
Chapter 12
Inferring phylogenetic relationships 
from sequence data�

Peter G. Foster

1. INtrODUCtION

In molecular phylogenetics, we want to infer an underlying tree of relatedness from 
our gene sequence and its close relatives. We collect the same gene sequences, 
DNA, or protein from all of the taxa that we are interested in and align those 
sequences so that the columns of the alignment represent homologous sites of the 
gene, and then use that alignment to infer a phylogenetic tree. There are several 
different approaches to tree building. They have their strengths and weaknesses, 
and differ widely in the computational time required.

The most important tree-building methods are maximum parsimony (MP) and 
model-based methods, the latter including distance methods, maximum likelihood 
(ML), and Bayesian approaches. The distance methods are perhaps the simplest. 
In this approach, all possible pairwise evolutionary distances between sequences 
are calculated and these distances are then used to build trees that best explain 
those distances. The pairwise distances that this method use might simply be the 
percentage difference between sequences, but because superimposed mutations 
at the same site can mask the real extent of evolutionary divergence, we correct 
the observed distances with an explicit model of evolution. The other methods are 
character-based, and rather than first distilling the sequences to distances, the 
full information in the sequences is used in judging whether one candidate tree 
is better than another. The MP approach looks for the trees that can describe the 
inferred sequence changes over the tree in the smallest number of steps. ML and 
Bayesian approaches use models to find results that have highest probability. The 
methods have been tested on simulated data, where the true tree is known, and 
generally the ML and Bayesian methods perform best, but at a cost of increased 
computational complexity.

Most methods involve searching ‘tree space’ – which can be imagined as a 
landscape in which all possible trees are represented, with similar trees adjacent 
to each other, and in which the local height of the landscape represents the 
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goodness of the tree at that point. A comprehensive search of tree space is usually 
an impossible task because the number of trees is astronomical. For example, the 
number of unrooted trees with �00 taxa is about �.7 × �0�82. It is not possible to 
evaluate every tree unless the number of taxa is less than a dozen or so, and so some 
sort of heuristic search must be used. It is here that compromises and shortcuts 
are made, and where the quality of the algorithms and the programming come 
into play. For example, if the tree space has multiple islands of good trees, then a 
‘greedy’ search that only goes uphill and that starts near one of the suboptimal 
islands will tend to get stuck and never find the globally optimal tree. Better 
search strategies might use multiple starting points for searching, or have the 
ability to cross from one island to another, but would be more computationally 
expensive. Using any heuristic does not guarantee finding the best tree.

The result of our analysis is a phylogenetic tree. The tree is often drawn with 
parallel lines with the terminal taxa on the right (see Fig. 1a, b), which can perhaps 
lure us into thinking that the present-day taxa on the right evolved from the 
ancestor nodes on the left. However, in the methods that we generally use, there 
is no time-line information in the tree because the tree is unrooted, and we do 
not have the information to infer which taxa evolved from which ancestors. This 
idea is clearer in the tree shown in Fig. 1(c), where there is no obvious ancestor 
to which the eye is erroneously drawn. The usual way to root a tree is to use an 
‘outgroup’ (see Fig. 2). In this strategy, we call the taxa that we are interested in 
the ‘ingroup’ and we choose several additional taxa that we know are outside of 
that ingroup to use as an outgroup. Although the analysis as a whole is unrooted, 
we can infer that the place where the outgroup attaches to the ingroup roots the 
ingroup. The outgroup should be phylogenetically close to the ingroup, because if 
it is too distantly related it can distort the analysis.

It has become common to do phylogenetic analysis on more than one gene, 
perhaps a combination of mitochondrial and nuclear genes, using both ribosomal 
and protein-coding genes. This trend has arisen not only because of the increased 
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Figure 1. Unrooted trees.
the trees that we infer are generally unrooted and contain no information about 
ancestor–descendant relationships. the three trees in (a), (b), and (c) have identical 
topologies and are all unrooted. In particular, we should not infer from (a) or (b) that the 
ancestor of all of the taxa is the node on the far left.
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availability of data, but also because it has been noted that the results of an 
analysis from one gene often differ from the results of another. Assuming that 
these differences are due to noise or different biases, it is the assumption and 
hope that in a combined analysis the effects of noise and bias will cancel out, but 
the true phylogenetic signal, perhaps weak in any one gene, will be the same in 
each gene and so will sum to give a well-supported tree. We might take any one of 
a few approaches in a multi-gene analysis. We might analyze each gene separately 
and then reconcile any differences between the respective trees afterwards; or 
we might simply concatenate the data and analyze it as if it were a single gene. 
However, the different genes may well have different evolutionary characteristics, 
and in a simultaneous analysis those differences can, in some software, be 
accommodated in a multi-partition model.

We want to find the best tree, but we also want to show how well supported 
our results are. Perhaps our single best tree is much better than any other tree, or 
perhaps, if our data are not decisive, then our best tree will not be significantly 
different from other similar trees. We may even find that we have many optimal 
trees, all equally good. Furthermore, some parts of the best tree might be more 
reliable than other parts. The usual way to determine these supports is with the 
bootstrap. In the bootstrap, we make pseudoreplicate datasets by resampling 
columns of the original alignment with replacement and then repeat the entire 
analysis on each. This process is repeated usually hundreds of times and the results 
summarized with a majority-rule consensus tree showing bootstrap support for 
the internal branches (see Fig. 3). 

The methods should not be treated as black boxes that we throw our 
data into, from which a tree then emerges. Different methods have different 
assumptions that may or may not be met by your data. For example, in most 
common methods, there is an assumption that different sites in the alignment 
evolve independently. This may not be a good assumption, as for example in the 
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Figure 2. Outgroup rooting.
here we use outgroup rooting, where taxa outa and outB are known to be outside the 
ingroup (taxa In1–In4) and so we can infer the root of the ingroup. as with most analyses, 
as a whole it is unrooted, as emphasized in (a). It is often drawn as in (b), where by 
convention a graphically introduced (but otherwise meaningless) bifurcating basal node is 
drawn to divide the ingroup from the outgroup.
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stem regions of structural RNA genes. Again, most methods assume compositional 
homogeneity, meaning that the sequences all have the same composition. If this 
assumption is not met, then the methods can fail and the recovered tree can be 
distorted. The MP method, in particular, is susceptible to long-branch attraction. 
Here, highly diverged but unrelated taxa tend to group together erroneously in 
the inferred trees. This artifact arises from the failure of MP to deal correctly with 
sequences that have many superimposed, and therefore hidden, mutations. You 
might think that using several different approaches would be safest, but this may 
not be so; if you get the same result from several different methods, it may be 
because you are getting the correct answer to an easy problem with clear data, 
or it may be because all the results are distorted in the same way by an unknown 
bias in your data. 

There are, of course, many aspects of phylogenetics that are beyond the scope 
of this short chapter and many complex areas are glossed over. In particular, I will 
not be discussing molecular clocks and molecular dating, nor the identification 
of sites in a gene that are under selective pressure, both of which are important 
emerging applications of phylogenetics. These methods are changing quickly, 
and any attempt to make a recipe would immediately be out of date in these 
rapidly moving and often controversial fields (�). To get to grips with these, you 
need to dive into the primary literature in journals such as Molecular Biology and 
Evolution and Systematic Biology. 

The field of phylogenetics has matured to a point that there is now a 
comprehensive textbook by Joe Felsenstein (2) (see also http://evolution.genetics.
washington.edu/ �2.�). The classic chapter on phylogenetic inference by Dave 
Swofford and colleagues has not gone out of date in the decade since its writing 
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Figure 3. Consensus trees and support.
the input trees might be bootstrap replicates or samples from a Bayesian markov chain monte carlo. 
here we make a majority-rule consensus tree from three input trees. the consensus shows the proportion 
of input trees that have the given split or tree bipartition (internal branches). some splits, for example the 
grouping of taxa c and d together, were seen in only one of the three input trees and so do not appear in 
the consensus. some supports are higher than others, and so we have 100% support for the groupings 
of a with B, and of F with G, as these splits were found in all of the input trees. however, we would have 
less confidence in other parts of the tree.
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(3). The reviews written or co-written by Paul Lewis are especially readable (4, 5). 
The course material for the annual Workshop on Molecular Evolution is written by 
experts in the field and is a very useful resource, available online (http://workshop.
molecularevolution.org/ �2.2).

2. MethODS aND apprOaCheS

2.1 alignments

We start our phylogenetic analysis with an alignment of molecular sequences. 
We want to compare homologous positions in the genes, and the alignment is 
our statement of homology. Homologous sites in genes are kept in line in spite 
of insertions and deletions in the gene sequences by introducing alignment gaps, 
usually with the ‘–’ character. As we do not know whether the gaps are due to 
deletions in one sequence or insertions in another, they are referred to as indels. 
You can identify a group of related sequences from public databases using BLAST. 
For some closely related genes, alignment is trivially easy and can be done by hand, 
often with few or no introduced gaps. However, for more diverged sequences, you 
will need to use multiple sequence alignment software. The standard program 
for making alignments is cLUSTALW (6), which has several web servers including one 
at the European Bioinformatics Institute (http://www.ebi.ac.uk/clustalw/ �2.3). 
Another recommendable alignment program is MUScLE, which also has a web server 
(http://www.drive5.com/muscle/ �2.4). Making multiple alignments is a difficult 
computational problem and often a cLUSTALW alignment can be, and should be, 
improved by eye. This should be no surprise, as the human brain is very good at 
recognizing patterns. Use a graphic user interface multiple sequence editor with 
colored characters to help you to fix up the alignment. Often, it is not obvious 
what gap pattern to impose on the sequences to get the best alignment, and if 
that is the case those parts that you are not sure of should be masked out and not 
used in subsequent analyses. An attempt at automating the process of identifying 
unreliable parts of an alignment has been made (7). A comment should be made 
here concerning the alignment of DNA sequences for protein-coding genes: with 
the assumption that homology is determined by the protein sequence, you should 
translate the DNA into its protein sequence and align the protein first, and then 
back-align the DNA to the protein so that the gap pattern between codons is 
preserved. 

2.2 File formats

There are many file formats for sequence data (see the section on formats at 
http://workshop.molecularevolution.org/ �2.5), and most phylogenetic software is 
limited in the formats that it is able to read. In many areas of bioinformatics, the 
simple FASTA format is used, and it is commonly used as the input format for 
multiple-alignment programs. It is used occasionally in phylogenetics, even though 
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it does not imply aligned sequences. A particularly common format for aligned 
sequence data is PHYLIP format, which might be either sequential (one sequence 
after another, like FASTA) or, more usually, interleaved, showing the alignment 
more clearly. Another important format is Nexus format, which is used by PAUP*, 
MRBAYES, and a few other programs (8). This extremely flexible format is able to 
accommodate information in addition to the sequence data, such as information 
about partitioning the data, about trees, and even commands for the programs 
that use this format. There is software that can convert formats, including READSEq 
(http://iubio.bio.indiana.edu/soft/molbio/readseq/java/ �2.6), with a web server 
(http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi �2.7). Trees can also be described 
in text files, almost always in Newick format (see http://iubio.bio.indiana.edu/ 
cgi-bin/readseq.cgi �2.7). Nexus format trees are Newick trees embedded in a Nexus 
structure. Newick format shows the tree topology using nested parentheses, and 
can incorporate branch lengths and labeling of interior nodes (often labeled with 
support values), as well as terminal taxa. Different programs more or less adhere 
to file format standards, but it is often the case that incompatibilities arise that 
force the user to make adjustments. If you are lucky, this can be automated or 
scripted, but often it cannot be changed easily and the data must be edited by 
hand. Format definitions are often modified and extended by software authors, 
which is an invitation to incompatibility when going from one program to another. 
The practicing phylogeneticist needs to be aware of this and to be able to debug 
problems. 

In the case of a multi-gene analysis, if the data are simply concatenated and 
not kept separate, then there is no format problem. However, if we want to keep 
the different data partitions separate, perhaps to allow different overall rates in 
the different partitions, or if different model characteristics are to be applied 
to the different data partitions, then some way of indicating how the data are 
divided up into those partitions is needed. In Nexus files, there is a standard way 
of partitioning the data and that way is used by PAUP*. Other programs like MRBAYES 
and TREEFINDER that can do multi-partition data use their own ways of partitioning 
that are unfortunately not compatible with other programs.

2.3 Software

Joe Felsenstein maintains a valuable web page of all of the phylogenetic 
software that he knows about (http://evolution.genetics.washington.edu/phylip/
software.html �2.8), and many of the programs listed have web servers. The classic 
phylogenetic software includes the PHYLIP suite of programs by Joe Felsenstein, 
and PAUP*, written by Dave Swofford. Both are enormously capable and have been 
improved and debugged through wide use, and both are very well documented. 
PHYLIP includes a great many methods, but it can be slow and often other programs 
are able to do similar analyses faster. Many other programs use the PHYLIP data 
format and imitate the PHYLIP command-line menu-driven interface. PAUP* (http://
paup.csit.fsu.edu/ �2.9) is one of the few mainstream programs in phylogenetics 
that is not free – the source code is not available and there is a small license fee. 
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Nevertheless, it is worthwhile having, as it is excellent for parsimony, distance 
methods, and for ML of DNA. 

PAUP* is in wide use for ML analysis of DNA. It is excellent for this, but is slow 
compared with newer ML programs such as PHYML (http://atgc.lirmm.fr/phyml �2.�0) 
and TREEFINDER (http://www.treefinder.de/ �2.��). TREE-PUzzLE (previously called just PUzzLE; 
http://www.tree-puzzle.de/ �2.�2) is an ML program with good models for both 
DNA and protein that uses quartet puzzling to find ML trees. In this strategy, the 
problem is decomposed into finding the best trees from many different quartets 
of taxa sampled from the data and then combining (puzzling) the quartets to 
make the full tree. Although it is faster than PAUP* for ML, the resulting trees are 
generally not as good as more-thorough tree-based methods, and with the advent 
of newer ML programs, its niche is smaller. 

choices for analyzing multiple data sets simultaneously are limited. The major 
Bayesian program in wide use, MRBAYES, has a comprehensive set of models and 
is one of the few programs that is able to model multiple data partitions well. 
PAUP* is able to model separate DNA partitions with its site-specific model, by 
allowing the different data partitions to have their own overall rates; however, 
PAUP* otherwise assumes that the other model characteristics, rate matrix, and 
so on, are the same in all of the partitions. Modeling of different data partitions 
in MRBAYES is much more flexible, allowing combinations of datatypes and fitting 
of different complete models to the different partitions. TREEFINDER is also able to 
model different data partitions well under ML. 

As larger analyses can be very computationally intensive, it would 
sometimes be appropriate to be able to run the analyses in parallel on clusters 
of computers. MRBAYES and TREE-PUzzLE have parallel versions. A bootstrap analysis 
is naturally amenable to running on a cluster, where different machines 
are each given a part of the task. Another up-and-coming strategy is cycle 
scavenging, where phylogenetic jobs flexibly migrate among idle desktop 
computers (http://www.cs.may.ie/distributed/multiphyl.php �2.�3). 

The end result of a phylogenetic analysis is usually a tree with support values 
on the nodes, and often we will want to draw that tree. We will want to show 
the branch lengths accurately, perhaps with a scale bar, and we will want to show 
the support values on the nodes. We will want to use vector rather than bitmap 
graphics, and we will probably want the output of the tree-drawing program to 
be in a form that will allow further editing with your favorite graphics program. 
Unfortunately, software to draw trees can be frustrating and any given program 
may only satisfy some of these desiderata. Perhaps the best combination of ease 
of use and capabilities is TREEvIEW (see Rod Page’s TREEvIEW page at http://taxonomy.
zoology.gla.ac.uk/rod/treeview.html �2.�4). The PHYLIP programs DRAWTREE and DRAWgRAM 
can also be useful. 

2.4 tree-building methods

The main tree-building methods are MP and model-based methods. Parsimony is 
fast and able to handle many sequences and is excellent if divergences are small. 
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Indeed, if there is very little divergence, then attempting to fit a model will be 
difficult through lack of variation in the data. A search might find one MP tree, 
but often there are many such MP trees, each with the same minimum number 
of sequence changes over each tree; this might be considered an indication of 
the amount of ambiguity in the particular analysis. We usually will want to do a 
bootstrap analysis, in which case the result would be a consensus of the MP trees 
from each bootstrap replicate. A given bootstrap replicate might also have more 
than one MP tree, and these are weighted by the inverse of the number of these 
trees when the consensus is made. 

Protocol 1

Mp search using paup*
Save your data in Nexus format. (An example dataset is given in the Protocol_� folder for this 
chapter on the book’s web site, as data.nex�2.�5.)

Make and save a text file containing the following: 

#nexus

begin paup; [ Comments inside square brackets ]

[  Keep a log file. I assume the analysis will need to be repeated,  
so I set replace=yes to overwrite the file ]

log file=log replace=yes;

set maxtrees=1000 increase=auto; [ appropriate for parsimony]

execute data.nex; [ read in your data ]

[  Do a parsimony bootstrap, with default settings, except that 1000  
bootstrap replicates are used. ]

bootstrap nreps=1000;

[  The following line saves the resulting consensus tree to a nexus  
tree file. Using the from/to should not be needed, but it is a 
workaround to a known bug. Bootstrap support values are saved  
with the tree. If you repeat the analysis, the file is over-written. ]

savetrees from=1 to=1 file=bootTree.nex savebootp=nodelabels

maxdecimals=1 replace=yes;

log stop;

quit;

end;

(A copy of this text file is given in the Protocol_� folder for this chapter on the book’s web 
site, as commands.nex�2.�6.)

Execute the file. On Mac classic or Windows versions of PAUP*, you start the program and then 
use the execute command. On Unix-like machines, including Mac OS X and Linux, you can run 
it by saying, to your command line:

paup commands.nex

�.

2.

3.
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The example data file contains only �2 taxa and will run quickly. An alignment of �00 taxa 
might take a few hours to run.

At the end of the analysis, you will have a tree in a Nexus file, where internal nodes are 
decorated with bootstrap support values. The program will also make a log file as requested. 
copies of the expected files (bootTree.nex�2.�7 and log�2.�8) are in the Protocol_� folder.

You can then import the result file into a tree-drawing program. If you want to import it 
into TREEvIEW X (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html �2.�4), the file needs to be 
modified slightly – the zero just before the final semi-colon in the tree description needs to be 
removed. (A worked example is in the Protocol_� folder: Treeview/bootTreeM.nex�2.�9.)

In this analysis, branch lengths are meaningless and so a ‘cladogram’ format, where all of the 
leaf nodes line up on the right, is appropriate. TREEvIEW X can place the bootstrap support values 
on the internal nodes. You can print it to a file for further manipulation. (A copy of the output 
is in the Protocol_� folder: Treeview/bootTreeM.pdf�2.20.) 

4.

5.

6.

7.

Model-based methods tend to do better than MP methods when divergences are 
large. Models take into account the possibility of superimposed, and therefore 
hidden, mutations when calculating evolutionary distances, and branch lengths 
are more meaningfully expressed in terms of mutations per site. Model-based 
methods include distance methods, ML, and Bayesian methods. Of these, the 
distance-based methods do not do as well as the full tree-based ML and Bayesian 
methods, but distance methods are fast and so might be suitable for bootstrap 
analyses of many taxa. (However, newer ML implementations are getting faster 
(9, �0) and can now handle many taxa, so the reason for using distance methods 
is somewhat less compelling.) A distance analysis is a two-step process. First, a 
matrix of pairwise distances is made and then these distances are somehow made 
into a tree. The pairwise distances might be a very simple measure such as the 
number of changes between the sequences; these are uncorrected or p-distances 
and so are not really model based. Better distances can be obtained with models 
that take into account superimposed mutations. Maximum-likelihood distances 
can also be made, which would be recommended. A tree can then be made from 
the distance matrix using neighbor joining (��) or its relatives WEIgHBOR and BIONJ 
(�2, �3). Neighbor joining is an algorithm and does not involve tree searching, so 
it is very fast. Another alternative to treeing distance matrices is to search tree 
space using something like the minimum tree length as the function for choosing 
the best tree. 

As tested with simulated data, the best-quality tree-building methods are 
the full tree-based ML and Bayesian approaches, which both use the likelihood 
function. The likelihood is proportional to the probability of the data given the 
model and the tree. The likelihood of a tree is usually a very small number and so 
is expressed in its log form (and should not be confused with the probability of 
a tree). When we talk of the likelihood of a tree, we usually mean the maximized 
likelihood, where all of the nuisance parameters are optimized, maximizing the 
likelihood for that particular tree. The nuisance parameters are things like the 
branch lengths and model rate matrix parameters. The ML tree is the tree, found in 
a search, that has the highest maximized likelihood. As maximizing the likelihood 
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uses numerical optimization and so is computationally intensive, searching for the 
ML tree can be slow. Because of this, phylogenetic programmers have, with some 
success, been pushing for increased speed via improved algorithms and workable 
compromises.

2.5 Choosing a model

choosing a model of evolution is important, as it can greatly affect your analysis. 
You should not guess or assume a model, but rather choose the best available 
model, the one that best fits your data. generally, we use ML to choose a model; 
the strategy is to evaluate the same tree with many different models and then 
to choose the best one. However, we do not simply choose the model that gives 
the highest likelihood. The process is analogous to fitting a polynomial curve to a 
scatter plot; we want our model to describe the important trends in the data, but 
without overfitting. Models differ in the number of parameters, and generally the 
more parameters there are in the model, then the better the fit of the model to 
the data and the higher the likelihood. On the other hand, with more and more 
parameters, the likelihood will rise, but we will see diminishing returns, and simple 
data described by an overly complex model might be modeling noise in the data 
– it would be overparameterized. We want to avoid that, and so when we evaluate 
our available models, we choose the one that gives the highest likelihood, but 
penalize by the number of parameters. This is formalized in the Akaike information 
criterion (AIc) (�4). The AIc of a model is defined as –2logL + 2n, where n is the 
number of free parameters in the model. We make a table of AIc values and the 
best choice of model is the one with the lowest AIc value. 

Models for a single data partition can be described in terms of (see below):

The rate matrix (e.g. gTR or HKY for DNA, JTT or WAg for protein)
The composition (e.g. empirical or ML, +F in protein)
The ASRv (none, +g, +I, +Ig)

Models differ from each other in their free (i.e. adjustable) parameters. The 
parameters might be optimized by ML, or in a Bayesian analysis they can be free to 
be varied, or sometimes they can be fixed to reasonable numerical values. Models 
with variable numerical parameters can therefore be considered to be families of 
models. The rate matrix describes the rates of change between character states 
(for example, between any two of the four bases, A, c, g, and T). The most general 
rate matrix for DNA models in wide use is the gTR (general time reversible) matrix, 
and matrices for other models can be considered to be simplifications of it. 
Superimposed on the rate matrix is the composition of the model. generally, we 
use the observed average composition of the data, i.e. the empirical composition, 
or we optimize the composition by ML. If the data are fairly homogeneous, the 
empirical and ML compositions will be about the same. However, sometimes 
whether you use empirical or ML compositions will make a difference to the 
analysis. If you have the computational time for it, it is recommended that ML-
optimized compositions be used. On the other hand, optimization of parameters 

•
•
•
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like this is computationally expensive and one reasonable way to save time is 
to use fixed empirical compositions. The third aspect of model descriptions is 
among-site rate variation (ASRv). This is an accommodation of the effects of 
selection on different sites and so would be especially important with biological 
sequences. It should definitely be taken into account (�5). ASRv is usually modeled 
by using discrete Γ (gamma)-distributed among-site rates (+g), or a proportion 
of invariant sites (+I), or both together (+Ig). The former strategy, using Γ-
distributed rates, allows different sites to have different rates, where the relative 
rates can be described by the shape parameter of the Γ-distribution family. There 
is no biological basis for assuming that the ASRv is Γ distributed; it is simply 
a computational convenience to allow a wide range of different distributions 
all described by a single parameter. The other major strategy to accommodate 
ASRv is to allow a proportion of sites to be invariant (i.e. constant sites that are 
not allowed to be varied, in contrast to constant sites that have the potential 
to vary but have not yet done so). Such a proportion can be estimated by ML. 
There is some overlap (nonidentifiability) in the two strategies. For example, a Γ 
distribution with a low α value has an L-shaped distribution of site rates, implying 
many very slow sites. This would be describing approximately the same thing as 
a model with a sizable proportion of invariant sites, and so your estimate of one 
will affect your estimate of the other.

In protein models, we generally do not optimize the rate matrix parameters 
(as we would do with the DNA gTR model). Rather, we use one of the ‘off-the-
shelf’ empirical models such as the JTT or WAg models. These have been made 
with large data sets and are meant to be generally applicable. It is assumed that 
your small alignment will behave in approximately the same way as the large data 
set. This is a good strategy because your small data set probably does not have 
enough information for an accurate estimation of all �89 rate matrix parameters. 
These large datasets have their own inherent composition, which may well differ 
from the composition of your data. Imposing your empirical composition on the 
chosen rate matrix is often called the +F model and is certainly recommended 
if available. 

The strategy for choosing a model by ML is to optimize the same tree with 
different combinations of rate matrix, composition, and ASRv. The tree used for 
this purpose need not be the optimal tree; any reasonably good tree, such as 
a neighbor-joining tree, can be used. After evaluating the tree with different 
models, a table is made with the AIc (or its variants AIcc or AIc2, or the Bayesian 
information criterion) and used to choose the best model. This can be done by hand, 
but it is tedious and so has been automated. The original automated model choice 
program is MODELTEST (�6), which tests DNA models available in PAUP*, using PAUP* to 
do the likelihood calculations. The theory and practice of model selection can be 
found in the documentation accompanying MODELTEST. A version for protein models, 
PROTTEST (�7), uses its own modified version of PHYML to do the likelihood calculations. 
A version of PROTTEST is available as a web server (http://darwin.uvigo.es/ �2.2�). A 
similar program, MODELgENERATOR (http://bioinf.may.ie/software/modelgenerator/ �2.22), 
for both DNA and protein models, does not require external software for the 
likelihood calculations. choosing a model tells you what model family to use (e.g. 
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HKY+g, or gTR+Ig), but it also may tell you the optimized numerical parameters 
that were obtained. Whether you should use those numerical parameters depends 
on the context. generally, for an ML search or a Bayesian analysis, the parameters 
should all be free (although we make an exception for empirical protein rate 
matrix parameters) and so we would not use those optimized parameter values. 
(Using PAUP* for ML searching is a special case, where we would use a successive 
approximation strategy for the best searches; �8.)

In a multi-gene analysis, the genes might be quite different in their 
evolutionary dynamics, in which case they should be modeled separately. If they 
are different data types, then they must be modeled separately. One strategy that 
can be used is to analyze the different genes completely separately. For this, you 
could use any ML program. You would need to evaluate (without searching) all of 
the possible candidate trees with all of the genes, and the ML tree is the tree that 
gives the highest sum. In this strategy, the analyses are completely separate and 
the branch lengths are unrelated. This has the disadvantage that there is a huge 
increase in the number of parameters because of all of the free branch lengths. 
Another reasonable strategy is to analyze the data together, but in separate data 
partitions, modeled separately. Available software for this is more limited. The 
partitions would be able to have overall rates, and so we would have fast genes 
and slow genes. These rates could be considered branch length multipliers, forcing 
the corresponding branch lengths in the different partitions to be proportional to 
each other. This has far fewer parameters.

Protocol 2

automated model choice
The program MODELgENERATOR will be used here because it is applicable to both DNA and 
protein, and it does not require additional software to do the likelihood calculations 
(�9). MODELgENERATOR will recognize whether the data are DNA or protein and test a full 
complement of rate matrices and ASRv. It constructs a neighbor-joining tree to make model 
comparisons. For protein models, both the inherent model composition and your empirical 
data composition (the +F model) are tested. For DNA models, the composition is estimated 
by ML, where applicable. The models can be compared and chosen by the AIc (or its variant 
AIcc, used for short data; 20). 

get the software from its website (http://bioinf.may.ie/software/modelgenerator/ �2.22) and 
unpack it.

Install the program on Mac OS X or Linux by making the following text file:

java -jar /path/to/your/modelgenerator.jar $1 $2

Name the file modelgenerator�2.23, make it executable, and put it in your path.

Put the data in FASTA or PHYLIP format (data for a worked example is given in the Protocol_2 
folder for this chapter on the book’s web site, named data.phy�2.24).

Run the following command:

modelgenerator data.phy 4

�.

2.

3.

4.

12-Bioinformatics-ch12-cpp.indd   276 1/6/07   10:39:42



methods and aPProaches ■ 277 

Here the ‘4’ is the number of discrete Γ-distributed among-site rate categories; four is 
generally sufficient. The results with the suggested model are saved in a log file.

The output for the worked example is given in the Protocol_2 folder as modelgenerator0.out�2.25; 
a README�2.26 file is also provided.

5.

Protocol 3

ML with phyml

PHYML (9) is a fast implementation of ML with a good set of models for both DNA and protein. 
It is fast enough that bootstrapping can be done in a reasonable amount of time. A local 
installation can be run using command line options (for a complete list, use the command 
‘phyml -h’), but the PHYLIP-like interface allows more options. PHYML also has a web interface, 
which we will use in this protocol.

choose a model for your data (see Protocol 2).

Put your data into PHYLIP format. A worked example is given in the Protocol_3 folder for 
this chapter on the book’s web site as data.phy�2.24; note that this file is the same as the one 
used in Protocol 2).

call up the web page (http://atgc.lirmm.fr/phyml �2.�0) and, in the upper-right part of the 
screen, change the setting for the input file from example file to file and use the choose 
file buttona to upload the data.phy�2.24 data file. Also check the Perform bootstrap box, and 
set the number of bootstrap replicates ('Number of data sets') required (200 for the worked 
example; generally �00 at a minimum and usually more if time allows). 

The model suggested by the AIc in Protocol 2 for these data was the gTR+g model, so choose 
the GTR substitution model. Make the proportion of invariant sites fixed and set to zero, but 
turn on Γ-distributed ASRv by setting the number of substitution rate categories to 4, leaving 
the Γ-distribution parameter in its default setting of estimated. Leave the other settings at 
their default values, fill in your e-mail address, and submit the job.

When the job finishes, the results are e-mailed to you. A copy of the expected results is given 
in the Protocol_3 folder as phyml_online_results�2.27.

The final line of the results gives the tree structure with its bootstrap values. To view the tree 
in TREEvIEW X, put this line into a new text file (the worked example file in the Protocol_3 folder 
is Treeview/tree.phy�2.28).

Use this as an input into TREEvIEW X to create a graphical file (the expected result is given in the 
Protocol_3 folder as Treeview/tree.pdf�2.29). Note that bootstrap values are given as numbers 
out of 200 (the number of bootstraps used in this example – see step 3 above), rather than 
as percentages.

|	 Note
aDepending on which web browser you are using, this button may instead be called Browse.

�.

2.

3.

4.

5.

6.

7.
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2.6 a Bayesian approach to phylogenetics

The past decade has seen the emergence of Bayesian methods into the repertoire 
of the phylogeneticist (4, 2�). Bayesian methods are also based on the likelihood of 
trees, but the likelihood is not optimized as in ML. Rather the result is expressed in 
terms of the posterior probability distribution of the trees or splits, and takes into 
account the variance of all of the nuisance parameters. The posterior probability 
distribution cannot be calculated directly, but it can be approximated by means of 
the Markov chain Monte carlo (McMc) method. This is a computational process 
that samples tree topologies, branch lengths, and model parameters in proportion 
to their posterior probability; those trees with a higher posterior probability are 
sampled more often. It is a chain that goes from state to state, typically for many 
thousands of state changes or generations. At the end, when we have collected 
enough samples, we need to summarize those samples for our result, and generally 
that summary will be the consensus tree topology from the sampled trees. Typically, 
we start our McMc from a random tree topology, with arbitrary model parameters 
and, after a while, the chain converges to the posterior probability distribution. 
Because of this delay in reaching convergence, samples taken from the beginning 
of the chain are not representative of the posterior and are discarded as ‘burn-in’. 
Assessing whether the chain has converged is difficult, and the investigator needs 
to pay careful attention to the available diagnostics. The posterior distribution is 
proportional to the likelihood of trees with their models, but it is also proportional 
to prior probabilities, which is what you think the results should be before you 
see the data. generally, the prior is chosen so that it does not influence the result 
much and so, for example, the prior probability of any one tree topology is the 
same as any other. generally, when there is a sizable amount of data, the influence 
of the prior will be small and the posterior will mostly be driven by the likelihood, 
and so ML and Bayesian analyses will be quite similar.

A valid McMc involves many practical considerations. We want the McMc 
to show good mixing, i.e. we want our samples from the McMc to cover the 
whole of the posterior distribution, and there are strategies to promote that. One 
simple strategy is to sample the chain rarely, for example every �000 generations, 
rather than every generation. Another strategy uses Metropolis-coupled McMc, 
or McMcMc; the interested reader is invited to consult the MRBAYES manual for 
an explanation (Huelsenbeck and Ronquist’s MRBAYES web page at http://mrbayes.
csit.fsu.edu/ �2.30). We also want some assurance that our McMc has reached 
convergence. We cannot have absolute assurance, but there are diagnostics that 
we can use. A reasonable assumption is that if we run the analysis more than 
once, with each run starting from a different random starting tree, and if we 
find that each run converges to the same consensus topology, then we can have 
more confidence that they have converged. Doing more than one run is highly 
recommended and two runs is now the default in MRBAYES. Perhaps the simplest 
diagnostic is to plot the likelihood of a run and check that it has reached the 
more or less noisy plateau that is consistent with convergence. This is a widely 
used quick-and-dirty method, but it is not reliable. certainly, if the likelihood 
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plot has not reached a plateau, then we can say that the chain has not reached 
convergence, but we cannot argue the reverse. Other parameters besides the 
likelihood can be examined, and the ‘sump’ command in MRBAYES aids this. generally, 
we are especially interested in the topology, and we want to make sure that the 
topology has converged. To aid this, MRBAYES now examines how similar the sampled 
trees are from different simultaneous runs in the form of the average standard 
deviation of split frequencies. When this reaches a low level, such as 0.0�, then 
the two runs are similar to each other and we can have more confidence that the 
chains have converged. Whilst many investigators use a fairly short burn-in and 
so get a few more samples, it is recommended that a long burn-in be used to give 
a better chance of sampling truly converged chains.

Protocol 4

Simple Bayesian analysis with mrbayes

MRBAYES has a comprehensive wiki manual and tutorial introduction on its web site (http://
mrbayes.csit.fsu.edu/ �2.30) and this should be consulted. There is also extensive online help  
within the program itself and there are example files that come with the software. It is 
recommended that more than one run be made, and doing two simultaneous runs is the default 
in MRBAYES. Instructions for doing multi-partition analyses are given in the wiki manual.

Install MRBAYES from its web site (http://mrbayes.csit.fsu.edu/ �2.30). MRBAYES is generally installed 
under the name ‘mb�2.3�’, and you can start the program for interactive use by typing ‘mb’ at 
your prompt.

choose a model for your dataa.

Put your data into Nexus format, using a Nexus data block (8). (Data for this worked example 
is given in the Protocol_4 folder for this chapter, as data.nex�2.�5.)

Run the analysis for a short time, perhaps �0 000 generations, interactively (as in the tutorial). 
That way you can get some idea of how long a longer analysis will take. When running 
interactively, you can continue running more generations after the first lot has finished.

When you have an idea of how long to run the McMc, you can collect your commands in a 
Nexus file. Such a commands file might contain:

#nexus
begin mrbayes;
log filename=mbout.log append start;
execute data.nex;
lset nst=6 rates=invgamma;
mcmc ngen=1000000 samplefreq=500 printfreq=10000 filename=mbout;
sump filename=mbout burnin=1001;
sumt filename=mbout burnin=1001;
log stop;
quit;
end;

(A copy of a similar worked example is given in the Protocol_4 folder as commands.nex�2.�6.)

The ‘lset’ line, which specifies the model, should specify your chosen model. Here, I 
have specified a million generations, which might take overnight for a medium-sized data 

�.

2.

3.

4.

5.
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set. I collect samples every 500 generations (‘samplefreq’), which means that I collect 200� 
samples for each of the two runs. The burn-in is given by the number of samples, not the 
number of generations (in this case, �00� samples, or half of the run)b. The ‘sump’ command 
summarizes the likelihood and parameter values, and the ‘sumt’ command summarizes the 
sampled trees and makes a consensus tree; these commands also specify the names for the 
respective output files.

Run the command file from the command line as ‘mb commands.nex’.

At the end of the run, examine the output to determine whether topological convergence 
has been reached, and whether you have convergence of the model parameters, good chain 
swapping, and good proposal acceptance rates. (The output files for this worked example 
are given in the Protocol_4 folder as mbout.*�2.32, along with a README�2.26 file describing 
their interpretation.) If everything went well (as in this worked example), then the analysis 
is finished, but, if not, then you need to make adjustments and run it again, perhaps for a 
longer run.

Bayesian analysis results are very straightforward to interpret. The split supports, given in the 
consensus tree, are the posterior probability that the split is true, given the data and model.

|	 Notes
a
mrbayes does not implement the many subsets of the gTR model such as the TN and K3P models, 

and so if those models are chosen, you can use the gTR model. In this case, it is probably better to 
err on the side of slightly overparameterizing rather than underparameterizing.
bA long burn-in is recommended. Some diagnostics, such as a likelihood plot, might reach apparent 
convergence quickly, but other aspects, such as topology, might be slower to converge. You can use 
AWTY (‘Are we there yet?’) for more convergence diagnostics (http://king2.csit.fsu.edu/cEBProjects/
awty/awty_start.php �2.33).

6.

7.

8.

3. trOUBLeShOOtING

The process of evolution has been complex, and the present-day gene sequences 
that we use might easily contain biases or other aspects that can confound our 
phylogenetic methods; a few will be mentioned here. For example, if there is 
compositional heterogeneity in the sequences, and there are unrelated sequences 
that have a similar composition, those sequences might erroneously be attracted 
to each other in the recovered tree. When we model ASRv, one assumption is that 
the rate of individual sites is constant over the tree. However, there is evidence 
that the rate of sites can change in diverged taxa, and even the spectrum of 
invariant sites can change over time. These covarion and heterotachy effects 
are difficult to model. In early evolution, horizontal (or lateral) gene transfer 
appears to have been more common and of course that will cause gene trees to 
be different from organism trees. Perhaps such effects might better be described 
by networks rather than trees. Long-branch attraction in parsimony has long 
been appreciated, and model-based methods are less susceptible to this. However, 
we can also see long-branch effects in model-based methods when the model 
does not fit well. Such problems are not easily identified. At the least, you might 
want to identify very long branches or compositionally divergent taxa, and as an 
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experiment remove them for a repeat of your analysis to see whether it affects 
your conclusions. A similar problem with difficult data occurs when the outgroup 
is highly diverged from the ingroup to the extent that its presence distorts the 
ingroup. As a workaround, you can remove the outgroup to get a better supported 
but unrooted ingroup topology, and then as a separate analysis attempt to see 
where the outgroup attaches. 

Phylogenetic software can be frustrating. It is often written by academics 
whose main expertise is not programming, and it is often user-hostile and buggy. 
Something as simple as differences in line endings in files (Unix versus old Mac 
versus DOS line endings) might cause a program to fail. These otherwise invisible 
characters can be seen with the ‘od –c’ command in Unix. Perhaps you have long 
names for taxa and you intend to do an analysis with a program that only takes 
short names. It might be worthwhile changing the names to arbitrary short names 
to do the analysis and then changing the names back to the long versions at the 
end. A script using a dictionary or hash in Perl or Python can facilitate that. You 
can save time debugging methods if you use small datasets. Debugging is often 
helped by example files provided with the program, and trial and error debugging 
is made easier when you use very small files. 

Bayesian analysis requires more expertise than other methods in order to 
adjust the McMc and to assess convergence. It also has its own problems (see, 
for example, (39)). You will often find that, when the same data are analyzed by 
both ML and Bayesian approaches, posteriors are higher than bootstraps; these 
inflated posteriors should be kept in mind when interpreting results. You should 
be especially suspicious of high support on short internal branches. 
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