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Abstract

Southern UK extreme precipitation projections for the end-of-21st-century are simulated by the GCM-driven Met
Office 1.5-km very-high-resolution convective permitting (“explicit convection”) limited-area regional climate model.
Such explicit convection models avoid known physical issues that are caused by convective parameterisation [7].
Furthermore, these simulations are continuous over multiple years (i.e. not seasonal slices), so that land-surface
feedbacks are reasonably captured.

Air temperatures for extreme wet days are projected to increase by approximately 4 − 5K. Summer (JJA) extreme
precipitation intensities are projected to increase by about 30%, and are consistent with the expectations from the
Clausius - Clapeyron (CC) relation [≈ 6.5% · K−1; 15]. We note that the higher temperature days in the future
climate simulation have suppressed precipitation intensities, and this phenomenon is actually noted in observations in
the warmer regions [5]. These high temperature days are not simulated in the control climate simulation.

The occurrence of precipitation in summer is projected to decline substantially (by as much as 50%) in the future
climate, and this leads to a smaller but still significant (≈ 10%) increase in future summer return levels. The large
event frequency decline is also found with coarser RCMs which give different intensities and return level projections
[8]. Hence, the summer model guidance can be summarised as “less frequent precipitation, but more intense if it
does”.

A much larger increase (50 + %) of winter (DJF) return levels are projected by the future climate simulation. Unlike
the summer, no significant changes in precipitation frequencies are found. A similar CC scaling relationship is found
for the winter increases.

The 1.5-km limited-area model

The 1.5-km southern-UK limited-area “convective
permitting” (explicit convection) model is based on the
Met Office operational UKV NWP model. Despite the
model having positive precipitation biases, it has a more
realistic representation for diurnal variability, precipitation
duration, and extreme events [7, 1].

Lateral boundary conditions are provided by 12-km
European regional simulations, which are driven by:

◮ ERA-Interim reanalysis [3]

◮ HadGEM3 GA3 present-climate simulation [17]

◮ HadGEM3 GA3 RCP8.5 end-of-C21 simulation [12]

It is hoped that the 1.5-km model to have more realistic
extremes and temperature scaling relationships. Analysis
here is carried out at the 12-km resolution.

   
 

 

 
1.5-km RCM Domain: Southern UK (SUK)
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Figure 1: Inner domain of the 1.5-km model with orography

Extremes in the 1.5-km limited-area model

Extremes are estimated by fitting the generalised Pareto
distribution to hourly and daily totals that exceed the 95th
percentile (q95) with a minimum “wet value” threshold of
0.1mm [Peaks-over-threshold; 2, 11]. Data samples are
declustered to account for autoregressive nature of
precipitation [4].

We compare our model estimates with radar-estimated
return levels. Radar precipitation has been proven to be
reasonable enough for extreme analysis [13].
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(1)

◮ n = Return period (yr)

◮ z = Return level (mm/...)

◮ t = q95 extreme threshold (mm/...)

◮ σ = Scale parameter (akin to standard deviation; mm/...)

◮ ξ = Shape parameter (akin to skewness; dimensionless)

◮ λ = Event frequency (yr−1)
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Figure 2: Upper panels: southern UK spatial median return levels for 1-hr (mm
hr ) and 1-day (mm

day ) precipitation; green for the 1.5-km RCM, and

blue for radar observations; solid line for reanalysis downscaling simulations, and short/long dashes for present/future-climate simulations.
Bottom panels: the change (Future/Present) for the spatial median between the G-P and G-F simulation. CIs estimated by year jackknives.

JJA

◮ Consistent overestimate of intensity in the reanalysis and
present-climate simulation relative to radar

◮ Consistent ≈ 10% increase of 1-hr return levels

◮ Negligible change for 1-day return levels

DJF

◮ Overestimation of 1-day return levels in the
present-climate/reanalysis simulations

◮ 50 + % increase in both daily and hourly totals

◮ Projected DJF 1-day return levels as large as JJA

Frequency of precipitation in the 1.5-km model

Figure 3: The 1.5-km-model-simulated JJA Markov stochastic matrix
between “dry” (state 1) and “wet” hours (state 2).

1.5G-P 1.5G-F 1.5G-P 1.5G-F
JJA 1-hr 1-day

λ[yr−1] 4.82 2.27 1.96 1.07
DJF 1-hr 1-day

λ[yr−1] 6.44 6.09 2.50 2.40

Table 1: JJA/DJF 1-hr/1-day frequency of events (λ) exceeding q95

for the GCM downscaling simulation (G-P: present-, G-F: future-)

◮ Large JJA declines in λ and precipitation initiation
probability (1-1 in Figure 3)

◮ Consistent with JJA RH declines in the future simulation
(≈ 8%) [not shown]

◮ JJA intense precipitation intensifies by 30 + % [8], but
return level increases are moderated by λ reductions

◮ JJA - Longer dry spells, heavier precipitation

◮ Much smaller λ change projected for DJF

The C-C scaling relationship

C-C scaling hypothesis [15]: If relative humidities during wet periods are constant, precipitation intensities should
follow a climate sensitivity relationship with temperature as given by the thermodynamic C-C equation:
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For T ≈ 13◦C, γ ≈ 6.5% · K−1.

Surface air temperature scalings as high as 2γ (“super-scaling”) have been observed in the Netherlands and Hong
Kong [9, 10]. However, negative scalings for hourly precipitation have been observed at warm temperatures in
northern Australia and Japan [25 +◦ C; 5, 16].

The hourly scaling relationships are usually diagnosed by picking the maximum hourly intensities from each wet day

(Pmax,1-hr), and comparing them with the daily mean near-surface air temperature: Tavg = Tmax+Tmin
2 . Pmax,1-hrs

are binned according to Tavg, and n-th quantile (qn) of each bin is estimated. Here we do the same with gridded
model and UK observational data, and pool values from neighbouring grid points (3-by-3 moving boxes).

Intensity dependency on temperature for observations and the 1.5-km limited-area model
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(c) 1.5G−P [JJA]  : tau = 0.5
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(d) 1.5G−P [JJA]  : tau = 0.99
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 (e) 1.5G−F [JJA]  : tau = 0.5
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 (f) 1.5G−F [JJA]  : tau = 0.99
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(a) OBS [DJF]  : tau = 0.5
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(b) OBS [DJF]  : tau = 0.99
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(c) 1.5G−P [DJF]  : tau = 0.5
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(d) 1.5G−P [DJF]  : tau = 0.99
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 (e) 1.5G−F [DJF]  : tau = 0.5
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 (f) 1.5G−F [DJF]  : tau = 0.99
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Figure 4: The locally-estimated JJA (left) & DJF (right) Tavg bins and qτ(Pmax,1-hr) pairs are spatially pooled, and visualized with hexagon x-y
scatter density plots. The x- and y-axis represent the Tavg bins and qτ(Pmax,1-hr) respectively. The observed, 1.5-km present- (G-P) and
future-climate (G-F) simulation are in the upper, middle, and lower rows respectively. Solid-red lines indicate the LOESS-estimated
relationship between log10(qτ(Pmax ,1−hr) and Tavg), and the orange dashes indicate the mean quantile value (E (qτ(Pmax,1-hr))) and
temperature (E (Tavg)). The dashed green, blue, and purple lines indicate 1

2
γ, γ, and 2γ respectively. q50 and q99 are examined.

UK observations

◮ Data: Met Office radar and surface
temperature observations [6, 14]

◮ Scalings for JJA q50 are generally
sub-γ and non-negative

◮ JJA q99 are on the order of γ

◮ DJF q99 scalings do not appear to
differ substantially from q50

◮ High temperature turning points
(found in the future simulation) are
observed in lower latitudes [5, 16]

Model - JJA

◮ q50: Precipitation intensities
decrease with Tavg in all simulations

◮ q99, present: Increases at γ

◮ q99, future: Increases at γ till
Tavg ≈ 20◦C, then turn negative

◮ q75+ Tavg in the future simulation
sees 15% RH suppression [not
shown]

◮ Average q99 are up ≈ 25% as Tavg

are up ≈ 5◦C

Model - DJF

◮ Present-climate simulation scaling
consistent with observations

◮ q50: Steeper rate for lower
temperatures, generally sub-γ
scaling

◮ q99: Sub- or at-γ scaling

◮ In winter, temperature aloft is
possibly a better indicator for the air
mass temperature

◮ Mean Tavg change gives γ scalings

Future Work

◮ Alternatives to surface air temperature - upper-air data, temperature-humidity combined measures

◮ Sub-hourly precipitation scaling - difficult to test in observations, but easy in models

◮ Circulation regimes and occurrence of extreme precipitation relative to low pressure systems

◮ Effects of aerosol coupling

Conclusions

◮ The 1.5-km model is generally able to simulate the UK present-climate scaling relationship and extreme event PDFs.

◮ Extreme events are projected to intensify - DJF intensification larger than JJA

◮ The 1.5-km model finds a decline in high precipitation intensities at high UK air temperatures

◮ Longer dry spells, more intense extremes

◮ Summer return level changes more moderate than intensity change due to precipitation frequency declines

◮ Future warm days may see precipitation suppression
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