
Chapter 12
Inferring phylogenetic relationships
from sequence data�

Peter G. Foster

1. INtrODUCtION

In molecular phylogenetics, we want to infer an underlying tree of relatedness from
our gene sequence and its close relatives. We collect the same gene sequences,
DNA, or protein from all of the taxa that we are interested in and align those
sequences so that the columns of the alignment represent homologous sites of the
gene, and then use that alignment to infer a phylogenetic tree. There are several
different approaches to tree building. They have their strengths and weaknesses,
and differ widely in the computational time required.

The most important tree-building methods are maximum parsimony (MP) and
model-based methods, the latter including distance methods, maximum likelihood
(ML), and Bayesian approaches. The distance methods are perhaps the simplest.
In this approach, all possible pairwise evolutionary distances between sequences
are calculated and these distances are then used to build trees that best explain
those distances. The pairwise distances that this method use might simply be the
percentage difference between sequences, but because superimposed mutations
at the same site can mask the real extent of evolutionary divergence, we correct
the observed distances with an explicit model of evolution. The other methods are
character-based, and rather than first distilling the sequences to distances, the
full information in the sequences is used in judging whether one candidate tree
is better than another. The MP approach looks for the trees that can describe the
inferred sequence changes over the tree in the smallest number of steps. ML and
Bayesian approaches use models to find results that have highest probability. The
methods have been tested on simulated data, where the true tree is known, and
generally the ML and Bayesian methods perform best, but at a cost of increased
computational complexity.

Most methods involve searching ‘tree space’ – which can be imagined as a
landscape in which all possible trees are represented, with similar trees adjacent
to each other, and in which the local height of the landscape represents the

Bioinformatics: Methods Express (Paul H. Dear, ed.)
© Scion Publishing Limited, 2007

12-Bioinformatics-ch12-cpp.indd 265 1/6/07 10:39:37

266  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

goodness of the tree at that point. A comprehensive search of tree space is usually
an impossible task because the number of trees is astronomical. For example, the
number of unrooted trees with �00 taxa is about �.7 × �0�82. It is not possible to
evaluate every tree unless the number of taxa is less than a dozen or so, and so some
sort of heuristic search must be used. It is here that compromises and shortcuts
are made, and where the quality of the algorithms and the programming come
into play. For example, if the tree space has multiple islands of good trees, then a
‘greedy’ search that only goes uphill and that starts near one of the suboptimal
islands will tend to get stuck and never find the globally optimal tree. Better
search strategies might use multiple starting points for searching, or have the
ability to cross from one island to another, but would be more computationally
expensive. Using any heuristic does not guarantee finding the best tree.

The result of our analysis is a phylogenetic tree. The tree is often drawn with
parallel lines with the terminal taxa on the right (see Fig. 1a, b), which can perhaps
lure us into thinking that the present-day taxa on the right evolved from the
ancestor nodes on the left. However, in the methods that we generally use, there
is no time-line information in the tree because the tree is unrooted, and we do
not have the information to infer which taxa evolved from which ancestors. This
idea is clearer in the tree shown in Fig. 1(c), where there is no obvious ancestor
to which the eye is erroneously drawn. The usual way to root a tree is to use an
‘outgroup’ (see Fig. 2). In this strategy, we call the taxa that we are interested in
the ‘ingroup’ and we choose several additional taxa that we know are outside of
that ingroup to use as an outgroup. Although the analysis as a whole is unrooted,
we can infer that the place where the outgroup attaches to the ingroup roots the
ingroup. The outgroup should be phylogenetically close to the ingroup, because if
it is too distantly related it can distort the analysis.

It has become common to do phylogenetic analysis on more than one gene,
perhaps a combination of mitochondrial and nuclear genes, using both ribosomal
and protein-coding genes. This trend has arisen not only because of the increased

A

B

C

D

E

F

(a)

A

B

C

D

E

F

(b)

AB

C

D
E

F

(c)

Figure 1. Unrooted trees.
the trees that we infer are generally unrooted and contain no information about
ancestor–descendant relationships. the three trees in (a), (b), and (c) have identical
topologies and are all unrooted. In particular, we should not infer from (a) or (b) that the
ancestor of all of the taxa is the node on the far left.

12-Bioinformatics-ch12-cpp.indd 266 1/6/07 10:39:38

IntroductIon ■ 267

availability of data, but also because it has been noted that the results of an
analysis from one gene often differ from the results of another. Assuming that
these differences are due to noise or different biases, it is the assumption and
hope that in a combined analysis the effects of noise and bias will cancel out, but
the true phylogenetic signal, perhaps weak in any one gene, will be the same in
each gene and so will sum to give a well-supported tree. We might take any one of
a few approaches in a multi-gene analysis. We might analyze each gene separately
and then reconcile any differences between the respective trees afterwards; or
we might simply concatenate the data and analyze it as if it were a single gene.
However, the different genes may well have different evolutionary characteristics,
and in a simultaneous analysis those differences can, in some software, be
accommodated in a multi-partition model.

We want to find the best tree, but we also want to show how well supported
our results are. Perhaps our single best tree is much better than any other tree, or
perhaps, if our data are not decisive, then our best tree will not be significantly
different from other similar trees. We may even find that we have many optimal
trees, all equally good. Furthermore, some parts of the best tree might be more
reliable than other parts. The usual way to determine these supports is with the
bootstrap. In the bootstrap, we make pseudoreplicate datasets by resampling
columns of the original alignment with replacement and then repeat the entire
analysis on each. This process is repeated usually hundreds of times and the results
summarized with a majority-rule consensus tree showing bootstrap support for
the internal branches (see Fig. 3).

The methods should not be treated as black boxes that we throw our
data into, from which a tree then emerges. Different methods have different
assumptions that may or may not be met by your data. For example, in most
common methods, there is an assumption that different sites in the alignment
evolve independently. This may not be a good assumption, as for example in the

OutAOutB

In1

In2
In3

In4

(a)

OutA

OutB

In1

In2

In3

In4

(b)

Figure 2. Outgroup rooting.
here we use outgroup rooting, where taxa outa and outB are known to be outside the
ingroup (taxa In1–In4) and so we can infer the root of the ingroup. as with most analyses,
as a whole it is unrooted, as emphasized in (a). It is often drawn as in (b), where by
convention a graphically introduced (but otherwise meaningless) bifurcating basal node is
drawn to divide the ingroup from the outgroup.

12-Bioinformatics-ch12-cpp.indd 267 1/6/07 10:39:38

268  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

stem regions of structural RNA genes. Again, most methods assume compositional
homogeneity, meaning that the sequences all have the same composition. If this
assumption is not met, then the methods can fail and the recovered tree can be
distorted. The MP method, in particular, is susceptible to long-branch attraction.
Here, highly diverged but unrelated taxa tend to group together erroneously in
the inferred trees. This artifact arises from the failure of MP to deal correctly with
sequences that have many superimposed, and therefore hidden, mutations. You
might think that using several different approaches would be safest, but this may
not be so; if you get the same result from several different methods, it may be
because you are getting the correct answer to an easy problem with clear data,
or it may be because all the results are distorted in the same way by an unknown
bias in your data.

There are, of course, many aspects of phylogenetics that are beyond the scope
of this short chapter and many complex areas are glossed over. In particular, I will
not be discussing molecular clocks and molecular dating, nor the identification
of sites in a gene that are under selective pressure, both of which are important
emerging applications of phylogenetics. These methods are changing quickly,
and any attempt to make a recipe would immediately be out of date in these
rapidly moving and often controversial fields (�). To get to grips with these, you
need to dive into the primary literature in journals such as Molecular Biology and
Evolution and Systematic Biology.

The field of phylogenetics has matured to a point that there is now a
comprehensive textbook by Joe Felsenstein (2) (see also http://evolution.genetics.
washington.edu/ �2.�). The classic chapter on phylogenetic inference by Dave
Swofford and colleagues has not gone out of date in the decade since its writing

A

B

C

D

E

F

G

Tree 1

A

B

C

E

D

F

G

Tree 2

A

B

C

D

E

F

G

Tree 3

A

B

C

D

E

F

G

100

67

67

100

Consensus

Figure 3. Consensus trees and support.
the input trees might be bootstrap replicates or samples from a Bayesian markov chain monte carlo.
here we make a majority-rule consensus tree from three input trees. the consensus shows the proportion
of input trees that have the given split or tree bipartition (internal branches). some splits, for example the
grouping of taxa c and d together, were seen in only one of the three input trees and so do not appear in
the consensus. some supports are higher than others, and so we have 100% support for the groupings
of a with B, and of F with G, as these splits were found in all of the input trees. however, we would have
less confidence in other parts of the tree.

12-Bioinformatics-ch12-cpp.indd 268 1/6/07 10:39:39

methods and aPProaches ■ 269

(3). The reviews written or co-written by Paul Lewis are especially readable (4, 5).
The course material for the annual Workshop on Molecular Evolution is written by
experts in the field and is a very useful resource, available online (http://workshop.
molecularevolution.org/ �2.2).

2. MethODS aND apprOaCheS

2.1 alignments

We start our phylogenetic analysis with an alignment of molecular sequences.
We want to compare homologous positions in the genes, and the alignment is
our statement of homology. Homologous sites in genes are kept in line in spite
of insertions and deletions in the gene sequences by introducing alignment gaps,
usually with the ‘–’ character. As we do not know whether the gaps are due to
deletions in one sequence or insertions in another, they are referred to as indels.
You can identify a group of related sequences from public databases using BLAST.
For some closely related genes, alignment is trivially easy and can be done by hand,
often with few or no introduced gaps. However, for more diverged sequences, you
will need to use multiple sequence alignment software. The standard program
for making alignments is cLUSTALW (6), which has several web servers including one
at the European Bioinformatics Institute (http://www.ebi.ac.uk/clustalw/ �2.3).
Another recommendable alignment program is MUScLE, which also has a web server
(http://www.drive5.com/muscle/ �2.4). Making multiple alignments is a difficult
computational problem and often a cLUSTALW alignment can be, and should be,
improved by eye. This should be no surprise, as the human brain is very good at
recognizing patterns. Use a graphic user interface multiple sequence editor with
colored characters to help you to fix up the alignment. Often, it is not obvious
what gap pattern to impose on the sequences to get the best alignment, and if
that is the case those parts that you are not sure of should be masked out and not
used in subsequent analyses. An attempt at automating the process of identifying
unreliable parts of an alignment has been made (7). A comment should be made
here concerning the alignment of DNA sequences for protein-coding genes: with
the assumption that homology is determined by the protein sequence, you should
translate the DNA into its protein sequence and align the protein first, and then
back-align the DNA to the protein so that the gap pattern between codons is
preserved.

2.2 File formats

There are many file formats for sequence data (see the section on formats at
http://workshop.molecularevolution.org/ �2.5), and most phylogenetic software is
limited in the formats that it is able to read. In many areas of bioinformatics, the
simple FASTA format is used, and it is commonly used as the input format for
multiple-alignment programs. It is used occasionally in phylogenetics, even though

12-Bioinformatics-ch12-cpp.indd 269 1/6/07 10:39:39

270  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

it does not imply aligned sequences. A particularly common format for aligned
sequence data is PHYLIP format, which might be either sequential (one sequence
after another, like FASTA) or, more usually, interleaved, showing the alignment
more clearly. Another important format is Nexus format, which is used by PAUP*,
MRBAYES, and a few other programs (8). This extremely flexible format is able to
accommodate information in addition to the sequence data, such as information
about partitioning the data, about trees, and even commands for the programs
that use this format. There is software that can convert formats, including READSEq
(http://iubio.bio.indiana.edu/soft/molbio/readseq/java/ �2.6), with a web server
(http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi �2.7). Trees can also be described
in text files, almost always in Newick format (see http://iubio.bio.indiana.edu/
cgi-bin/readseq.cgi �2.7). Nexus format trees are Newick trees embedded in a Nexus
structure. Newick format shows the tree topology using nested parentheses, and
can incorporate branch lengths and labeling of interior nodes (often labeled with
support values), as well as terminal taxa. Different programs more or less adhere
to file format standards, but it is often the case that incompatibilities arise that
force the user to make adjustments. If you are lucky, this can be automated or
scripted, but often it cannot be changed easily and the data must be edited by
hand. Format definitions are often modified and extended by software authors,
which is an invitation to incompatibility when going from one program to another.
The practicing phylogeneticist needs to be aware of this and to be able to debug
problems.

In the case of a multi-gene analysis, if the data are simply concatenated and
not kept separate, then there is no format problem. However, if we want to keep
the different data partitions separate, perhaps to allow different overall rates in
the different partitions, or if different model characteristics are to be applied
to the different data partitions, then some way of indicating how the data are
divided up into those partitions is needed. In Nexus files, there is a standard way
of partitioning the data and that way is used by PAUP*. Other programs like MRBAYES
and TREEFINDER that can do multi-partition data use their own ways of partitioning
that are unfortunately not compatible with other programs.

2.3 Software

Joe Felsenstein maintains a valuable web page of all of the phylogenetic
software that he knows about (http://evolution.genetics.washington.edu/phylip/
software.html �2.8), and many of the programs listed have web servers. The classic
phylogenetic software includes the PHYLIP suite of programs by Joe Felsenstein,
and PAUP*, written by Dave Swofford. Both are enormously capable and have been
improved and debugged through wide use, and both are very well documented.
PHYLIP includes a great many methods, but it can be slow and often other programs
are able to do similar analyses faster. Many other programs use the PHYLIP data
format and imitate the PHYLIP command-line menu-driven interface. PAUP* (http://
paup.csit.fsu.edu/ �2.9) is one of the few mainstream programs in phylogenetics
that is not free – the source code is not available and there is a small license fee.

12-Bioinformatics-ch12-cpp.indd 270 1/6/07 10:39:39

methods and aPProaches ■ 271

Nevertheless, it is worthwhile having, as it is excellent for parsimony, distance
methods, and for ML of DNA.

PAUP* is in wide use for ML analysis of DNA. It is excellent for this, but is slow
compared with newer ML programs such as PHYML (http://atgc.lirmm.fr/phyml �2.�0)
and TREEFINDER (http://www.treefinder.de/ �2.��). TREE-PUzzLE (previously called just PUzzLE;
http://www.tree-puzzle.de/ �2.�2) is an ML program with good models for both
DNA and protein that uses quartet puzzling to find ML trees. In this strategy, the
problem is decomposed into finding the best trees from many different quartets
of taxa sampled from the data and then combining (puzzling) the quartets to
make the full tree. Although it is faster than PAUP* for ML, the resulting trees are
generally not as good as more-thorough tree-based methods, and with the advent
of newer ML programs, its niche is smaller.

choices for analyzing multiple data sets simultaneously are limited. The major
Bayesian program in wide use, MRBAYES, has a comprehensive set of models and
is one of the few programs that is able to model multiple data partitions well.
PAUP* is able to model separate DNA partitions with its site-specific model, by
allowing the different data partitions to have their own overall rates; however,
PAUP* otherwise assumes that the other model characteristics, rate matrix, and
so on, are the same in all of the partitions. Modeling of different data partitions
in MRBAYES is much more flexible, allowing combinations of datatypes and fitting
of different complete models to the different partitions. TREEFINDER is also able to
model different data partitions well under ML.

As larger analyses can be very computationally intensive, it would
sometimes be appropriate to be able to run the analyses in parallel on clusters
of computers. MRBAYES and TREE-PUzzLE have parallel versions. A bootstrap analysis
is naturally amenable to running on a cluster, where different machines
are each given a part of the task. Another up-and-coming strategy is cycle
scavenging, where phylogenetic jobs flexibly migrate among idle desktop
computers (http://www.cs.may.ie/distributed/multiphyl.php �2.�3).

The end result of a phylogenetic analysis is usually a tree with support values
on the nodes, and often we will want to draw that tree. We will want to show
the branch lengths accurately, perhaps with a scale bar, and we will want to show
the support values on the nodes. We will want to use vector rather than bitmap
graphics, and we will probably want the output of the tree-drawing program to
be in a form that will allow further editing with your favorite graphics program.
Unfortunately, software to draw trees can be frustrating and any given program
may only satisfy some of these desiderata. Perhaps the best combination of ease
of use and capabilities is TREEvIEW (see Rod Page’s TREEvIEW page at http://taxonomy.
zoology.gla.ac.uk/rod/treeview.html �2.�4). The PHYLIP programs DRAWTREE and DRAWgRAM
can also be useful.

2.4 tree-building methods

The main tree-building methods are MP and model-based methods. Parsimony is
fast and able to handle many sequences and is excellent if divergences are small.

12-Bioinformatics-ch12-cpp.indd 271 1/6/07 10:39:40

272  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

Indeed, if there is very little divergence, then attempting to fit a model will be
difficult through lack of variation in the data. A search might find one MP tree,
but often there are many such MP trees, each with the same minimum number
of sequence changes over each tree; this might be considered an indication of
the amount of ambiguity in the particular analysis. We usually will want to do a
bootstrap analysis, in which case the result would be a consensus of the MP trees
from each bootstrap replicate. A given bootstrap replicate might also have more
than one MP tree, and these are weighted by the inverse of the number of these
trees when the consensus is made.

Protocol 1

Mp search using paup*
Save your data in Nexus format. (An example dataset is given in the Protocol_� folder for this
chapter on the book’s web site, as data.nex�2.�5.)

Make and save a text file containing the following:

#nexus

begin paup; [Comments inside square brackets]

[Keep a log file. I assume the analysis will need to be repeated,
so I set replace=yes to overwrite the file]

log file=log replace=yes;

set maxtrees=1000 increase=auto; [appropriate for parsimony]

execute data.nex; [read in your data]

[Do a parsimony bootstrap, with default settings, except that 1000
bootstrap replicates are used.]

bootstrap nreps=1000;

[The following line saves the resulting consensus tree to a nexus
tree file. Using the from/to should not be needed, but it is a
workaround to a known bug. Bootstrap support values are saved
with the tree. If you repeat the analysis, the file is over-written.]

savetrees from=1 to=1 file=bootTree.nex savebootp=nodelabels

maxdecimals=1 replace=yes;

log stop;

quit;

end;

(A copy of this text file is given in the Protocol_� folder for this chapter on the book’s web
site, as commands.nex�2.�6.)

Execute the file. On Mac classic or Windows versions of PAUP*, you start the program and then
use the execute command. On Unix-like machines, including Mac OS X and Linux, you can run
it by saying, to your command line:

paup commands.nex

�.

2.

3.

12-Bioinformatics-ch12-cpp.indd 272 1/6/07 10:39:41

methods and aPProaches ■ 273

The example data file contains only �2 taxa and will run quickly. An alignment of �00 taxa
might take a few hours to run.

At the end of the analysis, you will have a tree in a Nexus file, where internal nodes are
decorated with bootstrap support values. The program will also make a log file as requested.
copies of the expected files (bootTree.nex�2.�7 and log�2.�8) are in the Protocol_� folder.

You can then import the result file into a tree-drawing program. If you want to import it
into TREEvIEW X (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html �2.�4), the file needs to be
modified slightly – the zero just before the final semi-colon in the tree description needs to be
removed. (A worked example is in the Protocol_� folder: Treeview/bootTreeM.nex�2.�9.)

In this analysis, branch lengths are meaningless and so a ‘cladogram’ format, where all of the
leaf nodes line up on the right, is appropriate. TREEvIEW X can place the bootstrap support values
on the internal nodes. You can print it to a file for further manipulation. (A copy of the output
is in the Protocol_� folder: Treeview/bootTreeM.pdf�2.20.)

4.

5.

6.

7.

Model-based methods tend to do better than MP methods when divergences are
large. Models take into account the possibility of superimposed, and therefore
hidden, mutations when calculating evolutionary distances, and branch lengths
are more meaningfully expressed in terms of mutations per site. Model-based
methods include distance methods, ML, and Bayesian methods. Of these, the
distance-based methods do not do as well as the full tree-based ML and Bayesian
methods, but distance methods are fast and so might be suitable for bootstrap
analyses of many taxa. (However, newer ML implementations are getting faster
(9, �0) and can now handle many taxa, so the reason for using distance methods
is somewhat less compelling.) A distance analysis is a two-step process. First, a
matrix of pairwise distances is made and then these distances are somehow made
into a tree. The pairwise distances might be a very simple measure such as the
number of changes between the sequences; these are uncorrected or p-distances
and so are not really model based. Better distances can be obtained with models
that take into account superimposed mutations. Maximum-likelihood distances
can also be made, which would be recommended. A tree can then be made from
the distance matrix using neighbor joining (��) or its relatives WEIgHBOR and BIONJ
(�2, �3). Neighbor joining is an algorithm and does not involve tree searching, so
it is very fast. Another alternative to treeing distance matrices is to search tree
space using something like the minimum tree length as the function for choosing
the best tree.

As tested with simulated data, the best-quality tree-building methods are
the full tree-based ML and Bayesian approaches, which both use the likelihood
function. The likelihood is proportional to the probability of the data given the
model and the tree. The likelihood of a tree is usually a very small number and so
is expressed in its log form (and should not be confused with the probability of
a tree). When we talk of the likelihood of a tree, we usually mean the maximized
likelihood, where all of the nuisance parameters are optimized, maximizing the
likelihood for that particular tree. The nuisance parameters are things like the
branch lengths and model rate matrix parameters. The ML tree is the tree, found in
a search, that has the highest maximized likelihood. As maximizing the likelihood

12-Bioinformatics-ch12-cpp.indd 273 1/6/07 10:39:41

274  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

uses numerical optimization and so is computationally intensive, searching for the
ML tree can be slow. Because of this, phylogenetic programmers have, with some
success, been pushing for increased speed via improved algorithms and workable
compromises.

2.5 Choosing a model

choosing a model of evolution is important, as it can greatly affect your analysis.
You should not guess or assume a model, but rather choose the best available
model, the one that best fits your data. generally, we use ML to choose a model;
the strategy is to evaluate the same tree with many different models and then
to choose the best one. However, we do not simply choose the model that gives
the highest likelihood. The process is analogous to fitting a polynomial curve to a
scatter plot; we want our model to describe the important trends in the data, but
without overfitting. Models differ in the number of parameters, and generally the
more parameters there are in the model, then the better the fit of the model to
the data and the higher the likelihood. On the other hand, with more and more
parameters, the likelihood will rise, but we will see diminishing returns, and simple
data described by an overly complex model might be modeling noise in the data
– it would be overparameterized. We want to avoid that, and so when we evaluate
our available models, we choose the one that gives the highest likelihood, but
penalize by the number of parameters. This is formalized in the Akaike information
criterion (AIc) (�4). The AIc of a model is defined as –2logL + 2n, where n is the
number of free parameters in the model. We make a table of AIc values and the
best choice of model is the one with the lowest AIc value.

Models for a single data partition can be described in terms of (see below):

The rate matrix (e.g. gTR or HKY for DNA, JTT or WAg for protein)
The composition (e.g. empirical or ML, +F in protein)
The ASRv (none, +g, +I, +Ig)

Models differ from each other in their free (i.e. adjustable) parameters. The
parameters might be optimized by ML, or in a Bayesian analysis they can be free to
be varied, or sometimes they can be fixed to reasonable numerical values. Models
with variable numerical parameters can therefore be considered to be families of
models. The rate matrix describes the rates of change between character states
(for example, between any two of the four bases, A, c, g, and T). The most general
rate matrix for DNA models in wide use is the gTR (general time reversible) matrix,
and matrices for other models can be considered to be simplifications of it.
Superimposed on the rate matrix is the composition of the model. generally, we
use the observed average composition of the data, i.e. the empirical composition,
or we optimize the composition by ML. If the data are fairly homogeneous, the
empirical and ML compositions will be about the same. However, sometimes
whether you use empirical or ML compositions will make a difference to the
analysis. If you have the computational time for it, it is recommended that ML-
optimized compositions be used. On the other hand, optimization of parameters

•
•
•

12-Bioinformatics-ch12-cpp.indd 274 1/6/07 10:39:41

methods and aPProaches ■ 275

like this is computationally expensive and one reasonable way to save time is
to use fixed empirical compositions. The third aspect of model descriptions is
among-site rate variation (ASRv). This is an accommodation of the effects of
selection on different sites and so would be especially important with biological
sequences. It should definitely be taken into account (�5). ASRv is usually modeled
by using discrete Γ (gamma)-distributed among-site rates (+g), or a proportion
of invariant sites (+I), or both together (+Ig). The former strategy, using Γ-
distributed rates, allows different sites to have different rates, where the relative
rates can be described by the shape parameter of the Γ-distribution family. There
is no biological basis for assuming that the ASRv is Γ distributed; it is simply
a computational convenience to allow a wide range of different distributions
all described by a single parameter. The other major strategy to accommodate
ASRv is to allow a proportion of sites to be invariant (i.e. constant sites that are
not allowed to be varied, in contrast to constant sites that have the potential
to vary but have not yet done so). Such a proportion can be estimated by ML.
There is some overlap (nonidentifiability) in the two strategies. For example, a Γ
distribution with a low α value has an L-shaped distribution of site rates, implying
many very slow sites. This would be describing approximately the same thing as
a model with a sizable proportion of invariant sites, and so your estimate of one
will affect your estimate of the other.

In protein models, we generally do not optimize the rate matrix parameters
(as we would do with the DNA gTR model). Rather, we use one of the ‘off-the-
shelf’ empirical models such as the JTT or WAg models. These have been made
with large data sets and are meant to be generally applicable. It is assumed that
your small alignment will behave in approximately the same way as the large data
set. This is a good strategy because your small data set probably does not have
enough information for an accurate estimation of all �89 rate matrix parameters.
These large datasets have their own inherent composition, which may well differ
from the composition of your data. Imposing your empirical composition on the
chosen rate matrix is often called the +F model and is certainly recommended
if available.

The strategy for choosing a model by ML is to optimize the same tree with
different combinations of rate matrix, composition, and ASRv. The tree used for
this purpose need not be the optimal tree; any reasonably good tree, such as
a neighbor-joining tree, can be used. After evaluating the tree with different
models, a table is made with the AIc (or its variants AIcc or AIc2, or the Bayesian
information criterion) and used to choose the best model. This can be done by hand,
but it is tedious and so has been automated. The original automated model choice
program is MODELTEST (�6), which tests DNA models available in PAUP*, using PAUP* to
do the likelihood calculations. The theory and practice of model selection can be
found in the documentation accompanying MODELTEST. A version for protein models,
PROTTEST (�7), uses its own modified version of PHYML to do the likelihood calculations.
A version of PROTTEST is available as a web server (http://darwin.uvigo.es/ �2.2�). A
similar program, MODELgENERATOR (http://bioinf.may.ie/software/modelgenerator/ �2.22),
for both DNA and protein models, does not require external software for the
likelihood calculations. choosing a model tells you what model family to use (e.g.

12-Bioinformatics-ch12-cpp.indd 275 1/6/07 10:39:42

276  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

HKY+g, or gTR+Ig), but it also may tell you the optimized numerical parameters
that were obtained. Whether you should use those numerical parameters depends
on the context. generally, for an ML search or a Bayesian analysis, the parameters
should all be free (although we make an exception for empirical protein rate
matrix parameters) and so we would not use those optimized parameter values.
(Using PAUP* for ML searching is a special case, where we would use a successive
approximation strategy for the best searches; �8.)

In a multi-gene analysis, the genes might be quite different in their
evolutionary dynamics, in which case they should be modeled separately. If they
are different data types, then they must be modeled separately. One strategy that
can be used is to analyze the different genes completely separately. For this, you
could use any ML program. You would need to evaluate (without searching) all of
the possible candidate trees with all of the genes, and the ML tree is the tree that
gives the highest sum. In this strategy, the analyses are completely separate and
the branch lengths are unrelated. This has the disadvantage that there is a huge
increase in the number of parameters because of all of the free branch lengths.
Another reasonable strategy is to analyze the data together, but in separate data
partitions, modeled separately. Available software for this is more limited. The
partitions would be able to have overall rates, and so we would have fast genes
and slow genes. These rates could be considered branch length multipliers, forcing
the corresponding branch lengths in the different partitions to be proportional to
each other. This has far fewer parameters.

Protocol 2

automated model choice
The program MODELgENERATOR will be used here because it is applicable to both DNA and
protein, and it does not require additional software to do the likelihood calculations
(�9). MODELgENERATOR will recognize whether the data are DNA or protein and test a full
complement of rate matrices and ASRv. It constructs a neighbor-joining tree to make model
comparisons. For protein models, both the inherent model composition and your empirical
data composition (the +F model) are tested. For DNA models, the composition is estimated
by ML, where applicable. The models can be compared and chosen by the AIc (or its variant
AIcc, used for short data; 20).

get the software from its website (http://bioinf.may.ie/software/modelgenerator/ �2.22) and
unpack it.

Install the program on Mac OS X or Linux by making the following text file:

java -jar /path/to/your/modelgenerator.jar $1 $2

Name the file modelgenerator�2.23, make it executable, and put it in your path.

Put the data in FASTA or PHYLIP format (data for a worked example is given in the Protocol_2
folder for this chapter on the book’s web site, named data.phy�2.24).

Run the following command:

modelgenerator data.phy 4

�.

2.

3.

4.

12-Bioinformatics-ch12-cpp.indd 276 1/6/07 10:39:42

methods and aPProaches ■ 277

Here the ‘4’ is the number of discrete Γ-distributed among-site rate categories; four is
generally sufficient. The results with the suggested model are saved in a log file.

The output for the worked example is given in the Protocol_2 folder as modelgenerator0.out�2.25;
a README�2.26 file is also provided.

5.

Protocol 3

ML with phyml

PHYML (9) is a fast implementation of ML with a good set of models for both DNA and protein.
It is fast enough that bootstrapping can be done in a reasonable amount of time. A local
installation can be run using command line options (for a complete list, use the command
‘phyml -h’), but the PHYLIP-like interface allows more options. PHYML also has a web interface,
which we will use in this protocol.

choose a model for your data (see Protocol 2).

Put your data into PHYLIP format. A worked example is given in the Protocol_3 folder for
this chapter on the book’s web site as data.phy�2.24; note that this file is the same as the one
used in Protocol 2).

call up the web page (http://atgc.lirmm.fr/phyml �2.�0) and, in the upper-right part of the
screen, change the setting for the input file from example file to file and use the choose
file buttona to upload the data.phy�2.24 data file. Also check the Perform bootstrap box, and
set the number of bootstrap replicates ('Number of data sets') required (200 for the worked
example; generally �00 at a minimum and usually more if time allows).

The model suggested by the AIc in Protocol 2 for these data was the gTR+g model, so choose
the GTR substitution model. Make the proportion of invariant sites fixed and set to zero, but
turn on Γ-distributed ASRv by setting the number of substitution rate categories to 4, leaving
the Γ-distribution parameter in its default setting of estimated. Leave the other settings at
their default values, fill in your e-mail address, and submit the job.

When the job finishes, the results are e-mailed to you. A copy of the expected results is given
in the Protocol_3 folder as phyml_online_results�2.27.

The final line of the results gives the tree structure with its bootstrap values. To view the tree
in TREEvIEW X, put this line into a new text file (the worked example file in the Protocol_3 folder
is Treeview/tree.phy�2.28).

Use this as an input into TREEvIEW X to create a graphical file (the expected result is given in the
Protocol_3 folder as Treeview/tree.pdf�2.29). Note that bootstrap values are given as numbers
out of 200 (the number of bootstraps used in this example – see step 3 above), rather than
as percentages.

|	 Note
aDepending on which web browser you are using, this button may instead be called Browse.

�.

2.

3.

4.

5.

6.

7.

12-Bioinformatics-ch12-cpp.indd 277 1/6/07 10:39:43

278  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

2.6 a Bayesian approach to phylogenetics

The past decade has seen the emergence of Bayesian methods into the repertoire
of the phylogeneticist (4, 2�). Bayesian methods are also based on the likelihood of
trees, but the likelihood is not optimized as in ML. Rather the result is expressed in
terms of the posterior probability distribution of the trees or splits, and takes into
account the variance of all of the nuisance parameters. The posterior probability
distribution cannot be calculated directly, but it can be approximated by means of
the Markov chain Monte carlo (McMc) method. This is a computational process
that samples tree topologies, branch lengths, and model parameters in proportion
to their posterior probability; those trees with a higher posterior probability are
sampled more often. It is a chain that goes from state to state, typically for many
thousands of state changes or generations. At the end, when we have collected
enough samples, we need to summarize those samples for our result, and generally
that summary will be the consensus tree topology from the sampled trees. Typically,
we start our McMc from a random tree topology, with arbitrary model parameters
and, after a while, the chain converges to the posterior probability distribution.
Because of this delay in reaching convergence, samples taken from the beginning
of the chain are not representative of the posterior and are discarded as ‘burn-in’.
Assessing whether the chain has converged is difficult, and the investigator needs
to pay careful attention to the available diagnostics. The posterior distribution is
proportional to the likelihood of trees with their models, but it is also proportional
to prior probabilities, which is what you think the results should be before you
see the data. generally, the prior is chosen so that it does not influence the result
much and so, for example, the prior probability of any one tree topology is the
same as any other. generally, when there is a sizable amount of data, the influence
of the prior will be small and the posterior will mostly be driven by the likelihood,
and so ML and Bayesian analyses will be quite similar.

A valid McMc involves many practical considerations. We want the McMc
to show good mixing, i.e. we want our samples from the McMc to cover the
whole of the posterior distribution, and there are strategies to promote that. One
simple strategy is to sample the chain rarely, for example every �000 generations,
rather than every generation. Another strategy uses Metropolis-coupled McMc,
or McMcMc; the interested reader is invited to consult the MRBAYES manual for
an explanation (Huelsenbeck and Ronquist’s MRBAYES web page at http://mrbayes.
csit.fsu.edu/ �2.30). We also want some assurance that our McMc has reached
convergence. We cannot have absolute assurance, but there are diagnostics that
we can use. A reasonable assumption is that if we run the analysis more than
once, with each run starting from a different random starting tree, and if we
find that each run converges to the same consensus topology, then we can have
more confidence that they have converged. Doing more than one run is highly
recommended and two runs is now the default in MRBAYES. Perhaps the simplest
diagnostic is to plot the likelihood of a run and check that it has reached the
more or less noisy plateau that is consistent with convergence. This is a widely
used quick-and-dirty method, but it is not reliable. certainly, if the likelihood

12-Bioinformatics-ch12-cpp.indd 278 1/6/07 10:39:43

methods and aPProaches ■ 279

plot has not reached a plateau, then we can say that the chain has not reached
convergence, but we cannot argue the reverse. Other parameters besides the
likelihood can be examined, and the ‘sump’ command in MRBAYES aids this. generally,
we are especially interested in the topology, and we want to make sure that the
topology has converged. To aid this, MRBAYES now examines how similar the sampled
trees are from different simultaneous runs in the form of the average standard
deviation of split frequencies. When this reaches a low level, such as 0.0�, then
the two runs are similar to each other and we can have more confidence that the
chains have converged. Whilst many investigators use a fairly short burn-in and
so get a few more samples, it is recommended that a long burn-in be used to give
a better chance of sampling truly converged chains.

Protocol 4

Simple Bayesian analysis with mrbayes

MRBAYES has a comprehensive wiki manual and tutorial introduction on its web site (http://
mrbayes.csit.fsu.edu/ �2.30) and this should be consulted. There is also extensive online help
within the program itself and there are example files that come with the software. It is
recommended that more than one run be made, and doing two simultaneous runs is the default
in MRBAYES. Instructions for doing multi-partition analyses are given in the wiki manual.

Install MRBAYES from its web site (http://mrbayes.csit.fsu.edu/ �2.30). MRBAYES is generally installed
under the name ‘mb�2.3�’, and you can start the program for interactive use by typing ‘mb’ at
your prompt.

choose a model for your dataa.

Put your data into Nexus format, using a Nexus data block (8). (Data for this worked example
is given in the Protocol_4 folder for this chapter, as data.nex�2.�5.)

Run the analysis for a short time, perhaps �0 000 generations, interactively (as in the tutorial).
That way you can get some idea of how long a longer analysis will take. When running
interactively, you can continue running more generations after the first lot has finished.

When you have an idea of how long to run the McMc, you can collect your commands in a
Nexus file. Such a commands file might contain:

#nexus
begin mrbayes;
log filename=mbout.log append start;
execute data.nex;
lset nst=6 rates=invgamma;
mcmc ngen=1000000 samplefreq=500 printfreq=10000 filename=mbout;
sump filename=mbout burnin=1001;
sumt filename=mbout burnin=1001;
log stop;
quit;
end;

(A copy of a similar worked example is given in the Protocol_4 folder as commands.nex�2.�6.)

The ‘lset’ line, which specifies the model, should specify your chosen model. Here, I
have specified a million generations, which might take overnight for a medium-sized data

�.

2.

3.

4.

5.

12-Bioinformatics-ch12-cpp.indd 279 1/6/07 10:39:43

280  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

set. I collect samples every 500 generations (‘samplefreq’), which means that I collect 200�
samples for each of the two runs. The burn-in is given by the number of samples, not the
number of generations (in this case, �00� samples, or half of the run)b. The ‘sump’ command
summarizes the likelihood and parameter values, and the ‘sumt’ command summarizes the
sampled trees and makes a consensus tree; these commands also specify the names for the
respective output files.

Run the command file from the command line as ‘mb commands.nex’.

At the end of the run, examine the output to determine whether topological convergence
has been reached, and whether you have convergence of the model parameters, good chain
swapping, and good proposal acceptance rates. (The output files for this worked example
are given in the Protocol_4 folder as mbout.*�2.32, along with a README�2.26 file describing
their interpretation.) If everything went well (as in this worked example), then the analysis
is finished, but, if not, then you need to make adjustments and run it again, perhaps for a
longer run.

Bayesian analysis results are very straightforward to interpret. The split supports, given in the
consensus tree, are the posterior probability that the split is true, given the data and model.

|	 Notes
a
mrbayes does not implement the many subsets of the gTR model such as the TN and K3P models,

and so if those models are chosen, you can use the gTR model. In this case, it is probably better to
err on the side of slightly overparameterizing rather than underparameterizing.
bA long burn-in is recommended. Some diagnostics, such as a likelihood plot, might reach apparent
convergence quickly, but other aspects, such as topology, might be slower to converge. You can use
AWTY (‘Are we there yet?’) for more convergence diagnostics (http://king2.csit.fsu.edu/cEBProjects/
awty/awty_start.php �2.33).

6.

7.

8.

3. trOUBLeShOOtING

The process of evolution has been complex, and the present-day gene sequences
that we use might easily contain biases or other aspects that can confound our
phylogenetic methods; a few will be mentioned here. For example, if there is
compositional heterogeneity in the sequences, and there are unrelated sequences
that have a similar composition, those sequences might erroneously be attracted
to each other in the recovered tree. When we model ASRv, one assumption is that
the rate of individual sites is constant over the tree. However, there is evidence
that the rate of sites can change in diverged taxa, and even the spectrum of
invariant sites can change over time. These covarion and heterotachy effects
are difficult to model. In early evolution, horizontal (or lateral) gene transfer
appears to have been more common and of course that will cause gene trees to
be different from organism trees. Perhaps such effects might better be described
by networks rather than trees. Long-branch attraction in parsimony has long
been appreciated, and model-based methods are less susceptible to this. However,
we can also see long-branch effects in model-based methods when the model
does not fit well. Such problems are not easily identified. At the least, you might
want to identify very long branches or compositionally divergent taxa, and as an

12-Bioinformatics-ch12-cpp.indd 280 1/6/07 10:39:44

reFerences ■ 281

experiment remove them for a repeat of your analysis to see whether it affects
your conclusions. A similar problem with difficult data occurs when the outgroup
is highly diverged from the ingroup to the extent that its presence distorts the
ingroup. As a workaround, you can remove the outgroup to get a better supported
but unrooted ingroup topology, and then as a separate analysis attempt to see
where the outgroup attaches.

Phylogenetic software can be frustrating. It is often written by academics
whose main expertise is not programming, and it is often user-hostile and buggy.
Something as simple as differences in line endings in files (Unix versus old Mac
versus DOS line endings) might cause a program to fail. These otherwise invisible
characters can be seen with the ‘od –c’ command in Unix. Perhaps you have long
names for taxa and you intend to do an analysis with a program that only takes
short names. It might be worthwhile changing the names to arbitrary short names
to do the analysis and then changing the names back to the long versions at the
end. A script using a dictionary or hash in Perl or Python can facilitate that. You
can save time debugging methods if you use small datasets. Debugging is often
helped by example files provided with the program, and trial and error debugging
is made easier when you use very small files.

Bayesian analysis requires more expertise than other methods in order to
adjust the McMc and to assess convergence. It also has its own problems (see,
for example, (39)). You will often find that, when the same data are analyzed by
both ML and Bayesian approaches, posteriors are higher than bootstraps; these
inflated posteriors should be kept in mind when interpreting results. You should
be especially suspicious of high support on short internal branches.

4. reFereNCeS

1. Graur	D	&	Martin	W (2004) trends Genet. 20, 80–86.
	 ★	2. Felsenstein	J (2004) Inferring Phylogenies. sinauer associates, sunderland, ma. – standard

comprehensive textbook.
3. Swofford	DL,	Olson	GJ,	Waddell	PJ	&	Hillis	DM	(1996) In molecular systematics. edited by

dm hillis, G moritz & BK mable. sinauer associates, sunderland, ma, pp. 407–514.
	 ★	4. Holder	M	&	Lewis	PO (2003) nat. rev. Genet. 4, 275–284. – a very readable explanation

of Bayesian methods and the mcmc.
	 ★	5. Lewis	PO (2001) trends ecol. evol. 16, 30–37. – a paper describing some of the new

directions in phylogenetics.
6. Chenna	R,	Sugawara	H,	Koike	T,	et	al. (2003) nucleic acids res. 31, 3497–3500.
7. Castresana	J (2000) mol. Biol. evol. 17, 540–552.
8. Maddison	DR,	Swofford	DL	&	Maddison	WP (1997) syst. Biol. 46, 590–621.
9. Guindon	S	&	Gascuel	O (2003) syst. Biol. 52, 696–704.
10. Jobb	G,	von	Haeseler	A	&	Strimmer	K (2004) Bmc evol. Biol. 4, 18.
11. Saitou	N	&	Nei	M (1987) mol. Biol. evol. 4, 406–425.
12. Bruno	WJ,	Socci	ND	&	Halpern	AL (2000) mol. Biol. evol. 17, 189–197.
13. Gascuel	O (1997) mol. Biol. evol. 14, 685–695.
14. Akaike	H (1974) Ieee trans. autom. contr. 19, 716–723.
15. Sullivan	J	&	Swofford	DL (1997) J. mamm. evol. 4, 77–86.
16. Posada	D	&	Crandall	KA (1998) Bioinformatics, 14, 817–818.
17. Abascal	F,	Zardoya	R	&	Posada	D (2005) Bioinformatics, 21, 2104–2105.
18. Sullivan	J,	Abdo	Z,	Joyce	P	&	Swofford	DL (2005) mol. Biol. evol. 22, 1386–1392.

12-Bioinformatics-ch12-cpp.indd 281 1/6/07 10:39:44

282  ■  chaPter 12: InFerrInG PhyloGenetIc relatIonshIPs From sequence data

19. Keane	TM,	Creevey	CJ,	Pentony	MM,	Naughton	TJ	&	McInerney	JO (2006) Bmc evol. Biol.
6, 29.

20. Posada	D	&		Buckley	TR (2004) syst. Biol. 53, 793–808.
21. Huelsenbeck	JP,	Ronquist	F,	Nielsen	R	&	Bollback	JP (2001) science, 294, 2310–2314.

12-Bioinformatics-ch12-cpp.indd 282 1/6/07 10:39:44

