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Abstract.—Using a simple example and simulations, we explore the impact of input tree shape upon a broad range of
supertree methods. We find that input tree shape can affect how conflict is resolved by several supertree methods and that
input tree shape effects may be substantial. Standard and irreversible matrix representation with parsimony (MRP), MinFlip,
duplication-only Gene Tree Parsimony (GTP), and an implementation of the average consensus method have a tendency
to resolve conflict in favor of relationships in unbalanced trees. Purvis MRP and the average dendrogram method appear
to have an opposite tendency. Biases with respect to tree shape are correlated with objective functions that are based upon
unusual asymmetric tree-to-tree distance or fit measures. Split, quartet, and triplet fit, most similar supertree, and MinCut
methods (provided the latter are interpreted as Adams consensus-like supertrees) are not revealed to have any bias with
respect to tree shape by our example, but whether this holds more generally is an open problem. Future development and
evaluation of supertree methods should consider explicitly the undesirable biases and other properties that we highlight. In
the meantime, use of a single, arbitrarily chosen supertree method is discouraged. Use of multiple methods and/or weighting
schemes may allow practical assessment of the extent to which inferences from real data depend upon methodological biases
with respect to input tree shape or size. [Consensus; parsimony; phylogeny; tree similarity; Tree of Life.]

There is considerable interest in phylogenetic su-
pertrees. To date, most practical works have used ma-
trix representation with parsimony (MRP) to combine
the information in a set of input trees with nonidenti-
cal leaf sets into a larger-scale phylogeny including all
the leaves (Baum, 1992; Ragan, 1992; Sanderson et al.,
1998; Bininda-Emonds et al., 2002). More generally, su-
pertree methods take as input a set of phylogenetic trees
and return one or more phylogenetic supertrees that
represent the input trees or an inference based upon
them. Characterized this way, supertree methods include
the consensus methods developed for use in the special
case where all input trees have the same leaf set (Steel
et al., 2000), and the supertree problem is a generaliza-
tion of the consensus tree problem (Semple and Steel,
2000).

Strict and semistrict supertree methods (e.g., Gordon,
1986; Steel, 1992; Lanyon, 1993; Constantinescu and
Sankoff, 1995; Goloboff and Pol, 2002), like their con-
sensus namesakes, output trees that do not conflict with
any input trees. These methods are conservative in that
they do not resolve conflicts. In contrast, most supertree
methods are, like MRP, more liberal in that they are capa-
ble of resolving or reconciling conflicts among the input
trees.

MRP has been advocated because of its potential to
produce more comprehensive and well-resolved phy-
logenies more efficiently than by assembling and ana-
lyzing ever larger supermatrices (Sanderson et al., 1998;

Bininda-Emonds et al., 2002). Unfortunately, the proper-
ties of most liberal supertree methods, and thus the suit-
ability of the supertrees they yield as stepping-stones
to the Tree of Life, are only poorly understood. It has
been shown that some methods perform well in simula-
tions (e.g., Bininda-Emonds and Sanderson, 2001; Chen
et al., 2003; Lapointe and Levasseur, 2004), but these
studies have only just begun to provide useful compar-
isons of alternative methods (Eulenstein et al., 2004). The
nascent methodological literature includes discussion of
desirable properties of supertree methods (e.g., Bininda-
Emonds and Bryant, 1998; Semple and Steel, 2000; Pisani
and Wilkinson, 2002; Wilkinson et al., 2004), of possi-
ble biases with respect to tree size (e.g., Purvis, 1995a,
Ronquist, 1996) and shape (Wilkinson et al., 2001), and
fundamental limitations on all supertree methods (Steel
et al., 2000). With a steady increase in supertree meth-
ods, there is increasing need for comparative study of the
methods.

Here we use a simple example to investigate the impact
of input tree shape (balance, symmetry) on how conflict
is resolved by 14 liberal supertree methods. We contend
that resolution of conflict should be independent of tree
shape and ask whether methods ever resolve conflict in
favor of relationships in more or less balanced trees in
the absence of any evidential basis for resolving con-
flict in that way. We argue that input tree shape effects
(ITSEs) revealed by our example are related to asym-
metric tree-to-tree distances in the objective functions of
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some supertree methods. In considering the issues raised
by our limited investigations, we make a number of sug-
gestions for the future of supertree construction.

RELATIONSHIPS

Relationships in trees are given by internal branches,
each of which gives a full split of the leaves into two non-
trivial disjoint subsets. For simplicity (and because not
all methods we examine are applicable to unrooted trees)
we consider only rooted trees. In rooted trees, cladistic
relationships are expressed in terms of some leaves (ter-
minal taxa, OTUs) being more closely related to (sharing
a more recent common ancestry with) each other than
to (with) some other leaves (see, e.g., Wilkinson, 1994a).
An internal branch splits the members of a clade from the
nonmembers (including the root), and we refer to such re-
lationships as components. Components may entail less
inclusive relationships. The irreducible cladistic relation-
ship is the resolved triplet (three-taxon statement), which
places two leaves closer to each other than a third (in
practice a resolved triplet is a resolved quartet because a
fourth leaf, representing the root, is implied or included).

Rooted trees can be thought of as sets of resolved
triplets, or as sets of more inclusive relationships, most
commonly the components or the sister-group relation-
ships that they display. Components, like trees, can be
thought of as composite hypotheses of relationships that
can be built up from the irreducible relationships among
triplets of leaves. Trees can also be conceived of as com-
prising sets of additive path-length distances between
pairs of leaves that jointly entail the relationships in the
tree.

A different notion of relationship, due to Adams
(1986), is subset nesting (nesting for short). For a set of
taxa S, a nesting is a subset of taxa that have a more re-
cent last common ancestor than the last common ances-
tor of S. The cladistic information conveyed if we know
that A and B nest within A, B, C, and D is that A and
B are more closely related to each other than they are
either to C or to D or to both, i.e., an ambiguous combi-
nation of otherwise unambiguous cladistic relationships.
Adams consensus trees represent common nestings and

TABLE 1. Supertree methods examined in this work. +, − indicate objective functions that are maximized or minimized, respectively.

Method Representation Objective function

1. Standard MRP Components Fitch parsimony fit of composite matrix to supertree (−)
2. Irreversible MRP Components Camin-Sokal parsimony fit of composite matrix to supertree (−)
3. Purvis MRP Sister groups Fitch parsimony fit of composite matrix to supertree (−)
5. MinFlip Components Number of flips needed to render all input trees compatible with the supertree (−)
4. Split fit Components Number of matrix elements entailed by the supertree (+)
6. Triplet fit Resolved triplets Number of matrix elements entailed by the supertree (+)
7. Quartet fit Resolved quartets Number of matrix elements entailed by the supertree (+)
8. Average consensus EBL distances (EBL) Least squares fit of average matrix to supertree (−)
9. Average dendrogram Ultrametric distances Least squares fit of average matrix to ultrametric supertree (−)

10. MSS EBL distances Weighted sum of absolute differences between each tree and corresponding pruned
supertree

11. MinCut — —
12. Modified MinCut — —
13. GTP (DL) — Number of duplications and losses needed to reconcile all input trees with the supertree
14. GTP (D) — Number of gene duplications to needed reconcile all input trees with the supertree

the polytomies they contain do not have an unambigu-
ous cladistic interpretation (see Wilkinson, 1994a).

SUPERTREE METHODS

We explored 14 distinct supertree methods or impor-
tant methodological variants. The methods are summa-
rized in Table 1 and described here. In the MRP ap-
proach to supertree construction of Baum (1992) and
Ragan (1992), referred to here as standard MRP, binary
coding of the components of each input tree is used
to generate a “pseudocharacter” matrix representation
(MR) of the tree (Farris, 1973). The pseudocharacters or
matrix elements for all source trees are combined, with
leaves that are not present in a given tree scored as miss-
ing entries in the matrix elements for that tree, and the
combined matrix is analyzed with reversible (Fitch or
Wagner) parsimony to produce one or more most par-
simonious MRP supertrees. Irreversible MRP (Bininda-
Emonds and Bryant, 1998) differs only in its use of irre-
versible (Camin-Sokal) parsimony. Purvis MRP (Purvis,
1995a) uses reversible parsimony but matrix elements
represent sister-group relationships rather than compo-
nents. There is one matrix element for each clade and it
distinguishes the members of the clade from the mem-
bers of its sister group (or of all possible sister groups
in the case of polytomies) and the root (MRP outgroup),
with any other leaves scored as missing.

The MinFlip supertree method as used thus far also
uses the component MR (Chen et al., 2003; Eulenstein
et al., 2004). Conflict can be removed from the combined
MR by flipping the scores of individual matrix cells (i.e.,
from 0 to 1 or vice versa). MinFlip supertrees are those
corresponding to matrices in which conflict has been re-
moved with a minimum number of flips. Several authors
have suggested analyzing component MRs with com-
patibility (specifically, clique analysis) in place of par-
simony (e.g., Purvis, 1995b; Rodrigo, 1996; Pisani, 2002).
We call this approach split fit. The objective function max-
imized by split fit supertrees is the number of matrix
elements (components) entailed or displayed by the su-
pertree (i.e., that fit the supertree with no extra steps or
‘’homoplasy”).
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MRs in which each resolved triplet in the tree con-
tributes a matrix element, with other leaves scored as
missing, can be analyzed with parsimony (reversible
or irreversible), compatibility (Wilkinson, 1994b), and
MinFlip methods. All these approaches seek supertrees
that display the maximum number of resolved triplets in
the composite MR. This approach has been called three-
item consensus (Nelson and Ladiges, 1994) and triplet
MRP (Wilkinson et al., 2001), and is referred to here as
triplet fit. Quartet fit (= quartet MRP; Wilkinson et al.,
2001) differs only in the MR, which includes all quartets
rather than only those that include the root.

A variety of supertree methods employ distance MRs
of trees. The average consensus uses least-squares analysis
of the matrix of average pairwise path-length distances
(an average distance MR of the trees), with missing val-
ues that may arise in the supertree context estimated
from the available distances (Lapointe and Cucumel,
1997). The average consensus procedure is the only
method considered here that uses branch length in-
formation when it is available, whereas the examples
considered here are cladograms. To implement the aver-
age consensus, we calculated path lengths assuming all
branches have length of unity (Lapointe and Levasseur,
2004) and refer to these as equal branch length (EBL) dis-
tances. A variant, which we call the average dendrogram
method, was implemented by treating the rooted input
trees as ultrametric matrices (see Lapointe and Legendre,
1995) and using a least-squares algorithm that imposes a
molecular clock. The most similar supertree method (MSS;
Creevey et al., 2004) also uses matrix representations of
EBL path-length distances, but the optimal tree is that
which minimizes a weighted sum of the absolute differ-
ences in path lengths between the supertree and each
of the input trees. This is determined by pruning the
supertree of irrelevant leaves and collapsing redundant
branches for each comparison, with the scores for each
tree divided against the number of pairwise distances to
account for input tree size.

Given a set of compatible input trees, one or more su-
pertrees exist that display all the relationships in all the
input trees. The Aho et al. (1981) algorithm returns the
Adams consensus of the set of such supertrees (Bryant,
1997), which it finds by building a graph representing
all the nestings in the input trees in which each vertex
is a leaf, and an edge connects two vertices if the leaves
are nested in any input tree. If these nestings are com-
patible, this graph is disconnected, and the components
of the graph are grouped in the output tree. An iterative
procedure of rebuilding the graph after restricting the in-
put trees to the appropriate leaves then resolves relation-
ships within each component. The MinCut (Semple and
Steel, 2000) supertree method is an extension of the Aho
et al. algorithm to deal with input tree conflict. Semple
and Steel (2000) simply suggest that if the nestings graph
is fully connected, it be disconnected by making all the
cuts in any minimal cut-set of the graph. Page’s (2002)
modified MinCut method differs in attempting to ensure
that uncontradicted relationships in the input trees are
present in the output trees.

These MinCut methods have a number of desirable
properties, not least that they can be computed in polyno-
mial time. They yield Adams consensus-like supertrees,
which include any nestings that are common to the in-
put trees, but unlike Adams consensus trees they are
not limited to this information (Semple and Steel, 2000).
The Adams-like properties call into question whether the
clusters in MinCut supertrees should be interpreted as
components, as in other supertrees, or as nestings, as in
Adams consensus trees, or as some ambiguous mixture
of the two. We prefer to interpret MinCut supertrees con-
servatively, like Adams consensus trees, but we expect
some practitioners will interpret them as any other su-
pertree and thus we explore both interpretations.

Gene tree parsimony (GTP; Slowinski and Page, 1999)
methods depend on the idea that incongruence between
two gene trees could be due to a limited number of molec-
ular events, such as gene duplication and subsequent
gene loss or lateral gene transfer. We can use the num-
ber of these events needed to explain the difference be-
tween input trees as an optimality criterion for choosing
between supertrees. GTP defines the best supertrees as
those that imply the minimum number of cophylogenetic
events—for ease of computation, restricted to either gene
duplications alone (D) or both gene duplications and
gene losses (DL)—on the input trees. Parsimony-based
reconciled tree methods are used to infer the events (Page
and Charleston, 1997; Slowinski and Page, 1999). Unlike
other supertree methods, GTP invokes specific biolog-
ical explanations for incongruence between input trees
(Cotton and Page, 2004).

METHODS

The (dis)similarities of pairs of trees were quantified
with the symmetric difference metric (SD; Robinson and
Foulds, 1981) and explicitly agree (EAT; Thorley and
Wilkinson, 2000). The former is the sum of the compo-
nents present in one but not both trees and is negatively
correlated with similarity. The latter is the proportion
of triplets that are resolved identically in the two trees,
and was originally defined as a distance as for quartets
by Estabrook et al. (1985). As used here, it is positively
correlated with similarity and, because there are more
resolved triplets than components in most trees, it is a
potentially more discerning measure than SD, and one
that is not as dramatically affected by instability in a sin-
gle leaf.

EAT values were determined and summarized using
a program written by SRH. Pseudocharacter MRs were
prepared and some EAT values were determined with
RadCon (Thorley and Page, 2000). PAUP∗ (Swofford,
1998) was used for exact (Branch and Bound) Fitch and
irreversible parsimony (MRP, triplet and quartet fit)
analyses, to construct consensus trees, and to deter-
mine SD. All matrix elements were weighted equally
and zero-length branches were not collapsed, so that
all supertrees were binary. MinFlip supertrees were
constructed with D. Chen’s heuristic supertree soft-
ware (http://genome.cs.iastate.edu/CBL/download/).



422 SYSTEMATIC BIOLOGY VOL. 54

MSS analysis was implemented with CC’s CLANN
software (Creevey and McInerney, 2004). Split fit was
implemented with CLANN and with the MIX program
of PHYLIP (Felsenstein, 1993). Quartet fit was imple-
mented with CLANN and PAUP, and triplet fit with
PAUP. All CLANN analyses used heuristic searches
with 100 Random addition sequences and SPR branch
swapping. Average consensus and dendrograms were
constructed with the FITCH and KITCH programs of
PHYLIP (Felsenstein, 1993), respectively, after computa-
tion of average distance matrices. MinCut and modified
MinCut supertrees were constructed with R. Page’s su-
pertree program (http://darwin.zoology.gla.ac.uk/cgi-
bin/supertree.pl). Heuristic GTP analyses were
performed with GeneTree (Page, 1998) using 100 random
starting points and 100 searches with alternating NNI
and SPR branch swapping. Where methods return more
than one supertree, the strict component consensus of the
set of supertrees is referred to specifically as the consen-
sus supertree. All other reference to supertrees is to op-
timal supertrees found using heuristic or exact searches.

For methods where our example revealed an ITSE
we further tested for a bias with respect to tree shape
by building supertrees for the unbalanced input tree
of Figure 1 and for random, balanced input trees con-

FIGURE 1. Two highly incongruent binary input trees of equal size
and information content that are maximally unbalanced (a) or maxi-
mally balanced (b).

structed by randomly permuting the labels of the orig-
inal balanced example. For each test, 500 random per-
mutations were used, and the difference in mean EAT
between the output trees and each of the two input trees
calculated, giving an indication of any preference for re-
lationships in balanced or unbalanced input trees. For
methods with an optimality criterion we also calculated
the asymmetry in the optimality criterion, when used to
fit the unbalanced input tree onto the balanced tree or
vice versa. Thus, for example, for MRP analyses this was
measured as the difference in minimum number of parsi-
mony steps for the MR of the unbalanced input tree fitted
onto the balanced tree and the matrix for the balanced
tree fitted onto the unbalanced tree.

THE EFFECT OF INPUT TREE SHAPE

Based on two empirical examples, Wilkinson et al.
(2001) suggested that standard MRP may be biased with
respect to tree shape, so that, in cases of conflicting input
trees, the method favors relationships in more unbal-
anced trees. We contend that if supertrees are used to re-
solve conflict in input trees, then such resolution should
be based on some reasonable assessment of the relative
weight of evidence for the conflicting relationships. We
further contend that, in the absence of any explicit jus-
tification for considering it otherwise, tree shape should
be considered an irrelevant variable in this context and
should exert no influence in the resolution of conflict.
In the terminology of Wilkinson et al. (2004), we would
like to have supertree methods that are ‘’shapeless,” for
which input tree shape plays no part in the resolution of
conflict.

In order to investigate whether supertree methods are
shapeless we confronted them with a simple contrived
example (Fig. 1). The two input trees have the same leaf
sets, and thus represent the special case of a consensus
problem. Given that properties, and our expectations, are
mostly much better understood for consensus than for
supertree methods, it can be helpful to investigate how
the latter handle consensus problems. It allows direct
comparison with consensus methods, and, importantly
here, if methods do have biases with respect to input
tree size, as has been much discussed (Purvis, 1995a;
Ronquist, 1996; Bininda-Emonds and Bryant, 1998; Page,
2002), then analysis of trees with the same leaf set pro-
vides the opportunity to investigate other properties
free from the confounding influence of tree size. Be-
cause our input trees are also fully resolved, there is
no potentially confounding difference in their cladistic
information content (Thorley et al., 1998). We contend
that because there are just two equal sized and equally
resolved input trees, there is no evidential basis for re-
solving any conflicts between them. Conflicts are sub-
stantial. There are no components in common (SD = 28),
and about one third of the resolved triplets are shared
(EAT = 0.33). Of the most commonly used consensus
methods (Adams and strict, semistrict, and majority-rule
component), only the Adams (Fig. 2) is not completely
unresolved. With a pair of such highly incongruent input
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FIGURE 2. The Adams consensus of the two trees in Figure 1. This
tree is also the MinCut and the modified MinCut supertree. Circles
indicate components present in the balanced input tree.

trees, there is little basis for resolving conflict and we
would not expect any supertree or consensus method to
perform well, in the sense of producing an intuitively
acceptable and well-resolved synthesis.

If shape does not affect conflict resolution, i.e., if a su-
pertree method is shapeless, then we would not expect
supertrees to resolve conflict substantially in favor of the
relationships in either the balanced or the unbalanced in-
put tree. Where supertrees are substantially more similar
to one of these input trees, we would like to take this as
indicative of an ITSE in this case, and that the supertree
method is not shapeless in general. However, although
shape is the most obvious difference between the input
trees, some other feature of the trees may be responsible
for the preference, or the preference could be random.
The specific effect in either case would still be worrying
(because we see no basis for resolving the conflict) but
attributing the effect to tree shape would be incorrect.
The only feature of these input trees, other than shape,
that we can envisage affecting the resolution of conflict
in our example is the leaf labeling, which was contrived
to produce substantial conflict. Thus, to test both these
alternatives, we extended the example to examine many
random permutations of the leaf labelings of the input
trees for the subset of the supertree methods that ap-
peared not to be shapeless on the basis of the example.

We computed supertrees for the two input trees us-
ing the 14 methods described above (Table 1). Most pub-
lished supertrees have been constructed using standard
MRP. This method returns two relatively unbalanced
MRP supertrees, the consensus supertree of which is
shown in Figure 3a. Each of the standard MRP supertrees
is much more similar to the unbalanced (EAT = 0.90,
SD = 12–14) than to the balanced (EAT = 0.39, SD = 24)
input tree, and this is reflected also in the consensus su-
pertree: of the 13 clades, 7 are also in the unbalanced

tree compared to only 2 that are in the balanced input
tree. In this instance, standard MRP produces a result
in which conflicts are resolved in favor of relationships
in the unbalanced tree, suggesting an ITSE and that the
method is not shapeless. To check that the preference was
related to tree shape, the analysis was repeated with 500
random permutations of the leaf labeling of the balanced
tree. Standard MRP trees are consistently more similar to
the unbalanced input tree, indicating a bias with respect
to input tree shape in how this method resolves conflict
between trees with these topologies (Fig. 4a).

We further assessed the strength of the bias experimen-
tally, using differential weighting of the matrix elements
derived from the unbalanced and balanced trees (Fig. 1).
Weighting the matrix elements representing the balanced
tree 2.7 times as heavily as those of the unbalanced tree
produces MRP supertrees that are more similar to the
unbalanced (EAT = 0.68) than to the balanced input tree
(EAT = 0.46). Weighting by a factor of 2.8 yields MRP
supertrees that are more similar to the balanced than to
the unbalanced input tree (EAT = 0.94 and 0.38, respec-
tively). With weighting by a factor of 2.75 there are two
MRP supertrees, one of which is more similar to the un-
balanced (EAT = 0.68 versus 0.38) and one more similar
to the balanced input tree (EAT = 0.94 versus 0.48).

Table 2 summarizes results for the various methods. As
with the standard approach, irreversible MRP prefers re-
lationships in the unbalanced tree in this case, with all 72
irreversible MRP supertrees more similar to it. The cor-
responding consensus supertree is fairly well resolved
and includes six components that are present in the un-
balanced input tree and two from the balanced input tree
(Fig. 3b). Random permutation of the leaf labelling con-
firms that this method is biased with respect to input tree
shape (Fig. 4a).

Purvis MRP appears to have a less strong and opposite
preference for relationships in the balanced tree. All 80
of the Purvis MRP supertrees are more similar to the bal-
anced input tree. The corresponding consensus supertree
(Fig. 3c) is poorly resolved and includes only four com-
ponents, all of which are present in the balanced tree.
Random permutation of the leaf labelling demonstrates
that Purvis MRP favors relationships in balanced trees
on average, but not exclusively, at least as measured by
EAT (Fig. 4a).

MinFlip also appears to show an ITSE in this case,
yielding 31 supertrees that are all much more similar to
the unbalanced than to the balanced tree (Table 1). The
effect is less apparent in the corresponding consensus su-
pertree (Fig. 3d), which includes only four components,
one of which is present in the balanced input tree and two
of which are in the unbalanced input tree. Random per-
mutation of the leaf labeling confirms that this method
is biased with respect to input tree shape (Fig. 4b).

Both split and quartet fit yield the same three su-
pertrees, the two input trees and one hybrid that is identi-
cal to the unbalanced input tree except for the inclusion of
one clade (I + J) from the balanced input tree (not shown).
The MSS method returns the two input trees only. The
consensus supertree is the completely uninformative
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FIGURE 3. Unique optimal supertrees and strict component consensus of optimal supertrees for the two input trees in Figure 1, produced
using standard MRP (a), irreversible MRP (b), Purvis MRP (c), MinFlip (d), average consensus (e), average dendrogram (f), and duplication-and-
loss GTP (g). The unique optimal supertree found with duplication-only GTP is identical to the unbalanced input tree in Figure 1a. The strict
component consensus supertree for the MSS and the component, quartet and triplet fit methods is the unresolved bush. The MinCut supertrees
are identical to the Adams consensus of the input trees in Figure 2. White and black circles indicate components present in the balanced and
unbalanced input trees respectively.

bush in each case. By returning the input trees, these
methods offer no resolution of the extensive conflicts in
the input trees and our example reveals nothing of any
potential impact of tree shape upon these methods.

TABLE 2. Numbers (N) of supertrees for the unbalanced (U) and balanced (B) input trees in Figure 1, and measures of distances and similarities
between supertrees and input trees, given as ranges with means in parentheses. See text for explanation of other acronyms.

Method N EAT (U) EAT (B) SD (U) SD (B)

Standard MRP 2 0.90 0.39 12–14 (13) 24
Irreversible MRP 72 0.85–0.94 (0.90) 0.38–0.41 (0.40) 8–16 (12.67) 24
Purvis MRP 80 0.29–0.47 (0.36) 0.53–0.66 (0.56) 28 6–14 (10.10)
MinFlip 31 0.82–0.96 (0.89) 0.36–0.46 (0.40) 4–18 (11.61) 22–26 (25.10)
Split fit/quartet fit 3 0.33–1.00 (0.77) 0.33–1.00 (0.56) 0–28 (10) 0–28 (18)
Triplet fit 1677 0.33–1.00 (0.54) 0.33–1.00 (0.79) 0–28 (24.55) 0–28 (17.35)
Average consensus 1 0.95 0.36 8 26
Average dendrogram 1 0.43 0.89 28 18
MSS 2 0.33–1.00 0.33–1.00 0–28 0–28
MinCut/modified MinCut 1 0.36 0.83 22 12
GTP (DL) 10 0.65–0.68 (0.67) 0.43–0.46 (0.45) 22–24 (22.8) 18–22 (19.8)
GTP (D) 2 0.99–1.00 0.32–0.34 0–2 26–28

Triplet fit yielded 1677 supertrees, the most of any
method. Average (dis)similarity scores (Table 2) might
suggest a tendency toward favoring relationships in the
balanced input tree. Further comparison reveals that
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large majorities (1327 and 1317) of the triplet fit su-
pertrees are more similar to the balanced tree than they
are to the unbalanced tree (measured with EAT and SD,
respectively). However, as with split fit, quartet fit, and
MSS, the triplet fit supertrees include both of the input
trees and their strict component consensus is the com-
pletely unresolved bush.

The average consensus method yielded a single tree
(Fig. 3e) that is much more similar to the unbalanced
(EAT = 0.95) than to the balanced (EAT = 0.36) input tree,
and which includes nine components that are present in
the unbalanced tree, two that are present in the balanced
tree, and two that are not present in either input tree.
Conversely, the average dendrogram (Fig. 3f) appears
more similar to the balanced (EAT = 0.89) than to the
unbalanced (EAT = 0.43) input tree, including five com-
ponents present in the former and none from the latter.
Random permutation of the leaf labeling confirms that
these methods are biased with respect to input tree shape
in the directions suggested by the example (Fig. 4c).

MinCut supertree methods are Adams consensus-like
in that they include all nestings that are present in all the
input trees (Semple and Steel, 2000) and both MinCut
methods return the Adams consensus in this case (Fig. 2).
Interpreted as a cladogram (i.e., as a set of components),
this tree is much more similar to the balanced than to
the unbalanced tree (EAT = 0.83 versus 0.36 and SD = 12
versus 22, respectively). Random permutation of the leaf
labelling confirms that this method is biased with respect
to input tree shape (Fig. 4b) when interpreted this way.
Interpreted as a set of common nestings (Adams, 1986;
Wilkinson, 1994a), the MinCut supertrees are necessarily
compatible with both input trees and thus show no ITSE,
and we expect this generally.

Duplication-only GTP returned two trees, the unbal-
anced input tree and the similar hybrid tree found also by
the split fit and quartet fit methods, indicating a strong
preference for relationships in the unbalanced tree in this
case. Random permutation of the leaf labeling confirms
that duplication-only GTP is biased with respect to in-
put tree shape as suggested by the example (Fig. 4d).
In contrast, duplication-and-loss GTP returned 10 su-
pertrees that were all a little more similar to the un-
balanced than to the balanced input tree, as measured
by EAT, but equally similar or more similar to the bal-
anced tree, as measured by SD (Table 2). The consensus
supertree (Fig. 3g) includes three components that are
present in the balanced input tree, two components that
are in the unbalanced input tree, and three that are in nei-
ther input tree. This result is inconclusive, and random

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FIGURE 4. Input tree shape biases demonstrated from sets of 500
random permutations of the leaf labeling of the balanced input tree in
Figure 1. The mean similarity (EAT) between the optimal supertrees
and the corresponding unbalanced and balanced input trees was cal-
culated (EAT(u) and EAT(b), respectively). The figure shows the distri-
bution of the statistic EAT(u) − EAT(b) across permutations, so positive
and negative values thus indicate greater similarity to the unbalanced
and balanced trees, respectively. (a) Distributions for standard (light
grey, S), Purvis (dark grey, P), and irreversible (transparent, hatched
bars, I) MRP; (b) distributions for MinFlip (light grey, MF) and MinCut
and modified MinCut (unshaded, MC/MMC) methods; (c) distribu-
tions for average consensus (light grey, AC) and average dendrogram
(unshaded, AD) methods; (d) distributions for duplication and loss
(light grey, DL) and duplication-only (unshaded, DO) GTP. Arrows in-
dicate the values for the example labeling of Figure 1 for each method.
An unbiased method would lead to a distribution centred on 0 for this
statistic.
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permutation reveals a broad range and left-skewed dis-
tribution of similarities to balanced and unbalanced in-
put trees and no clear bias as measured by EAT, although
the mean similarity is significantly non-zero at −0.0089
(Fig. 4d).

MRP has been widely used to combine and synthe-
size the information in available phylogenies into larger,
and therefore potentially more useful, supertrees (e.g.,
Purvis, 1995b; Liu et al., 2001; Pisani et al., 2002). Our
concern is with how reasonably the information in the
input trees is combined. There would be little merit in
methods that arbitrarily resolve conflict as opposed to
resolving it only when warranted by the evidence. Our
simple example indicates that standard and irreversible
MRP, MinFlip, average consensus, and duplication-only
GTP can sometimes favor relationships in more unbal-
anced trees, and that Purvis MRP, average dendrogram,
and MinCut and its modification (if interpreted as pro-
ducing cladograms) can sometimes favor relationships
in more balanced trees. Random permutation confirms
that these methods suffer input tree shape biases. Al-
though we do not know the extent to which these biases
are important in practice, we consider them arbitrary and
worrying.

An argument could be made that some tree shapes
and thus some trees are more probable, as is the case if
trees are generated under a Markovian model (because
there are more ways to grow balanced cladograms),
and that relative probability might reasonably be taken
into account in the relative weight attached to relation-
ships in input trees. Without wishing to dismiss such no-
tions entirely, we do not expect the seemingly accidental
tree shape effect demonstrated for these supertree meth-
ods to emulate a well-designed “tree balance weight-
ing scheme” sufficiently well to dispel our concerns over
their failure to be shapeless in general.

CAUSES OF INPUT TREE SHAPE EFFECTS

Thorley and Wilkinson (2003) suggested that supertree
methods could be usefully characterized in terms of their
objective functions, the measures of distance, similarity
or fit between a supertree and input trees that are mini-
mized or maximized by the methods (Table 1). For exam-
ple, median (component) consensus trees are those that
minimize the sum of the symmetric differences between
the consensus and each of the input trees (Barthélemy
and McMorris, 1986). By simple extension, the same ob-
jective function defines a median supertree method if we
allow that, for trees with nonidentical leaf sets, SD is de-
termined by comparing the subtrees induced by leaves
in common (i.e., the input tree is compared to a supertree
pruned of irrelevant taxa as in the MSS method).

Thorley and Wilkinson (2003) also demonstrated that
the objective function of standard MRP is an asymmetric
tree-to-tree distance. We argue here that the tree shape
effects revealed by our example are related to the use of
unusual asymmetric measures of supertree–input tree
distances as the bases for the objective functions of those
supertree methods that are not shapeless. We must first

digress to consider conditions when asymmetric dis-
tances have been shown to be useful in order to show
that these conditions do not pertain with the current ex-
ample and that supertree methods that are not shapeless
rely upon a distinct class of asymmetric distances.

Asymmetric Tree-to-Tree Distances
Phillips and Warnow (1996) noted that the median con-

sensus is often poorly resolved as a consequence of the
symmetry of the tree-to-tree distance measure that is the
basis of its objective function. Comparing any input tree
and a consensus tree (or pruned supertree), relationships
(in this case components) can be classified as those that
are in the input tree and not in the consensus (A), those
that are in both (B), and those that are in the consensus
and not in the input tree (C). SD = A + C, and is there-
fore symmetric, but a candidate consensus is penalized
if it includes components that are in less than 50% of the
input trees. This is the case even if the minority compo-
nents are uncontradicted by (e.g., by soft polytomies in)
the remaining input trees.

To solve this problem, Phillips and Warnow (1996) pro-
posed the asymmetric median consensus method, which
minimizes A rather than A + C, and they showed that
their new method is more liberal in the sense of always
being at least as well resolved as the median consensus.
Relationships that are in the consensus but not in a par-
ticular input tree do not contribute to the asymmetric
difference (A) between the input tree and the consensus.

Note that minimizing A is equivalent to maximizing B,
and that B is a symmetric tree-to-tree similarity measure.
B is also the objective function maximized across all in-
put trees by split fit supertrees. Thus, extended to the su-
pertree context, the corresponding asymmetric median
supertree method is equivalent to split fit. Triplet and
quartet fits also maximize B, where this is now under-
stood to be the number of triplets or quartets present in
both input and supertree. All three methods, triplet fit,
quartet fit, and split fit are examples of methods that em-
ploy as the basis of their objective functions a special class
of asymmetric tree-to-tree distance (A), the minimization
of which is equivalent to maximizing a symmetric tree-
to-tree similarity (B).

Phillips and Warnow (1996) clearly show the utility of
this special class of asymmetric tree-to-tree distances in
defining relatively liberal consensus or supertree meth-
ods that use MRs. The advantage is primarily in pro-
ducing more resolved supertrees, but in our example
all trees (input and supertrees) are binary so that there
is no such advantage to be had, and these measures
are necessarily symmetric in this case. In contrast, su-
pertree methods that are not shapeless appear to have
objective functions founded on asymmetric-tree-to-tree
distances that are not known to correspond to any sym-
metric tree-to-tree similarity and which are asymmetric
even when all trees are binary.

Asymmetric Distances and ITSEs
We used our example (Fig. 1) to explore MRP objec-

tive functions by measuring the parsimony fit of the
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MRs of each input tree to the other input tree. Fitting
the MR of the unbalanced tree to the balanced tree re-
quired 65, 73, and 27 steps using standard, irreversible,
and Purvis MRP, respectively. Fitting the MR of the bal-
anced tree to the unbalanced tree required 43, 46, and
39 steps, respectively. Asymmetric tree-to-tree distances
are the foundation of the objective functions of Purvis
and irreversible, as well as of standard MRP, and these
distances are asymmetric even in the special case where
all trees are binary. In contrast to triplet, quartet, and
split fit methods, we have been unable to identify sym-
metric tree-to-tree similarity measures that correspond
to the asymmetric tree-to-tree distance measures used
in the MRP supertree methods. Note also that the dif-
ferences in fit do not appear trivial, and that the direc-
tion of the difference is correlated with the direction of
tree shape effect exhibited by these methods. Across the
random permutations of leaf labelings, the strength of
the ITSEs are also significantly correlated with the differ-
ence in the tree-to-tree distances (Fig. 5; N = 500 for all
methods. Standard MRP, regression coefficient = 0.0053,
F = 109.7, P < 2 × 10−16; Purvis MRP, regression coef-
ficient = 0.0144, F = 85.75, P < 2 × 10−16; irreversible
MRP, regression coefficient = 0.0064, F = 290.8, P < 2 ×
10−16).

We know of no good reason for supertree or consensus
methods to employ an asymmetric distance or fit mea-
sure that does not correspond to a symmetric similarity
measure. Nor can we think of any reason to employ a dis-
tance measure that is asymmetric even in the special case
where all trees are binary. Because of the asymmetry, with
standard and irreversible MRP the fully balanced input
tree is taken as not conflicting as strongly with an unbal-
anced supertree than vice versa. This is further reflected
in the different maximum number of (reversible) parsi-
mony steps of the component MRs of the balanced and
unbalanced trees (43 versus 70 steps, respectively), which
gives unbalanced trees a potentially bigger vote against
candidate supertrees that conflict with them. Thus, ran-
dom supertrees have on average worse parsimony fits to
the MR of the unbalanced input tree than they do to the
MR of the balanced input tree (Fig. 6). The opposite holds
for maximum steps (48 versus 28, respectively) with the
oppositely biased Purvis MRP. We believe that objective
functions defined on asymmetric tree-to-tree distances
provide a plausible mechanism to explain, at least in part,
why some supertree methods are not shapeless.

MinFlip tree-to-tree distances, the number of flips
needed to render the component MR of one tree compat-
ible with (not identical to) another, are also asymmetric,
as would be predicted from its favoring relationships in
the unbalanced tree. The strength of the ITSE is also sig-
nificantly correlated with the difference in the tree-to-tree
MinFlip distances (Fig. 5; regression coefficient = 0.0066,
F = 59.13, P = 7.93 × 10−14) as would be expected if ITSEs
are caused by asymmetric distances. As with maximum
number of parsimony steps, the maximum number of
flips possible for a component MR is not independent of
tree shape and gives unbalanced trees a potentially big-

ger vote against supertrees with which they conflict. Of
the methods using component MR, only split fit shows
no evidence of tree shape effects with our example, and
this is the only one of these methods that has an objec-
tive function that can be stated as a symmetric tree-to-tree
similarity measure.

The distance between two trees can be calculated
as a function of the differences between their corre-
sponding pairwise distance MRs. Where absolute or
squared differences (i.e., least-squares fit) are used, the
corresponding tree-to-supertree distances are necessar-
ily symmetric. Thus, if tree shape effects are caused by
asymmetric tree-to-tree distances, we might expect that
distance matrix supertree methods would be free from
them. However, of the methods examined here, only the
MSS meets this expectation with our example.

The MSS method measures the distance between two
trees as the sum of the absolute differences in the corre-
sponding pairwise path-length distance matrices, with
all branch lengths (i.e., those in the input tree and the
pruned supertree) set at unity (i.e., EBL distances), and
the overall distance standardized by dividing the sum by
the number of comparisons. The average consensus also
uses EBL distances in the representation of input trees
and the construction of an average distance matrix, but
branch lengths in the supertree are not also set at unity.
Rather, they are chosen so as to optimize the least-squares
fit of the supertree to the average distance matrix. Our
example suggests this might be an important practical
difference.

We measured the least-squares fit of the EBL distance
matrices for each of the input trees to the other tree. The
distance between the unbalanced EBL distance matrix
and the balanced tree, when branch lengths of the latter
are unconstrained, is 811.299, whereas that between the
balanced EBL distance matrix and the unconstrained un-
balanced tree is 3022.769. Least-squares fit is a symmetric
tree-to-tree distance metric when we compare two trees
with specified branch lengths. The example shows that
when branch lengths are given for one tree and opti-
mized for the other, the magnitude of the least-squares
fit may depend upon which branch lengths are specified
and which are optimized. In the special case of average
consensus examined here, which relies upon EBL dis-
tance representations of input trees, the balanced input
tree achieves a better least squares fit to an unbalanced
(super)tree than vice versa, and the strength of the ITSE is
correlated with the magnitude of the difference in least-
squares fits of the input trees to each other (Fig. 5; re-
gression coefficient = 2.75 × 10−4, F = 256.3, P < 2 ×
10−16). The distance between the unbalanced ultrametric
distance matrix and the balanced tree, when the latter is
constrained to be ultrametric but branch lengths are oth-
erwise free to vary, is 6520.15, whereas the correspond-
ing fit between the balanced ultrametric matrix distance
matrix and the unbalanced tree is 3022.368. Thus, with
the average dendrogram method, both the asymmetry in
distance and the tree shape effect are reversed, and again
the magnitude of the effect correlates with that of the
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FIGURE 5. Correlation between asymmetry in tree-to-tree distances and input tree shape bias. We determined the cost of fitting the balanced
input tree onto the unbalanced input tree and vice versa, with the difference between these two scores being used as a measure of the asymmetry
of the particular tree-to-tree distance forming the basis of the methods objective function. This measure was plotted against the difference in
similarity (EAT) between the optimal supertrees and the corresponding unbalanced and balanced input trees (EAT(u) and EAT(b), respectively)
for each of 500 random permutations of the labels on the balanced input tree topology of Figure 1. Fitted lines are a linear least-squares best-fit
for each method, and an asterisk indicates values for the example labelling of Figure 1 in each case. Correlations between distance asymmetry
and difference in similarity of the supertrees to the two input trees are highly significant for all methods (N = 500, P < 0.01).
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FIGURE 6. Histogram of parsimony lengths of 1,000,000 random trees for the MRs of the balanced (unshaded) and unbalanced (shaded)
input trees. Candidate supertrees have on average a better fit to MRs of the balanced input tree.

asymmetry in distances (regression coefficient = 5.88 ×
10−5, F = 62.45, P = 1.77 × 10−14).

With GTP, tree-to-tree distances are the number of
events, duplications, alone, or duplications and losses,
needed to reconcile an input tree with the supertree.
The example shows that these distances are asymmet-
ric. Using the duplication-only distance, the consider-
able asymmetry (13 versus 7 events) correlates with a
clear bias towards relationships in the unbalanced in-
put tree, with the strength of the ITSE correlated with
the asymmetry of the tree-to-tree distances between the
input trees (Fig. 5; regression coefficient = 0.0133, F =
8.648, P = 0.00343).

In contrast, with duplications and losses the asymme-
try of the distances is reversed in our example. Reconcil-
ing the balanced tree with the unbalanced tree requires
71 events (13 duplications and 58 losses), whereas recon-
ciling the unbalanced tree with the balanced tree requires
fewer duplications (7) but more events in total (80). The
asymmetry is less marked (71 versus 80) and no clear bias
is demonstrated by the example or by the broad range
of similarities to balanced and unbalanced input trees
achieved by optimal supertrees. However, the random
permutations reveal a correspondingly broad range of
asymmetries in distances (Fig. 5). The duplication-and-
loss distance of a balanced input tree to an unbalanced
input tree can be smaller, equal to, or greater than the re-
verse distance, and there is a strong correlation between
the direction and magnitude of this asymmetry and the
strength and direction of the ITSE’s (Fig. 5; regression
coefficient = 0.0217, F = 257.7, P < 2 × 10−16), consis-
tent with the hypothesis that shape effects and biases are
caused, at least in part, by asymmetric distances.

MinCut and modified MinCut lack an explicit objec-
tive function and do not rely upon a tree-to-tree dis-
tance. Thus, we cannot explain the greater similarity of

the MinCut supertrees to the balanced tree with our ex-
ample, which pertains only when they are interpreted
as a collection of components rather than as a collection
of more ambiguous nestings, in terms of an asymmetric
tree-to-tree distance in this case. With polytomies inter-
preted as nestings, MinCut supertrees show no evidence
of an ITSE.

We cannot generalize from the lack of any ITSEs shown
by the MSS, component, quartet fit, and triplet fit meth-
ods in the special case represented by our simple exam-
ple. However, if tree shape biases result from objective
functions founded on asymmetric tree-to-tree distance
measures then we would expect these methods to be gen-
erally free of any such bias by virtue of their objective
functions being founded on symmetric distances. The
validity or otherwise of this conjecture is an important
open problem that should be established analytically or
by counterexample, or, failing that, should be investi-
gated using simulations.

DISCUSSION

Supertree construction remains a very new field with
an increasing number of methods, many of which are
poorly known. Most published supertrees have been
constructed using standard MRP, seemingly because this
method was developed early in the history of supertree
construction and is readily implemented. However, there
has been relatively little consideration of the fundamen-
tal properties of standard MRP and we have little theoret-
ical understanding of to what extent it and other methods
are more or less well suited to the task of constructing
useful (i.e., accurate) supertrees. The rush to build MRP
supertrees in the absence of much understanding of the
method demonstrates the strength of the perceived need
for supertrees.
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Previous workers have suggested that standard MRP
may suffer from biases with respect to tree size (e.g.,
Purvis, 1995a) and tree shape (Wilkinson et al., 2001). Size
biases are understood to be more complex than at first
thought and to involve the relative sizes of substrees that
span or cover conflicting relationships (Bininda-Emonds
and Bryant, 1998). Given that tree shape is a function of
relative subtree size, tree shape and size effects, as well
as the poorly understood positional effects discussed by
Wilkinson et al. (2004), may well be interrelated.

Our example, suggests that many supertree methods,
including MRP, are not shapeless. They suffer from biases
with respect to tree shape that can influence how input
tree conflicts are resolved. With the exception of MinCut
methods, the biased methods are characterized by objec-
tive functions based on asymmetric tree-to-tree distances
(ones that are not equivalent to symmetric tree-to-tree
similarity measures), with the direction of the asymme-
try correlated with the direction of the effect, and the
magnitude of the effect correlated with the absolute dif-
ference in tree-to-tree distances. If, as we conjecture, this
is a causal relation, then supertree methods with objec-
tive functions based on symmetric tree-to-tree distances
may be free of any input tree shape bias, and this merits
further investigation. MinCut methods are biased only if
their Adams consensus-like properties are not taken into
account in the interpretation of MinCut supertrees.

It might be objected that our example is very unre-
alistic, and that input tree shape may be unimportant
in the supertree context, or when there are more trees,
or that it may not be strong enough to have any practi-
cal import. Simple thought experiments convince us that
ITSEs are not restricted to the consensus setting and we
would be concerned for other reasons if they were. Imag-
ine adding some unique leaves to each of the input trees
in our first example (so as to convert it into a supertree
problem). We think it may be reasonable to consider the
relationships of these unique leaves to be irrelevant to
the resolution of the conflict between the trees over the
relationships of the common leaves, and this expecta-
tion is related to independence axioms in bioconsensus
(Wilkinson et al., 2004). If the addition of leaves somehow
removed any ITSE it would do so only at the expense of
violating at least one other ‘’independence axiom.”

We also think it unlikely that any shape bias will
always be overwhelmed, rather than exacerbated, by
larger numbers of input trees, although this remains an
open question. We do expect conditions in which there
is no good basis for resolving conflicts to be rarer when
there is a good sample of input trees. This might ame-
liorate input tree shape biases, particularly if they are
strongest, as well as the most easily revealed and inves-
tigated, when, as in our example, there is no basis for re-
solving conflict. Shape biases might be tolerated if they
prove not to be much of a problem, but it seems to us
that only unbiased methods will allow this problem to
be avoided altogether. Biased methods might also be pre-
ferred if they have other important desirable properties
that are not shared by unbiased methods. For example,
the average consensus makes use of branch length infor-

mation that is treated as irrelevant by other methods but
which may be helpful.

It is at present unclear to what extent properties re-
vealed by the rather special case of our example will
be, or have been, important in supertree construction,
but potential users should be aware that several meth-
ods, including the currently most popular, do not sat-
isfy some seemingly reasonable desiderata (see also
Wilkinson et al., 2004). Tree shape can be used to investi-
gate macroevolution (e.g., Mooers and Heard, 2002) and
possible shape biases of supertree methods might be of
particular concern if the shapes considered are of su-
pertrees produced by biased methods. We hope that our
findings encourage consideration of ITSEs and the poten-
tial role of asymmetric tree-to-tree distances in the future
development or testing of supertree methods, and that
they highlight the need for further study of the properties
and comparative performance of supertree methods.

Given our current limited understanding of supertree
methods, and hence our limited scope for justified choice
among the alternative methods, we warn against an over-
reliance upon any single arbitrarily chosen method. Un-
critical use of a single method should be discouraged. We
see no good reason for standard MRP to be the method
of choice in supertree construction, particularly given
its apparent bias toward relationships in unbalanced
input trees, its potential to yield unsupported groups
(Pisani and Wilkinson, 2002), and because recent simu-
lation studies show that MinFlip performs at least as well
as MRP (Eulenstein et al., 2004). Use of multiple methods
allows practical assessment of the extent to which infer-
ences depend upon method and of the impact of possible
biases and should be encouraged. There is also a press-
ing need for validation methods for supertrees like those
used to assess the reliability of phylogenetic trees (see
Lapointe and Cucumel, 2003). There is still a long way to
go before supertree methodology comes of age.
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