an example output is in the file bootTreeM.pdf in the

Treeview directory within 1 paup pars boot.)

2 Editing a tree file

T
o do this practical, go, ie cd, to the directory

PeterPracticals/2 repair tree. Assuming that you

are currently in the 1 paup pars boot directory, you might

want to do the following two steps. First, cd towards the

root.

cd ..

and then possibly remind yourself of the contents with an

ls command. Then cd to the correct directory by

cd 2_repair_tree

That directory contains a file called t.nex, a Nexus file

containing one tree. It has a mistake in the Newick tree

description. Find the mistake and correct it using a text

ML and Bayesian Practicals

editor. You can read the file with paup, and if it is read suc-

cessfully you can draw it with the showtrees command.

You can also draw the tree to the terminal screen using p4

with the command p4 -d t.nex (note the spaces). When

you have successfully repaired the file so that it can be read

by paup, draw it using paup.

(The program p4 is a phylogenetics toolkit that also im-

plements tree-heterogeneous models that we will use be-

low. It is written in the Python language, and can use the

Python interactive shell. You can get out of the interactive

p4 with control-d.)

3 Adding a bifurcating root node

T
he files for this practical are in the directory

PeterPracticals/3 add node, so you need to go

there, ie cd there. In that directory there are two tree files,

both with the same tree—t1.nex without branch lengths,

and t2.nex with branch lengths. In the first, add a node to

make a bifurcating root node, as shown below. Make sure

it is readable, and draw it with p4. (It is a little awkward

to draw it with its bifurcating root with PAUP. How would

you do that?)

.
out1

out2

in1

in2

in3

in4

⇒

out1

out2

in1

in2

in3

in4

Do the same with the tree in t2.nex, but take branch

lengths into account. Divide the length of the branch

that goes between the outgroup and the ingroup evenly

between the two forks of the bifurcation. (Note that p4

-d distorts branch lengths, making shorter branch lengths

longer in the picture, for clarity — this is a feature, not a

bug.)

4 Choosing a model with the AIC

I
n this practical we will use PAUP to choose a model for

an alignment of bacterial 16S genes. The data are found

in a file PeterPracticals/bacterial 16S.nex.

.

.

Aquifex

Deinococcus
Thermus

Bacillus

Thermotoga .

.

Aquifex

Deinococcus
Bacillus

Thermus

Thermotoga

True Wrong

The strategy that will be used is to evaluate the likelihood

of the neighbor-joining tree with a series of different mod-

els. Then we will calculate the AIC for each model, which

will tell us the best model.

We will be making much use of 2 commands in PAUP –

lset to set the likelihood model

lscore to get the optimized likelihood of a single tree

Recall that commands have options, and we can get the

current settings of those options, and other possible set-

tings of those options, with the built-in help in PAUP.

lset ?

lscore ?

For example,

paup> lset ?

Usage: LSet [options...] ;

Available options:

Keyword ---- Option type -------------- Current default setting

NST 1|2|6 2

TRatio <real-value>|Estimate|Previous 2

RMatrix (<rAC><rAG><rAT><rCG><rCT>)|

Estimate|Previous (1 1 1 1 1)

RClass (<cAC><cAG><cAT><cCG><cCT><cGT>) (a b c d e f)

Variant HKY|F84 HKY

BaseFreq Empirical|Equal|Estimate|

Previous|(<frqA><frqC><frqG>) Empirical

Rates Equal|Gamma|SiteSpec Equal

Shape <real-value>|Estimate|Previous 0.5

NCat <integer-value> 4

RepRate Mean|Median Mean

PInvar <real-value>|Estimate|Previous 0

SiteRates Partition[:<charpartition-name>]|

Rateset[:<rateset-name>]|Previous <none>

Wts RepeatCnt|Ignore RepeatCnt

InitBrLen Rogers|LS|<real-value> Rogers

LCollapse No|Yes Yes

MaxPass <integer-value> 20

Delta <real-value> 1e-06

UseApprox No|Yes Yes

ApproxLim <real-value> 5

AdjustAppLim No|Yes Yes

LogIter No|Yes No

ZeroLenTest No|Full|Crude No

Recon Marginal|Joint Marginal

AllProbs No|Yes No

Clock No|Yes No

UserBrLens No|Yes No

MinMemReq No|Yes No

StartVals ParsApprox|Arbitrary ParsApprox

ParamClock Standard|Rambaut|BrLens|

SplitTimes|MDRambaut|Thorne Standard

MLDistforLS No|Yes No

ShowQMatrix No|Yes No

paup> lscore ?

Usage: LScores [tree-list] [/ options...] ;

Score-output options:

Keyword ---- Option type --- Current default setting --

SiteLikes No|Yes No

CategLikes No|Yes No

StoreAsWts No|Yes No

ParsApprox No|Yes *No

<...more...>

The overall strategy is to

• Make a NJ tree

• Evaluate the likelihood of that tree with the JC, F81,

HKY, and GTR models

• Evaluate the likelihood of that tree with different

among-site rate variation models with the chosen rate

matrix, in this case the GTR model

• Use the likelihoods to calculate the AIC and choose

the best model

Fill in this table as you go.

2

ML and Bayesian Practicals

ln L n − ln L + n −2 ln L + 2n

JC -4671.72506 0 -4671.72506 -4671.72506

F81 3

HKY85 4

GTR 8

GTR+I 9

GTR+G 9

GTR+IG 10

1. Go to the PeterPracticals directory (this time, not

to a subdirectory). Start the PAUP program and read

in the data. Say

paup bacterial_16S.nex;

Then make a neighbor-joining tree. This will be the

tree that we evaluate over and over with different

models. When you first start up PAUP the default

optimality criterion is parsimony, so we need to reset

it to likelihood.

nj

set criterion=likelihood

2. Evaluate the likelihood under the Jukes-Cantor model

lset nst=1 basefreq=equal

lscore 1

This sets the number of substitution types to 1, and

the composition to 25% each nucleotide. This is the JC

model. Among-site rate variation is left at the default

values, which is none. Then the NJ tree is evaluated

and branch lengths optimized under this model. The

log likelihood is -4671.72506, and is our first entry in

the table above.

3. Is the composition not equal?

lset basefreq=estimate

lscore 1

Here nst “carries over” from the previous setting, and

remains nst=1. This is the F81 model (Felsenstein,

1981), the same as the JC model except that the com-

position parameters are allowed to be free. There are

4 nucleotides, so there are 3 parameters and 3 degrees

of freedom. Make a note of the log likelihood and put

it in the AIC table.

4. Is there a transition/transversion ratio bias?

lset nst=2 tratio=estimate

lscore 1

This is the HKY85 (Hasegawa, Kishino, Yano, 1985)

model. Now nst=2, with one additional parameter.

Note the log likelihood in the AIC table, for this and

the other models tested below.

5. Now try the GTR model.

lset nst=6 rmatrix=estimate

lscore 1

The GTR (nst=6) model has 5 more parameters than

the F81 model, and 4 more than the HKY85 model.

The basefreq remains at estimate. It is the most

parameter-rich rate matrix that PAUP has to offer.

This setting has no ASRV, but below we superimpose

ASRV on the GTR model.

6. Among-site rate variation I. This is the GTR+I model.

lset pinvar=estimate

lscore 1

Allowing a proportion of sites to be invariant

(pinvar=estimate) adds one free parameter.

7. Among-site rate variation II. This is the GTR+G

model. We turn pInvar off.

lset pinvar=0.0 rates=gamma shape=estimate

lscore 1

Allowing Γ-distributed rates adds one free parameter

over the GTR model.

8. Among-site rate variation: III. This is the GTR+GI

model. We turn pInvar back on.

lset pinvar=estimate

lscore 1

9. Quit PAUP.

Having collected the likelihoods you can calculate the AIC

values in the table. Choose the model with the lowest AIC.

Is it the model that gives the highest likelihood?

Now we will do a similar series of models, but

using a file with paup commands. Go to the

PeterPracticals/4 choose model directory and read the

file commands.nex

This file has the following contents – try to make sense out

of each command:

#nexus

begin paup;

execute ../bacterial_16S.nex;

nj;

set crit=like;

set warntsave=no;

log start file=paupLog replace;

lset basefreq=estimate;

lset nst=2 tratio=estimate;

lscore 1;

lset nst=6 rmatrix=estimate;

lscore 1;

lset rates=gamma shape=estimate;

lscore 1;

lset rates=gamma shape=estimate

pinvar=estimate;

lscore 1;

log stop;

quit;

end;

Execute it by saying, to your command line,

paup commands.nex

What models were tested? Look at the log file that was

produced.

Using a commands file containing a paup block of com-

mands makes running a series of commands easier, when

you know what you are doing. One example of this is the

commands file used by ModelTest, in the next section.

3

ML and Bayesian Practicals

5 ModelTest and SS ASRV

T
he program ModelTest can help remove some of the

tedium of choosing a model. It uses PAUP to

evaluate many different models using the PAUP block

modelblockPAUPb10. Read it and try to make sense out

of it. The results of the likelihood evaluations are fed to

the program ModelTest, which assesses the likelihood val-

ues and suggests a model. So it is a two step process—first

generating the likelihood scores using PAUP, and second

assessing those scores with the ModelTest program proper.

We will use a simulated dataset with 7 taxa and 900 sites,

in a file simcdn900.nex. It has a sets block at the end,

which can be used by PAUP and other Nexus compliant

programs (but not MrBayes) to partition the data.

1. Start PAUP and read in the data. Say

paup simcdn900.nex

2. Execute the modelblock. Say

execute modelblockPAUPb10

modelblockPAUPb10 makes a NJ tree with JC dis-

tances, and then evaluates that tree with several differ-

ent models. This will take a couple of minutes. Don’t

quit yet, as we will need the tree again later.

PAUP makes 2 files:

a) model.scores, a concise output from PAUP

b) modelfit.log, a verbose output from PAUP

3. Process the file model.scores with the program Mod-

elTest, on the ModelTest server website. There is a link

to it in the sites.html file. Note the chosen model

and likelihood as suggested by the AIC.

4. ModelTest does not consider site-specific among-site

rate variation (SS ASRV), so you need to do that “by

hand”. But first, redundantly, we repeat the evalua-

tion with the HKY+G model, which was the best that

ModelTest found.

lset nst=2 rates=gamma shape=estimate

lset basefreq=estimate tratio=estimate

lscores 1;

Do you get the same likelihood? It may differ slightly

due to numerical round-off error.

5. Now we do the site-specific model. PAUP has read in

the partition definition in the data file, and now we

ask PAUP to apply it. Do the lset command all on

one line.

lset nst=2 rates=sitespec

siterates=partition:by_codon

lscores 1;

Does the HKY+SS model have a higher likelihood

than the HKY+G model? To assess whether it is better

using the AIC, you may need to know that in data par-

titioned into n parts, and the parts are allowed their

own overall rates (as is the case here), then there are

n − 1 free parameters due to the site-specific among

site rate variation. Don’t forget that in this evalua-

tion the gamma distributed ASRV is turned off. Is the

HKY+SS model better using the AIC?

6 An heuristic search

S
ee the file commands.nex in 6 paup search. It uses the

bacterial 16S data, with the GTR+G model. The out-

put from ModelTest was simply pasted in for the hsearch.

(Usually we would need to use a “successive approxima-

tion” search, but this search is so easy that we only need

to do it once. However, we do check that further searches

are not needed.)

#nexus

begin paup;

execute ../bacterial_16S.nex;

log start file=paupLog replace;

set crit=like;

set autoclose=yes;

Lset Base=(0.2287 0.2621 0.3426) Nst=6

Rmat=(0.5147 1.3958 0.9436 1.4810 3.3455)

Rates=gamma Shape=0.3731 Pinvar=0;

hsearch swap=tbr;

lset basefreq=est rmatrix=est shape=est;

lscore 1;

savetrees file=bestTree.nex format=altnex

brlens=yes replace;

log stop;

quit;

end;

Execute the file with paup.

In this set of commands, we search for the best tree with

the hsearch command. We start with the model and pa-

rameters values suggested by ModelTest, and search with

those parameters. After the search, we make the parame-

ters free again (xxx=estimate) and optimize on the result-

ing tree. We do this because we want to reassure ourselves

that we have made the (last) search based on fully opti-

mized parameters. If so, the hsearch tree and the final

tree should have the same likelihood, although they might

differ by a small amount due to numerical round-off error.

Is this so? Is the tree that is obtained biologically reason-

able? If not, why not? How could you analyze these data

that might give you the correct tree?

7 Tree search with phyml

H
ere we will use the bacterial 16S data again, and do a

search with phyml. The data file, bacterial 16S.nex

is in Nexus format, but phyml needs a modified phylip

format. (The phyml format can handle taxon names up

to 50 characters, but cannot handle spaces in names. It

requires a space between the taxon name and the se-

quence, which the original phylip format does not.) Do

the format conversion to the newest phylip format us-

ing the readseq web server, available as a link in the

PeterPracticals/sites.html file, which you can use

with a web browser. Save the sequences to a file in the

directory 7 phyml.

Go into that directory and start phyml. Read in the fasta

data file and set up the GTR+G model (appropriate for

these data), with estimated composition, and estimated

gamma shape parameter. The program is fast enough that

we can do a bootstrap analysis– do 200. Look at the output

files.

4

ML and Bayesian Practicals

8 Successive approximation search and SH
test

I
n this practical, we look at 3 new strategies —

• Successive approximation search

• Topology-constrained search

• Shimodaira-Hasegawa test

This practical uses a different, simulated, dataset. Using

it, we demonstrate successive approximation in the hsearch

strategy. This strategy is usually needed for searches us-

ing PAUP, but is not needed in phyml as it is built-in to

the phyml search strategy. It is important for speed that we

do not search and optimize parameters at the same time.

In the successive approximation strategy, we alternate be-

tween fixing parameter values and searching, and freeing

parameter values and re-optimizing on the tree resulting

from the search. This is continued long enough that we

know that the last search used fully optimized parameters.

This exercise also demonstrates searching with a topo-

logical constraint. We search with and without a constraint

for monophyly of a group of taxa, and obtain 2 different

trees. We then ask if those trees are significantly different

by the SH test.

I have already chosen a model to use; it is the TVMef+I

model, chosen by the AIC in ModelTest. Read and execute

commands.nex.

When we do the heuristic search for the ML tree, we

notice that all the ‘A’ taxa (A1, A2, and so on) are not in

the same split. It is not possible that the A-taxa are mono-

phyletic in the ML tree. But let us say that we expected

them to group together, and we expected the ‘B’ taxa to be

all together in their own split. So we are a little surprised

by our ML tree. We ask whether we can really reject mono-

phyly of the A-taxa – perhaps it is only due to noisy, in-

decisive data? To find out, we find the best tree where the

A-taxa are constrained to be in the same group, and ask,

using the Shimodaira-Hasegawa test, whether that con-

strained tree is significantly worse than the ML tree.

So after finding the ML tree, we start over again, but this

time with a topological constraint

constraints monoA = ((A1, A2, A3, A4, A5, A6, A7, A8));

When we do the hsearch with this constraint, we find a

best tree, which is of course slightly less likely than the

ML tree. Is this difference significant?

We assess significance using the SH test. We read in both

trees (having saved them before) and ask for the lscore

under the current model, and also we ask for an shtest:

gettrees file=ml_tree.nex;

gettrees file=constrained_tree.nex mode=7;

lsc 1-2/ shtest=rell;

Above, in the gettrees command, the default mode is 3,

which replaces trees in memory with the trees from the file.

So here the first gettrees command wipes out any trees in

memory. Of course we do not want to do that when we do

the second gettrees command, so we use mode 7, which

adds the trees in the file to the trees in memory. At the

end of the second gettrees command we have two trees

in memory.

In the completed SH test, the P value that we get tells us

that the constrained tree is not significantly worse than the

ML tree, and so we do not have enough evidence, using

this test and using these data, to reject monophyly of the

A-taxa. However, note that the SH test depends on the

number of trees compared and does not work well if there

are only two trees; it should compare more plausible trees.

When the PAUP job is finished, look at the log file, and

try to relate the contents of the log file with the commands

in the file commands.nex. Were all of the steps of the suc-

cessive iteration necessary?

9 ML with a heterogeneous model using p4

H
ere we re-analyse the bacterial 16S data with a hetero-

geneous model that allows a separate composition

for the thermophiles, and a separate composition for the

mesophiles. We only compare 2 trees, the true tree and the

attract tree. Python commands determine which branches

get which composition.

To analyse the data, say

p4 s.py

(For a description of the program, type in p4 with no argu-

ments. Quit with ctrl-d.)

The s.py Python script reads in the data, and the two

trees. It then defines the model and places the two differ-

ent composition vectors on the tree. Then, for each tree,

it calculates the maximum likelihood of the tree under

the model. How the results are written out can be spec-

ified by the user; here we draw the two trees, and write

out their ML values. Is the ML value under the heteroge-

neous model better than the ML value under the GTR+G

model? How many more parameters does this heteroge-

neous model have relative to the GTR+G model? Is is

a better model by the AIC? Did use of a heterogeneous

model allow recovery of the true tree as the ML tree?

10 MrBayes wiki tutorial

T
he tutorial is available in the MrBayes wiki man-

ual, which is available as a link in the sites.html

file. The tutorial section is also included as a standalone

Tutorial.html file in 10 mrbayes tutorial. Do the tu-

torial using the file primates.nex, also in that directory.

The executable for MrBayes v3.1.2 is called mb. You can

start the program and run it interactively by typing that

command at the terminal. You can stop it with the quit

command, or use control-c.

11 Bayesian analysis with MrBayes

Y
ou can run MrBayes interactively as in the tutorial, but

here we will use a command file, in Nexus format,

with a MrBayes block containing all the commands. At the

moment, it contains the following.

5

ML and Bayesian Practicals

begin mrbayes;

execute ../bacterial_16S.nex;

log start filename=mbout.log replace;

set autoclose=yes;

lset foo=bar;

mcmc ngen=10000 printfreq=500 samplefreq=50

nchains=4 savebrlens=yes filename=mbout;

sump filename=mbout burnin=101;

sumt filename=mbout burnin=101;

log stop;

end;

It is correct and complete except that the line specifying the

model is wrong. Recall that we want the GTR+G model for

the bacterial data. Set it correctly, on the lset line. Hint:

you can, using interactive MrBayes, issue the help lset

command to show you how to do that. You can quit Mr-

Bayes with the quit command.

When you have corrected the model and saved the file,

start the program by saying

mb commands.nex

Here is what the commands tell MrBayes to do —

• We ask that the chain run for 10000 generations, sam-

pling every 50, for a total of 200+1 samples. We run 4

parallel chains in the MCMCMC. There are 2 separate

concurrent runs, by default.

• We start with a random tree topology by default.

• At the end of the MCMC, after a burnin of 101 sam-

ples (not generations), the parameters are summa-

rized using the sump command. Also, the trees in

both the tree files are summarized, making a consen-

sus tree mbout.con and a list of tree bipartitions in

mbout.parts. Note that high confidence is given to

the wrong tree.

The authors of MrBayes recommend that proposal accep-

tance rates be between 10 and 70%. Are they? I have no-

ticed when I run these data that the chain swap acceptance

is a little high sometimes. Is that the case? How would

you lower the acceptance rate? (Hint: help mcmc)

How would you tell if the MCMC has converged?

12 Bayesian analysis with p4

T
o analyse the bacterial 16S data using a heterogeneous

model, say

p4 s.py

Read the Python script to try to make some sense of it.

Here is what happens — First the script tells p4 to read in

the data. A random tree is made, and then the model is de-

fined. To start, the two compositions are assigned to nodes

randomly. A Bayesian MCMC run is set up, and some

adjustments are made to the “tunings”. A run of 10000

generations is done, and a consensus tree made from the

sampled trees. Although the two compositions were as-

signed to branches randomly, the branches are allowed to

choose either composition as part of the MCMC, allowing

the two compositions to change what nodes they are as-

signed to in the tree while simultaneously adjusting their

parameter values. What consensus tree is found? Is it bio-

logically correct? How well supported is it?

13 More than one data partition with MrBayes

H
ere we analyse combined DNA and protein se-

quences. Look at the data file, two datatypes.nex.

MrBayes requires combining the 2 datasets into 1 align-

ment, and uses the Nexus incompatible

datatype=mixed(dna:1-200,protein:201-300)

1. Start MrBayes and read in the data file by

execute two_datatypes.nex

2. Set up a character partition, and tell MrBayes to use it.

charset one = 1-200

charset two = 201-300

partition p1 = 2:one,two

set partition = p1

3. Let the two partitions have their own relative rates.

The weighted mean rate will be 1.

prset ratepr=variable

4. Set the model for the DNA, the first partition

lset applyto=(1) nst=6 rates=equal

5. Set up the model for the protein partition, which is

partition 2. This is done partly by setting the priors,

but the ASRV is set via lset. We tell MrBayes to use

the empirical composition of the data. (Do the prset

all on one line)

prset applyto=(2) aamodelpr=fixed(wag)

statefreqpr=fixed(empirical)

lset applyto=(2) rates=propinv

6. Check the model settings.

showmodel

In the previous step you told MrBayes to use empirical

composition for the protein partition, and it did not

complain. Did it make that setting?

7. Do the mcmc, collecting 201 samples. Do this com-

mand all on one line.

mcmc ngen=10000 samplefreq=50 printfreq=1000

nchains=1 filename=mbout savebrlens=yes

8. Digest the results, with a burnin of half the samples.

sump filename=mbout burnin=101

sumt filename=mbout burnin=101

How much faster is the overall rate of the DNA partition

relative to the protein partition? Were the proposal accep-

tance rates good?

6

ML and Bayesian Practicals

14 ASDOSS between two MCMC runs

I
n this practical you will calculate an ASDOSS point.

1. Start MrBayes interactively and read in the data,

star.nex

mb -i star.nex

2. Set the model

lset nst=6

3. Do a very short MCMC. It is too short to converge

well.

mcmc ngen=1000 samplefreq=5

4. Quit. Note the files that were made. Two runs were

done, and a tree file was made for each run.

5. Restart the program and read in the data file again.

6. Digest the tree file for the first run, with a burnin of

half the samples.

sumt nruns=1 filename=star.nex.run1 burnin=101

Note the table of partitions.

7. Digest the tree file for the second run, again with a

burnin of half the samples.

sumt nruns=1 filename=star.nex.run2 burnin=101

Again note the table of partitions.

8. Quit the program.

9. Make a table with 4 columns, where the first column is

the partition, in dot-star notation, the second column

is the support (probability) for that partition in the

first run, and the third column is the support for that

(same!) partition in the second run. There is no need

to consider partitions where there is only 1 dot or 1

star. It may be that one of the two runs has a partition

in the list but the other does not – in that case the run

without the partition listed has a support of 0.0 for

that partition.

10. Plot the support for run2 against the support for run1

for each partition. Do the points approximate a line

on top of the y = x line?

11. Calculate the standard deviation for each partition,

putting the values in the fourth column in your table.

12. Calculate the average standard deviation of the split

supports.

The average standard deviation of split supports (or split

frequencies) can be used as a convergence diagnostic. In a

pair of runs that are similar the ASDOSS will be low, and

when that happens it is assumed or hoped that the runs

have both converged to the posterior distribution.

7

