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EXETER

Abstract The C-C scaling relationship
Soqthern UK extreme precipitation projections for the end-of-21st-century are simulated by the GCM-driven Met C-C scaling hypothesis [15]: If relative humidities during wet periods are constant, precipitation intensities should
Office 1.5-km very-high-resolution convective permitting ( “explicit convection™) limited-area regional climate model. follow a climate sensitivity relationship with temperature as given by the thermodynamic C-C equation:
Such explicit convection models avoid known physical issues that are caused by convective parameterisation [7]. AP  Ae. 10 [ AP Ae. [ . AT
Furthermore, these simulations are continuous over multiple years (i.e. not seasonal slices), so that land-surface ~ : = 5= 5 ~ AT, v = i 0.05 — 0.07K™ “for — <1

P es esd0T R, T P es R, T T

feedbacks are reasonably captured. v

. . . . For T ~ 13° ~6.5% KL
Air temperatures for extreme wet days are projected to increase by approximately 4 — 5K. Summer (JJA) extreme of 3°C, v~ 6.5%
precipitation intensities are projected to increase by about 30%, and are consistent with the expectations from the Surface air temperature scalings as high as 2+ (“super-scaling”) have been observed in the Netherlands and Hong
Clausius - Clapeyron (CC) relation [~ 6.5% - K~1: 15]. We note that the higher temperature days in the future Kong [9, 10]. However, negative scalings for hourly precipitation have been observed at warm temperatures in

climate simulation have suppressed precipitation intensities, and this phenomenon is actually noted in observations in northern Australia and Japan [25 +° C; 5, 16].

the warmer regions [5|. These high temperature days are not simulated in the control climate simulation. . . . . . . . n
& 5] & P y The hourly scaling relationships are usually diagnosed by picking the maximum hourly intensities from each wet day

The occurrence of precipitation in summer is projected to decline substantially (by as much as 50%) in the future (Pmax 1-hr), and comparing them with the daily mean near-surface air temperature: Tayg = TmaX;Tm‘". Prax.1-hrS
climate, and this leads to a smaller but still significant (=~ 10%) increase in future summer return levels. The large are binned according to Tayg, and n-th quantile (g,) of each bin is estimated. Here we do the same with gridded
event frequency decline is also found with coarser RCMs which give different intensities and return level projections model and UK observational data, and pool values from neighbouring grid points (3-by-3 moving boxes).

[8]. Hence, the summer model guidance can be summarised as “less frequent precipitation, but more intense if it

does” . Intensity dependency on temperature for observations and the 1.5-km limited-area model

A much larger increase (50 + %) of winter (DJF) return levels are projected by the future climate simulation. Unlike
the summer, no significant changes in precipitation frequencies are found. A similar CC scaling relationship is found () OBS [JJA] : tau = 0.5 (b) OBS [JJA] : tau = 0.99 () OBS [DJF] :tau=0.5 (b) OBS [DJF] : tau = 0.99
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realistic representation for diurnal variability, precipitation
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It is hoped that the 1.5-km model to have more realistic 100 200 200 400 500 . Tog Tag Tog
extremes and temperature scaling relationships. Analysis Figure 1: Inner domain of the 1.5-km model with orography
here is carried out at the 12-km resolution. (e) 1.5G-F [JJA] :tau=0.5 (f) 1.5G-F [JJA] : tau = 0.99 (e) 1.5G-F [DJF] : tau = 0.5 (f) 1.5G-F [DJF] : tau = 0.99
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Figure 4: The locally-estimated JJA (left) & DJF (right) T..g bins and g-(Pmax 1-hr) pairs are spatially pooled, and visualized with hexagon x-y
scatter density plots. The x- and y-axis represent the T, bins and g;(Pmax1-nr) respectively. The observed, 1.5-km present- (G-P) and

We compare our model estimates with radar-estimated _ | _ : _ _ | € obsen _
future-climate (G-F) simulation are in the upper, middle, and lower rows respectively. Solid-red lines indicate the LOESS-estimated

» & = Shape parameter (akin to skewness; dimensionless)

return levels. Radar precipitation has been proven to be _ -1 . o .
o ) fp P veic 113 P » A = Event frequency (yr ) relationship between logio(q,(Pmax.1-#r) and T.yz), and the orange dashes indicate the mean quantile value (E(g-(Pmax,1-hr))) and
reasonable enougn for extreme analysis [ ] temperature (E(T,.)). The dashed green, blue, and purple lines indicate %% v, and 2 respectively. gso and gg9 are examined.
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Figure 2: Upper panels: southern UK spatial median return levels for 1-hr (%) and 1-day (") precipitation; green for the 1.5-km RCM, and
blue for radar observations; solid line for reanalysis downscaling simulations, and short/long dashes for present/future-climate simulations.

» Alternatives to surface air temperature - upper-air data, temperature-humidity combined measures

Bottom panels: the change (Future/Present) for the spatial median between the G-P and G-F simulation. Cls estimated by year jackknives. » Sub-hourly precipitation scaling - difficult to test in observations, but easy in models
JJA DJF » Circulation regimes and occurrence of extreme precipitation relative to low pressure systems
» Consistent overestimate of intensity in the reanalysis and » Overestimation of 1-day return levels in the » Effects of aerosol coupling
present-climate simulation relative to radar present-climate/reanalysis simulations
» Consistent ~ 10% increase of 1-hr return levels » 50 + % increase in both daily and hourly totals
» Negligible change for 1-day return levels » Projected DJF 1-day return levels as large as JJA

» The 1.5-km model is generally able to simulate the UK present-climate scaling relationship and extreme event PDFs.

Frequency of precipitation in the 1.5-km model » Extreme events are projected to intensify - DJF intensification larger than JJA

» The 1.5-km model finds a decline in high precipitation intensities at high UK air temperatures

1->1 15G-P 15G-F|15G-P 15G-F » Longer dry spells, more intense extremes
b1 (L'3-km RCM FUTURE) = 0.984 . JJA 1-hr 1-day » Summer return level changes more moderate than intensity change due to precipitation frequency declines
Ayr=1]| 4.82 227 | 196 1.07 » Future warm days may see precipitation suppression
State 1: DJF 1-hr 1—day
Dry Hour (P < 0.1 mm/hr) 2.->1 1
(. 5m R CONTROU) = 035 Ayr '] 644 6.09 | 250 2.40

pr (1.5-km RCM FUTURE) = 0.327

Table 1: JJA/DJF 1-hr/1-day frequency of events (\) exceeding gos
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