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1 Modelling sequence change over time

H
ow have gene and protein sequences evolved over

time? Of the many forms that mutations can take,

here we will focus on nucleotide or amino acid replace-

ments only, and not deal with such things as insertions,

deletions, and rearrangements. We will try to model those

replacements, that is to attempt to describe the important

aspects of the underlying process of evolution that might

have generated the sequences that we see.

A few decades ago when gene sequences started to ap-

pear, the scientific community was comfortable with the

idea of Darwinian evolution by random mutation followed

by selection of the fittest, and it was assumed that process

applied to molecular evolution as well. However, when

the genes were examined, there appeared to be more ran-

domness than the sort of selection that had been seen in

morphological evolution. One of the earliest observations

about sequence evolution was that there was a somewhat

linear relationship between evolutionary separation of the

organisms and the amount of sequence difference, the

“molecular clock” of Zuckerkandl and Pauling. It was an

easy extrapolation to imagine, or model, molecular change

as a random process, perhaps something like radioactive

decay. Soon a picture emerged of the large role of neu-

tral evolution and the small role of selection in molecular

evolution.

However, the process is not simple, as we have slow

genes and fast genes, and slow and fast sites within genes.

To explain these different rates we can recognize that dif-

ferent genes are more or less free to change, and different

sites within genes are more or less constrained. At one

extreme we have genes that are recognizably homologous

throughout the entire tree of life, and at the other extreme

we have pseudogenes that are no longer under selection,

that are quickly randomized to unrecognizability. Within

genes, some sites in proteins are absolutely essential and

never change, but third codon positions are free to change

rapidly.

2 Hidden mutations and parsimony

P
hylogenetic reconstruction using parsimony is excel-

lent when divergences are small. If the divergences

are very small, it might even be difficult to fit a model

due to lack of variation in the data. However, model-based

methods such as ML (maximum likelihood) and Bayesian

analysis offer advantages when divergences are large.

How might sequences evolve? If we start with a bit of

DNA sequence, duplicate it as in a speciation, and allow

each copy to evolve, various things might happen to the

nucleotides.

T
T
C
A
A
G
A
C

X
T → C → A T multiple substitution
T T → C single substitution
C → T C → T parallel substitution
A A
A → G → C A → C convergent substitution
G → A → G G back substitution
A A
C C
X

AT
TC
TT
AA
CC
GG
AA
CC (From Yang, 2006)

At the end of our evolutionary period we have 2 sequences,

which we can recognize as being homologous, and we can

align them and perhaps try to infer their history. The 2

present-day sequences conceal much of the complexity of

their history.

The approach taken by a parsimony analysis is that the

history and underlying process of evolution is unknow-

able, and so we should not try to look for a common

mechanism. So, for example, if two sequences in an anal-

ysis differ at half of their sites, the parsimony approach

is to base conclusions only on these observed data at face

value. However, it is reasonable to suspect that if half the

sites differ, and mutations happen at random, then more

than likely some sites have been hit more than once, and to

say that the only changes that have occurred are the ones

that we can see would be an underestimate. This other

point of view carries the explicit assumption that there is

a common mechanism – that mutations happen randomly

– and makes inferences based on that, something that par-
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simony is not willing to do. Parsimony is not willing to

say what the mechanism of evolution is, but it is willing to

say that whatever it is, it is not random. Parsimony, disal-

lowing a common mechanism, instead makes the large set

of unstated assumptions that each site evolves under its

own unknown mechanism. Many people have pointed out

that this is not a very parsimonious explanation at all, and

allowing a single common mechanism is really the more

parsimonious explanation.

A prediction of parsimony is that a character that

evolves on a long branch will have the same expectation

of change as on a short branch. A prediction of a com-

mon mechanism of random change is that a character that

evolves on a long branch will have a greater probability of

change than on a short branch. Which prediction is borne

out in real molecular sequences?

2.1 Long branch attraction in parsimony

This is a well-known problem in phylogenetics, where un-

related long branches can end up being put together in a

parsimony analysis.
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Imagine the evolution of one site on the tree shown be-

low. At the root of the tree, the character state is an A.

Over the short branches, to short1 and short2, it remains

an A. However, on the longer branches it has had time to

be hit by mutations. The ancestral state A will be preserved

in short1 and short2, but the character states will differ in

taxa long1 and long2. Four different patterns might arise

in the leaf taxa. Those patterns will be where character

states in long1 and long2 are —

both the same as short1 and short2

one the same and one different

both different and different from each other

both different but the same as each other

.

.

A

1 2 3 4

A A C G

A A A A

A G G G

A A A A

AAAA parsimony uninformative

AAGA parsimony uninformative

CAGA parsimony uninformative

GAGA parsimony misinformative

All the patterns possible are either uninformative or mis-

informative. A parsimony analysis will tend to group the

long branches together, and tend to do so more if you add

more data (this explanation after SOWH96, in Hillis ’96).

3 Simple likelihood calculations

I
n general, the likelihood is (proportional to) the proba-

bility of the data given the model. In phylogenetics, we

can say, loosely, that the tree is part of the model, and so

the likelihood is the probability of the data given the tree

and the model. We call it the likelihood rather than the

probability to emphasize that the model is the variable,

not the data.

The likelihood supplies a natural order of pref-

erences among the possibilities under considera-

tion.

-R.A. Fisher, 1956

Imagine flipping a coin, and getting a “head”. What is

the probability of that datum? The probability depends

on the model, and if you think it is a fair coin, then the

probability of a head is 0.5. However if you think it is a

double-headed coin then the probability will then be 1.0.

The model that you use can have a big effect on the likeli-

hood.

The models that we use in molecular phylogenetics take

into account a few attributes of the underlying process.

These include such “loaded dice” aspects as the equilib-

rium composition of the character states, and the rate of

change between character states, and the among-site rate

variation that reflects negative selection on the sequence.

We need to know the composition implied by the model.

An analogy is that of a busy parking lot in a city, where

there are 4 colours of cars. Cars park in the lot for varying

lengths of time, and then leave, to be replaced immediately

by another car. Over time, the parking lot colour compo-

sition will reflect the composition of the cars in the city.

If there are more red cars in the city than blue ones, then

that will happen in the parking lot as well. If for some

reason the parking lot colour composition started out dif-

ferently, all blue cars for example, over time the parking

lot car composition would tend toward the city car colour

composition. If we want to model the process we need to

know the city car colour composition.

We also need to know the relative rates of change be-

tween character states. If we look at an alignment of se-

quences such as this,

A acgcaa

B acataa

C atgtca

D gcgtta

we can see that transitions (a ↔ g and c ↔ t) appear to

occur more often than transversions (a or g ↔ c or t).

We can have our model accommodate that. Even better,

we can have our particular data tell the model how much

transition-transversion bias to use.

In complex data the relative rates of change between nu-

cleotide pairs might all be different, and these parameters

can be estimated by ML.

The models that we use in molecular phylogenetics al-

low us to calculate the probability of the data. The simplest
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model for DNA sequence evolution, is the one formulated

by Jukes and Cantor in 1969, and is known as the Jukes-

Cantor or JC model. It is not a very biologically realistic

model, but it is a good place to start. In it, the model com-

position is equal base frequencies, and the rates of change

between all bases are the same. We keep it simple and so

have no among-site rate variation — all sites are assumed

to be able to vary equally.

We can use this model to calculate probabilities of DNA

sequence data even without a tree, and without any evo-

lutionary changes. For example, lets do a first likelihood

calculation. The datum is “a”. Thats all — one sequence

with one nucleotide, and no tree. So we don’t even need

to know about the rates of change between bases in our

model, all we need is the composition part of the model.

Its an easy calculation – the likelihood of our a using the

JC model is 0.25.

The likelihood depends on the model that we use, and if

we had used another model with a different composition,

then we would have a different likelihood. If the model

had a composition of 100% a, then the likelihood would

have been 1. If the composition of the model was 100% c,

a model that does not fit our data well at all, the likelihood

would be zero.

We can do a second likelihood calculation, this time

where the data are ac — 1 sequence, 2 bases long. We as-

sume that the 2 events (bases) are independent, and so to

calculate the probability we multiply. Using the JC model,

that would be 1/4 × 1/4 = 1/16. That is the likelihood of

ac under the JC model. Likelihoods under other models

will differ.

Now we will try to calculate the likelihood of a one-

branch tree. The data will be 2 sequences, each 1 base

long,

one a

two c

For this calculation we need the part of the model that

describes the rate of change between bases, as we need to

know how to calculate the probability of base a changing

to c. With the models that we use, the probability depends

on the branch length, ν. The branch length is measured

in mutations (“hits”) per site, averaged over the data. We

can describe this part of the JC model with 2 equations

as shown below, one for the probability of a base staying

the same at a given branch length, and the other for the

probability of a base changing to some other base at a given

branch length. For our data we will need the latter, as we

are looking at base a changing to c.

Psame(ν) =
1

4
+

3

4
e
− 4

3
ν

Pdifferent(ν) =
1

4
−

1

4
e
− 4

3
ν

These curves show that at a branch length of zero, the

probability of a base staying the same is 1, and the prob-

ability of changing to another base is zero, which seems

reasonable. As branch lengths get longer, the probability

of staying the same drops, and the probability of changing

to something else rises, which again seems reasonable. As

the branch length gets very long, the probability of both

of these approaches 0.25, so at very long branches there is

equal probability of any base changing to any other base,

or staying the same; this will randomize any sequence that

evolves under this model over very long branches. The

random sequence will have the model composition, in this

case all equal.
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We need a branch length, so lets say that our branch

length ν = 1, and so Pdifferent(1) = 0.184. In that case, with

our one branch tree above, the probability of the base a by

itself is 0.25, and the probability of the change to c is 0.184,

and so the probability of the whole tree is 0.046. Had we

started with c the result would have been the same, as we

used a reversible model.

We can try to calculate the likelihood of another one-

branch tree, this time with more data. The data alignment

that we will use will be

one ccat

two ccgt

and again we will use a branch length of 1. For this calcu-

lation we need the probability of a base staying the same at

a branch length of 1, and that is Psame(1) = 0.448. We can

start with sequence one, and using the composition (often

notated as π, eg πc), the Psame, and the Pdifferent, we can

calculate the probability of the tree, as

= πc Pc→c πc Pc→c πa Pa→g πt Pt→t

= 0.25 × 0.184 × 0.25 × 0.184

× 0.25 × 0.448 × 0.25 × 0.184

= 0.0000645

Now we have a likelihood of our tree at a branch length

of 1 hit/site. Our data matrix has 3 out of 4 sites that are

constant, and only 1 out of 4 change, so a branch length of

1 seems long. We can calculate the likelihood of the tree at

various branch lengths and plot them.

branch length likelihood

0.0 0.0000000

0.2 0.0001281

0.4 0.0001326

0.6 0.0001088

0.8 0.0000840

1.0 0.0000645
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We can use numerical approximation to find the ML

branch length, which is at 0.304099 hits/site, at which the

likelihood is 0.000137. There was only 1 of the 4 posi-

tions that had an observable change, which would make

the branch length 0.25 if there were no hidden changes.

This model is telling us that the maximum likelihood is a

little more than 0.25, implying that it assumes that there

are hidden changes.

We can check that PAUP gets it right.

#NEXUS

begin data;

dimensions ntax=2 nchar=4;

format datatype=dna;

matrix

A ccat

B ccgt;

end;

begin paup;

set criterion=distance;

lset nst=1

basefreq = equal;

dset distance=ml;

showdist; [got 0.30410]

end;

We can find ML branch lengths described above, and

we can optimize other model parameters as well. In this

example, the ML estimate for κ is 2.2, at which the log

likelihood is -8333.0

.

κ
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-8340

-8335

-8330

In molecular phylogenetics in practise, the data are an

alignment of sequences. On every tree, we optimize model

parameters and branch lengths to get the maximum likeli-

hood. We are probably most interested in the ML topology,

but we need to deal with these extra “nuisance parame-

ters”. Each site has a likelihood, and the total likelihood is

the product of the site likelihoods. That is usually a very

small number! –too small for computers, and so we use

the sum of the log of the site likelihoods. The maximum

likelihood tree is the tree topology that gives the highest

(optimized) likelihood under the given model.

Here is an incomplete list of phylogenetics programs

that use ML –

• PAUP*

– $$, not open source, fast, well tested and de-

bugged, DNA only

• Phylip, especially proml

• puzzle, aka Tree-Puzzle (Uses quartet puzzling)

• phyml, very fast, has a web server

• RAxML, very fast

• TreeFinder, very fast, not open source

• PAML

• p4

• HyPhy

References
• Swofford, Olsen, Waddell, and Hillis, 1996. in Hillis et

al, Molecular Systematics.

• Felsenstein 2004. Inferring Phylogenies

4 Simple models of evolution

4.1 Models for likelihood calculations

• A model is an attempt to describe the important as-

pects of the underlying process that might have gen-

erated the data.

• A model is a mental picture of the way that you think

that things might work.

• For likelihood, we need models that allow you to cal-

culate the probability of data

– JC, F81, etc: yes

– LogDet: no

– Parsimony: yes?

• We model sequence change as a continuous time

Markov process

4.2 Simple models of DNA evolution

Models in PAUP et al. are described in terms of

• Rate matrix

• Composition

• ASRV (among-site rate variation)

For example, in Paup, we might describe a model for

DNA as

lset nst=2 tratio=3.4 basefreq=empirical rates=equal;

4
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4.3 The number of parameters

• We need to keep track of the number of free parame-

ters in the model

• We use that number to compare models

4.4 Rates of change between bases

• RMatrix, the rate matrix showing rates of change be-

tween bases

• PAUP and MrBayes use nst, the number of substitu-

tion types, to describe the type of rate matrix for DNA.

The number of parameters is nst minus 1

• JC and F81 are nst=1, with no free rate matrix param-

eters

• It is assumed in JC and F81 that the rate of change

among bases is equal

4.5 Different rates in transitions and transversions

• K2P and HKY are nst=2, with a kappa or tRatio

• lset nst=2 tratio=5.7;

• HKY85 ≈ F84 model, both allow different base com-

positions

4.6 General time-reversible rate matrix

• GTR is nst=6, with 5 parameters

• lset nst=6 rmatrix=estimate;

• Symmetrical, so time-reversible

R =









− a b c
a − d e
b d − f
c e f −









4.7 Composition

• lset basefreq=equal

– For JC and K2P

• Specified, lset basefreq=(.1 .2 .3)

– Not generally used

• ML, lset basefreq=estimate

– The best, but can be slow

• Empirical, lset basefreq=empirical

– Fast, often a good approximation of ML

– You would usually use this, or ML if you have

the time

4.8 DNA models

nst=1 nst=2

equal composition JC K2P

unequal composition F81 HKY/F84

4.9 ASRV, among-site rate variation

• pInvar, the proportion of invariant sites (eg GTR+I)

– lset pinvar=estimate;

– A site may be constant, but not invariant, because

it is potentially variable, but has not yet varied.

– ML estimated pInvar will often be less than the

proportion of constant sites.

• Discrete gamma-distributed ASRV

– G, Γ, eg HKY+G or GTR+IG

– One parameter, α, shape parameter

– lset rates=gamma shape=estimate;

4.10 Site-specific ASRV for partitioned data

• Eg for codon positions, or concatenated genes

• Each partition can have a relative rate

– eg third codon positions are fast, second codon

positions are slow

– Average relative rate, over all partitions, is 1

• In PAUP, other parameters (rMatrix etc) are homoge-

neous

• Other programs, (MrBayes and p4) are more flex-

ible with heterogeneous data, and allow different

datatypes, rMatrices, composition, and ASRV in dif-

ferent partitions.

• A “modeltest”-like approach to testing all possibilities

would be difficult

4.11 Empirical models for protein sequences

• 20 × 20 rate matrix

• There are usually too few data with which to estimate

the 189 rate matrix parameters needed

• It would be too slow

• Reasonable compromise is to make a rate matrix from

a large data set, and apply it to your data

• Dayhoff78, JTT, WAG, MTREV, ...

• Generally use empirical composition, based on your

data

5
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4.12 Number of parameters

rate matrix

JC, F81 none

K2P, HKY, F84 1

GTR 5

Restrictions of GTR 2 – 5

protein ignore

composition

equal none

ML or empirical DNA 3

Protein 19

ASRV

pInvar 1

GDASRV 1

5 Gamma distributed among-site rate variation

J
ust as there are fast genes and slow genes, there are fast

sites and slow sites within genes. Sites differ in how

much they are free to vary. A site may be under strong

selection and highly constrained; other sites, such as third

codon positions, might be relatively unconstrained.

If we could reliably separate the fast sites from the slow

sites and analyse the two sets separately, ideally we would

get the same tree topology, but the branch lengths would

be proportionally bigger in the fast sites. An example

might be to separate the first and second codon sites of

a protein-coding gene and analyse them separately from

the third codon position.

.

.
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B
C

D

E

F
G

.

.
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B
C

D

E

F
G

Tree made using Tree made using

slow sites only fast sites only

We could then analyse both sets of sites together in a

single analysis using a site-specific ASRV strategy. This

strategy is often used with separate codon positions, and

with different genes in an analysis with a few genes. It

generally forces the branch lengths in the partitions to be

proportional. The slow sites partition would have a slow

partition rate, and the fast partition would have a fast par-

tition rate. These partition rates can be found from the

data by ML. These partition rates can be thought of as

branch length multipliers, where the average of the mul-

tipliers is 1. Using this strategy gives a much better fit

of the model to the data; not using this strategy forces all

sites to be analysed with a one-size-fits-all branch length

that is a compromise between the slow and fast rates, and

fits neither one well.

The problem with this is that there is usually too much

uncertainty in the separation of the sites into slow and fast

categories. One very clever strategy that can be used here

is to apply a mixture model. In this sort of model we do not

separate the data into partitions, but instead we analyse

every site as if it was in each rate category, and average the

results.

If we look at the relative rates of sites in different genes

we can notice that for some genes there is extreme ASRV,

with many very slow sites, and a few sites that are very

fast. In other genes there is a smaller range, where all

the sites are more or less close to the average rate. To ac-

commodate this variation in ASRV, it has been proposed

that we model ASRV based on a gamma distribution. The

gamma (or Γ) distribution is usually described with 2 num-

bers, α and β, that define the shape and mean of the distri-

bution, but for our purposes we always want the mean to

be 1, and so we only need the shape parameter α. That

mean of 1 is the average branch length multiplier, and

the fast and slow sites are relative to it. The shape of the

gamma curve changes widely depending on α. For small

values of α the curve is “L”-shaped, and for larger values

it is a hill centered on 1. There is nothing compellingly bi-

ological about describing ASRV this way, but it does allow

a wide range of rate-shapes with only a single parameter.

That parameter is usually a free parameter in our mod-

els, and so it does not need to be provided, as it can be

estimated from the data by ML.
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It is possible to do the analysis by integrating over the

site rates of the continuous gamma density, but it is just as

good and much faster to use a discrete approximation to

the continuous curve. These strategies were developed by

Ziheng Yang in the mid-1990’s. The idea is that we can ap-

proximate the continuous curve by dividing up the curve

into a number of discrete categories, and then we only

need to average over those categories rather than integrat-

ing over the continuous curve. Four categories is usually

considered to be sufficient.

PAUP will tell you the borders and the means of the

categories with the gammaplot command. For example, for

the gamma curve where α = 1, the output from gammaplot

is

category lower upper rate (mean)

-------------------------------------------------

1 0.00000000 0.28768207 0.13695378

2 0.28768207 0.69314718 0.47675186

3 0.69314718 1.38629436 1.00000000

4 1.38629436 infinity 2.38629436

which we can plot as

6
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The mean of the mean rates is 1.0. We can show how the

calculation works using an example, which we can analyse

using a JC+G model.

7 50

A ttctaacgggacagtgcgcccactcacgcacctggtcactgtatgcgagt

B tgcgaaggtgctattgcgagcattcacgcagatggtaactgtatgtgaga

C tgcgaaggtgttattgcccacattcgcgcggaaggtaacactatgtgaga

D tcccatagcgacatggcgcatactgactcctatggatactgtatgcgagt

E tgcgaaggcgacattgcgcacattcacgcatatggttactgtacgtgagt

F tgcgaaggcggcattgcgtccattcacccgcatggagactttatgtgaga

G tgcgaagtcgacattacgctcttttacgcacagggtcactttatgggaca

* *

13131232314212221234222132131332311241123112131122

In these data above, the last line shows the number of

different character states in the alignment column. This

should imperfectly reflect the site rate. If we analyse these

data on a particular tree with a JC model, the log likeli-

hood is -307.57; under the JC+G model, with a shape of

α = 1, it is -305.70, a slight improvement.

We will look at site 1 (all t) as an example of a slow

site, and site 11 (all 4 nt) as an example a fast site. With

no gamma model, these site likelihoods are 0.0848452 and

0.0000111865, respectively, and with the gamma model

they are 0.117246 and 0.0000150721.

site rate category site rate likelihood

1 1 0.137 0.215112

2 0.477 0.148608

3 1.000 0.084845

4 2.386 0.020420

mean 0.117246

11 1 0.137 0.0000000628

2 0.477 0.0000019392

3 1.000 0.0000111865

4 2.386 0.0000471000

mean 0.0000150721

Here we average over the states of our uncertainty, and es-

timate a site rate that gives a better fit of the model to the

data. The slow category contributes most to the slow site,

and the fast category contributes most to the fast site. This

strategy comes at a cost of 4 times the likelihood calcula-

tions, and 4 times the memory requirement.

6 A survey of some other models

6.1 Codon models

• For DNA sequences of codons of protein-coding genes

• Simplifications of 64 × 64 matrix, so far fewer param-

eters to estimate

• We have two kinds of change

– Synonymous, where the aa does not change

– Non-synonymous, where the aa changes

6.2 Identifying selection using codon models

• dS is the number of synonymous substitutions per

synonymous site

• dN is the number of non-synonymous substitutions

per non-synonymous site

• ω = dN/dS measures selection at the protein level

ω = 1: neutral evolution

ω < 1: purifying (negative) selection

ω > 1: diversifying (positive) selection

6.3 Other mixture models

• Gamma ASRV is one kind of mixture model, made to

accommodate heterogeneity of rates among sites

• We can have other mixture models, to accommodate

– heterogeneity of composition among sites

– heterogeneity of the rate matrix among sites

• Note that you do not divide the data

– rather, for each site, you average over the possible

states

6.4 Covarion model

• A generalization of the pInvar model

• A site can change from invariable to variable, and back

• Biochemically realistic

• A site at a given node in the tree can be either on or

off

– We cannot know whether it is on or off, so we

evaluate assuming both

• Two parameters: off → on, and on → off

6.5 Tree-heterogeneous models

• Most models are homogeneous over the tree

• The process of evolution can and does differ over the

tree

– This is easy to see when homologous genes differ

in composition

7
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• It can lead to recovery of erroneous trees if you use a

tree-homogeneous model (as most are)

• The heterogeneity over the tree can be modelled

– Better fit of the model to the data

– Better trees

6.6 Recoding data

• Some parts of sequences become saturated faster than

others

• Saturated sequences are noisy and often biased and

difficult to model

• One approach is to recode the data

• RY-recoding: A & G → R, C & T → Y

– A 2-state model, transversions only

• Grouped aa’s: C, STPAG, NDEQ, HRK, MILV, FYW

– This allows a 6 × 6 rate matrix with free parame-

ters

6.7 Modeling RNA stems

• We have A:U, G:C, and G:U stable pairs

• Also mismatches (A:G etc)

• Also reversals (eg A:U 6= U:A)

• Recode into N-state models

– 16: all combinations

– 6: only stable pairs, ignore mismatches

– 7: mismatches are lumped together as one state

6.8 Clock models and molecular dating

• There is obviously some truth in a clock-like be-

haviour of evolutionary change

– Can we use that to date divergences?

– Calibrate it with fossils

• The strict molecular clock rarely applies

• Relaxed clock models work better

• Many sources of error

• Widely used, but there is vocal debate over its validity

7 Choosing a model

• Generally, don’t “assume” a model

• Rather, find a model that best fits your data.

7.1 Parameters

• Models differ in their free, ie adjustable, parameters

• More parameters are often necessary to better approx-

imate the reality of evolution

• The more free parameters, the better the fit (higher the

likelihood) of the model to the data. (Good!)

• The more free parameters, the higher the variance,

and the less power to discriminate among competing

hypotheses. (Bad!)

• We do not want to “over-fit” the model to the data

7.2 What is the best way to fit a line (a model)
through these points?
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7.3 Choosing a phylogenetic model by ML

• Start with a reasonably good tree

– The neighbor-joining tree will do fine

• Evaluate the likelihood (ML for that tree) for all the

models that you want to test

• No tree search involved, so it is fast

• Choose the best model

– With enough parameters, but not too many

– This may be the ML model, or not

7.4 Choosing a model

• We want to choose a model that gives the highest like-

lihood, but penalized by the number of free parame-

ters

• This is formalized in the AIC, the Akaike Information

Criterion

– −2 log L + 2n

– where n is the number of free parameters in the

model

• We make a table of AIC values and the best choice of

model is the one with the lowest AIC value

8
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• Informally, the AIC says that adding a useless param-

eter generally increases the log likelihood by about 1

unit.

– So if adding a parameter increases the log likeli-

hood by more than 1, it is not useless.

7.5 A table of AIC values

ln L n −2 ln L + 2n

JC -5211.7 0 10423.4

F81 -5166.6 3 10339.2

HKY85 -5125.0 4 10258.0

GTR -5092.5 8 10201.0

GTR+I -4946.1 9 9910.2

GTR+G -4937.8 9 9893.6 ⇐
GTR+IG -4937.2 10 9894.4

• We penalize each likelihood by the number of free pa-

rameters

• By the AIC, GTR+G is the best model, even though

the GTR+IG had a higher likelihood

7.6 How many parameters?

rate matrix composition ASRV total
Model parameters parameters parameters parameters

JC69 0 0 0 0

F81 0 3 0 3

HKY+G 1 3 1 5

TN93 2 3 0 5

GTR+IG 5 3 2 10

JTT+F 0 19 0 19

WAG+IG 0 0 2 2

7.7 Modeltest

D. Posada and K. A. Crandall 1998. “MODELTEST: testing

the model of DNA substitution” Bioinformatics 14: 817-818.

• Automates the process of choosing a model

• Uses PAUP to do the likelihood calculations

• Uses the AIC and the likelihood ratio test

• Site-specific rate variation and clock models are not

covered

• See also Prottest and Modelgenerator

7.8 Does the model fit?
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Imagine that we have some complex data, but all we

have available are two models – linear and quadratic. We

can choose the quadratic model as the better of the two

available, but even though it is the best it does not fit well.

What is really needed is a better model. In the case of this

scatterplot it is easy to see the inadequacy, but it would be

less obvious with phylogenetic data. When you choose a

model, you often “max out” and choose the most complex

model available – often the GTR+IG model. That should

make you suspect that you might have chosen even better

models had one been available.

We should apply statistical methods such as posterior pre-

dictive simulation to assess the fit of the model to the data.

However, the question of whether the data fits is rarely

even asked, let alone answered.

8 Simulating evolution

A
model is your idea of the way that you think that

things work. Armed with this it is possible to simu-

late sequences and evolve those on a tree to simulate evo-

lution. This can be useful to test the methods and models.

When you simulate data you simulate on a given model

and on a given tree, and since you know these you can use

the simulated data to test methods. You can also use simu-

lations to test models; if you simulate data on a model that

you are using for your real data and the simulated data are

not similar to the original data, you can conclude that the

model does not fit.

Simulation can help us to visualize evolutionary ideas.

For example we can look a the problem of sequence satu-

ration. Saturation is loss of phylogenetic signal due to su-

perimposed mutations. When sequences become saturated

phylogenetic signal has been randomized and trees that

are made from those data are not reliable. One way to visu-

alize saturation is to plot p-distances vs model-based sim-

ulation or inferred distances between all sequence pairs.

P-distances are the simple face-value differences between

sequences, calculated by the number sequence differences

divided by the sequence length. With the JC model, the

maximum p-distances will be 0.75, which we will see if

we compare two random sequences with equal base fre-

quencies. It is 0.75 and not 1.0 because even in random

sequences 1/4 of the bases will happen to be the same in

both sequences compared.

If we make random sequences and evolve those se-

quences based on the JC model for ever increasing dis-

tances, the p-distances between the original and the

evolved sequences increase at first, but eventually level off

when the sequences become saturated, and the p-distances

can no longer increase. With the JC model saturation hap-

pens when the sequences have been mutated by about 2.5

or 3 hits per site.

If we evolve the sequences under a JC+G model, that is

with among-site rate variation, the onset of saturation is

delayed. Here the mutations are being concentrated in the

fast sites, and they would become well saturated early on,

but the slow sites are relatively untouched.

9
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You can visualize saturation in real data in the same way,

by plotting pairwise p-distances vs model-based distances

(such as the sum of the branch lengths between taxon pairs

in a ML tree). If the plot shows the tell-tale plateau then

you have saturation.
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9 Bayesian phylogenetic analysis

P
hylogenetic analysis using a Bayesian approach has

become very widely used in the few years since its in-

troduction. It has a acceptable speed, and can handle big

datasets with parameter-rich models. Here we will look at

differences between ML and Bayesian approaches in gen-

eral, and in the next section we will look at Bayesian phy-

logenetic methods in practice.

One of the main ways that the Bayesian approach dif-

fers from ML is that the Bayesian approach deals with un-

certainty in a more explicit way. For example, nuisance

parameters such as branch lengths and model parameters

will each have some uncertainty associated with them. The

ML approach is to find the ML values for all of those nui-

sance parameters, but the Bayesian approach is to retain

that uncertainty in the result. This means that the result

of a Bayesian analysis is usually not a single point, but

rather is a probability density or distribution. Being a dis-

tribution might mean that it is awkward to summarize the

result to pick out the message that you want to get from

it, but even so it can be considered an advantage over ML.

While in ML a picture of the uncertainty involved is often

done after the analysis, often laboriously, as in for example

the bootstrap, in a Bayesian analysis the uncertainty is part

of the initial result.

Another difference is that Bayesian analysis explicitly re-

lies on prior probabilities. The prior probability might be

known with confidence, but for many problems we have

only a vague idea of what the prior probabilities are, and

since a Bayesian analysis forces us to be explicit about them

we may have to make something up. This can be consid-

ered both a strength and a weakness, and is certainly con-

troversial.

Of course the implementation details differ between

Bayesian and ML analysis. ML uses hill-climbing algo-

rithms to get the result to any required precision, while

Bayesian analyses generally require an approximating al-

gorithm such as the MCMC. From a computational point

of view, the Bayesian MCMC can handle more parameters

than ML, which means that you can solve bigger problems

with more realistic models.

While ML expresses itself in terms of the probability of

the data given the model, the Bayesian approach expresses

the result as the probability of the model given the data.

The probability of the model, or hypothesis, is more likely

what the investigator wants, and this directness is one of

the main attractions of Bayesian analysis.

9.1 Rare diseases and imperfect tests

Lets say that we are testing for a disease – Bad Spelling

Disease, or BSD, and we know that 1% of the population

suffer from it. We have a test for BSD that is fairly accurate

– if you suffer from BSD then the test will tell you so 90%

of the time. The test sometimes gives false positives – if

you do not suffer from the disease, the test will tell you

that you do suffer from it 10% of the time. Lets say that

one of your patients tests positive for BSD. What is the

probability that they actually have the disease?

It is perhaps easiest to explain it if we imagine giving

the test to 1000 people. Of those, 10 will have the disease,

and 9 will test positive. The remaining 990 do not have the

disease, but 99 of them will test positive anyway. So after

testing 1000 people we get 108 positives, but we know we

only have 9 true BSD sufferers in those 108 people. So the

probability of having BSD if you test positive is only 9/108,

about 8%. Thats all!

The surprisingly low probability depends mostly on the

low background frequency of BSD in the population. That

is the prior probability of BSD, that is the probability that

you would expect somebody to have BSD before you see

the result of the test. The probability of somebody having

BSD if they test positive, 8%, is the probability after you

see the test result – it is the posterior probability. We have a

prior opinion, and we modify our opinion in the light of

new information. Our prior opinion is a major player in

the calculation; we cannot base our calculation only on the

test results. Our prior opinion is not replaced by the new

information provided by the test, rather it is adjusted by it.

This is formalized in Bayes’ Theorem. Bayes’ Theorem

says that the relative belief that you have in some hypoth-

esis given some data is the support that the data provide

for the hypothesis times the prior belief in the hypothesis,

divided by the support times the prior for all hypotheses.

Before you give a test to somebody, you think that they

might have BSD with a probability of 1%. If they test pos-

itive, you use that information to adjust your estimate to

8%. But you want to be more sure, so you give them an-

other spelling test. Then, starting from your current esti-

mate of 8%, you incorporate the result of the new test to

adjust your estimate up or down. If they test positive on

that second test, then you will be somewhat more sure that

they are a BSD sufferer, but you still won’t be completely

sure based on the results of only 2 imperfect tests.

As you do more tests on your patient, the accumulated

test results tend to overwhelm the original prior of 1%. If

you have a lot of test results then even if your original prior

had been somewhat wrong it will not matter much. If you

do not have many data then the result may be noticeably

influenced by the prior, but if you have a lot of data then

the result will be mostly data-driven.
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P(BSD|⊕) =
P(⊕|BSD)P(BSD)

P(⊕)
=

0.009

0.108

= The posterior probability of

having BSD given a positive test.

P(⊕|BSD) = The likelihood. The probability

of a positive test if you have

BSD. The probability of true

positive tests, 0.9

P(BSD) = The prior probability of BSD,

0.01

P(⊕) = The marginal likelihood. The

probability of getting the data,

a positive test, under all cir-

cumstances. That would include

true positives and false positives.

= P(⊕|BSD)P(BSD)+
P(⊕|healthy)P(healthy)

= (0.9 × 0.01) + (0.1 × 0.99)

= 0.108

P(⊕|healthy) = The probability of a posi-

tive test if you are healthy. The

probability of a false positive, 0.1

P(healthy) = The prior probability of not

having BSD, 1 − P(BSD) = 0.99

9.2 Prior distributions and nuisance parameters

In the analysis above, lets say that we are not really sure

about our point estimate of the incidence of BSD in the

population. While most studies place the incidence of BSD

at 1–2%, one study places it at 5%, while another contro-

versial study places it at over 10%. We should expect some

uncertainty in those estimates — after all, those estimates

are based on spelling tests like ours, and we know they are

imperfect. So our prior probability is no longer a single

point at 1% — it now becomes a prior distribution. To do

the calculations we need to be explicit about it, and de-

scribe the distribution completely. This may mean choos-

ing a uniform range, or perhaps, if it seems more suitable,

a curve such as the beta distribution. If we do that, then

when we calculate the posterior probability it will also be a

distribution. Now if you were a doctor and one of your pa-

tients tested positive for BSD, what would you tell them?

The complete answer, the whole posterior probability dis-

tribution, might be not be welcome by the patient, who re-

ally just wants a simple answer. You might instead choose

to give your answer as a range or an average taken from

the distribution.

If you are not sure of the prior, you might think that to

be fair and objective you should assume a uniform prior

probability from 0 – 100%. However, that might not be

satisfactory, as then the posterior distribution will also be

from 0 – 100%. If you then choose to state the posterior as

a range, you might find yourself telling your patient that

based on their positive test they have a 0 – 100% probability

of having BSD — hardly a satisfactory answer.

The test for BSD might involve nuisance parameters

such as the age or background of the patient that might

affect their ability to spell, and we can formulate a model

involving these parameters to allow us to calculate the like-

lihood of the data in the BSD test under various conditions.

The probability of the data given the model is the likeli-

hood, and it will be a multidimensional distribution. The

nuisance parameters will all have prior distributions, and

so the prior probability will be a multidimensional distri-

bution as well.

10 Bayesian phylogenetic analysis in practice

P
hylogenetic applications of a Bayesian approach will

use complex models and have many parameters, and

are too big to calculate analytically. The likelihoods and

the prior probabilities at various points in the distribution

are relatively easy to calculate, but the marginal likelihood

of these multidimensional distribution problems becomes

complex and intractable. Fortunately there are ways to

approximate the posterior distribution that do not require

calculation of the marginal likelihood, and the most com-

mon way uses a Markov chain Monte Carlo (MCMC) ap-

proach using the Metropolis-Hastings algorithm. This ap-

proach depends only on making posterior probability ra-

tios, and so while the likelihoods and priors need to be

calculated, the marginal likelihoods in the ratio cancel out,

and need not be calculated.

The MCMC is a computational machine that takes sam-

ples from the posterior distribution. The more samples you

let it take, the better it’s approximation, like pixels build-

ing up a picture until you can recognize it. It is able to

handle complex models and lots of parameters, and so we

can make our models realistic. The result of an MCMC

is a large number of samples, and that leaves us with the

easily surmountable problem of how to digest and sum-

marize those samples to extract some meaning. A bigger

and more difficult problem is to find out whether it has

run well, and whether it has run long enough.

We can interpret the results in a very direct way. For

example, the highest posterior probability tree is the one

that gets sampled most often, and the posterior probability

of a split is simply its frequency in the samples.
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As with any Bayesian analysis, we absolutely need to

have prior probabilities for all our parameters. However,

usually we have so much data that the prior gets over-

whelmed by the likelihood – so generally we don’t need to

worry about priors much. Rarely, if the data are few or not

decisive, then the prior may have an influence and we may

need to pay closer attention to it.

10.1 Reference

Mark Holder and Paul O. Lewis. 2003. Phylogeny esti-

mation: Traditional and Bayesian approaches. Nature Re-

views Genetics 4: 275–284.

10.2 History of Bayesian analysis in phylogenetics

• The first papers and demonstration programs for phy-

logenetics were in the mid-1990’s

• The first practical program was BAMBE, by Larget and

Simon, in 1999

• In 2000 MrBayes was released, a program by John

Huelsenbeck and Fredrik Ronquist

• Others

– phase, p4, BEAST, BayesPhylogenies,

PhyloBayes

10.3 Bayesian analysis in practice

• It is practically impossible to do Bayesian calculations

analytically

• Rather, the posterior probability density is approx-

imated by the Markov chain Monte Carlo (MCMC)

method

10.4 Markov chain Monte Carlo

• After the chain equilibrates, it visits tree space and pa-

rameter space in proportion to the posterior probability

of the hypotheses, ie the tree and parameters.

• We let the chain run for many thousands of cycles so

that it builds up a picture of the most probable trees

and parameters

• We sample the chain as it runs and save the tree and

parameters to a file

• The result of the MCMC is a sampled representation

of the parameters and tree topologies

• The samples mostly come from regions of highest pos-

terior probability

10.5 How the MCMC works

• Start somewhere

– with defined model, topology, branch lengths

– That “somewhere” will have a likelihood and a

prior

– Not the optimized, maximum likelihood

• Randomly propose a new state

– Maybe adjust one of the branch lengths

– If the new state has a better likelihood × prior,

the chain goes there

10.6 If the proposed state has a worse probability

• Calculate the posterior probability ratio between the

current and the proposed states. That ratio will be

between 0 and 1.

• Choose a random number between 0 and 1. If the

random number is less than the the likelihood ratio of

the two states, then the proposed state is accepted.

• If the likelihood of the proposed state is only a little

worse, it will sometimes be accepted

• This means that the chain can cross likelihood valleys

10.7 State → state → state → . . .

• Proposals are made, sometimes accepted, often re-

jected

• Branch lengths, topology, and model parameters

change

• We save samples to digest later

• The start of the chain is random and poor, so the first

proposals tend to make the probability much better

quickly.
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10.8 MCMC likelihood plot
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10.9 MCMC burn-in

• The chain only works properly after it has converged

or equilibrated

• The first samples (100? 1000?) are discarded as “burn-

in”

• You can plot the likelihood of the chain to see if it has

reached a plateau

– Only use the samples from the plateau

– This is a widely-used but unreliable way of as-

sessing convergence

10.10 MCMC result

• Sampled trees are written to a file during the chain

• We can summarize those samples

– Trees in the file can be analyzed for tree parti-

tions, from which a consensus tree can be made

∗ The proportion of a given tree partition in

the trees is the posterior probability of that

partition

– The proportion of a given tree topology (after

burn-in) in these trees is the posterior probability

of that tree topology

• Other parameters are written to a different file

• These continuous parameters may be averaged, and

the variance calculated

10.11 Splits, aka tree bipartitions

• We can represent trees as splits, in ‘dot-star’ notation.

ABCDEF

..****

..***.

..**..

• By convention the first position is always a dot

• Terminal branches may or may not be included

ABCDEF

.*****

..*...

10.12 Splits ⇔ trees
.

A

B

C

D

E

F

⇔
ABCDEF

..****

..***.

..**..

10.13 Making a consensus tree from splits
.A

B

C

D

E

C

A

B

D

E

⇒

ABCDE

.**** 3

.*... 3

..*.. 3

...*. 3

....* 3

..*** 2

...** 2

.*.** 1

.*.*. 1

⇒

E

A

B

C

D

C

D

E

B

A

10.14 Thinning the chain

• Often proposed states are not accepted, so the chain

does not move

• This is not good for getting a good picture of the dis-

tribution

• Or perhaps the proposals are too near the current

state, causing autocorrelation, which decreases the ef-

fective sample size

• Rather than sampling the chain at every generation,

the chain is sampled more rarely, eg every 10 or every

100 generations.

• These sampled states will more likely be different

from each other, and so be more useful.

10.15 Assessing convergence

• Commonly:

– plot the likelihood

– plot other parameters

– Can be an unreliable indicator of convergence
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• Do multiple runs, starting from different random trees

and assess agreement

– PSRF, potential scale reduction factor

– ASDOSS, averaged standard deviation of split

support (or split frequency)

10.16 Two runs

support support standard

split I II deviation

..**** 0.90 0.95 0.035

...*** 0.85 0.80 0.035

....** 0.60 0.80 0.141

..**.* 0.30 0.20 0.071

..*.** 0.15 0.01 0.099

.*.*** 0.10 0.15 0.035

.**..* 0.07 0.06 0.007

.*.*.. 0.06 0.07 0.007

.***.. 0.05 0.04 0.007

average standard deviation = 0.049
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The average standard deviation in split support (split

frequency) (ASDOSS) summarizes the topological agree-

ment between 2 runs in the form of a single number.

10.17 ASDOSS

• MrBayes now does 2 separate runs by default to en-

courage this strategy

• The cumulative average standard deviation of the dif-

ference in split supports (or split frequencies) (AS-

DOSS) between the two runs is calculated periodically

and printed out.

• This is a good topology convergence diagnostic. But

how low is low enough?

• Where it stabilizes depends on the data

10.18 Prset

• The prior probability should usually be a distribution

– Uniform

– Exponential

• Can also be fixed to single values

– Generally not a good idea

– Generally we fix the rate matrix for proteins, eg

prset aamodelpr=fixed(wag)

10.19 Acceptance rates
Acceptance rates for the moves in the "cold" chain of run 1:

With prob. Chain accepted changes to

53.40 % param. 1 (revmat) with Dirichlet proposal

8.42 % param. 2 (state frequencies) with Dirichlet proposal

97.94 % param. 4 (prop. invar. sites) with sliding window

84.28 % param. 5 (rate multiplier) with Dirichlet proposal

26.85 % param. 6 (topology and branch lengths) with extending TBR

18.15 % param. 6 (topology and branch lengths) with LOCAL

Acceptance rates for the moves in the "cold" chain of run 2:

With prob. Chain accepted changes to

54.08 % param. 1 (revmat) with Dirichlet proposal

7.12 % param. 2 (state frequencies) with Dirichlet proposal

98.07 % param. 4 (prop. invar. sites) with sliding window

84.12 % param. 5 (rate multiplier) with Dirichlet proposal

28.47 % param. 6 (topology and branch lengths) with extending TBR

17.33 % param. 6 (topology and branch lengths) with LOCAL

• We want good mixing

• Proposals that take baby steps that are too close to the

current state will tend to have high acceptances

• Proposals that take giant steps that are too far from

the current state will tend to have low acceptances

• Rule of thumb— aim for 10% – 70% acceptance for

mixing.

• Can change tuning parameters in MrBayes with props

10.20 MCMCMC

• MrBayes introduced Metropolis-coupled MCMC

• Several chains are run in parallel

• All but one is “heated”

– Increases the acceptance probabilities

– Allows easier crossing of likelihood valleys

– Heated chains act as “scouts” for the cold chain

(thanks to Paul Lewis for this analogy)

• Chains are allowed to swap with each other

• Only the cold chain is sampled

10.21 Problems with Bayesian analysis

• High posterior probability can be given to poorly-

supported splits

– Eg a Bayesian analysis can give you well-

supported resolution from a true star tree

• Can be difficult to be sure it has converged

– Occasionally we see jumps in the likelihood long

after apparent convergence

• In some circumstances the prior probability can influ-

ence the result
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