Chemical dynamics of organic disulfides probed via ultrafast X-ray spectroscopy

Nils Huse
Condensed Phase Dynamics Group
Institute for Nanostructure & Solid State Physics
Physics Department, University of Hamburg

UK XFEL workshop, Newcastle 2019
11. December 2019
Transient X-ray Spectroscopy of Molecules

Huse et al. *JPCL* 2, 880 (2011)
Van Kuiken et al *JPCL* 7, 465 (2016)

Huse et al. *PCCP* 11, 3951 (‘09)
Wen et al. *JCP* 131, 234505 (‘09)

Van Kuiken et al *JPCL* 3, 1695 (2012)
Van Kuiken et al *JPCA* 117, 4444 (2013)
Siefermann et al *JPCL* 5, 2735 (2014)

Motivation

Sulfur has high significance in materials & chemical sciences
Polymers, nanoparticles, battery material, molecular electronic devices

© OXIS Energy Ltd

Dell et al., Nature Chemistry 2015, 7, 209–214

David et al., Scientific Reports 2015, 5, 9792
Motivation

High biological relevance

Thiol groups, thiolates and disulfide bridges in proteins

hen egg-white lysozyme
The Thiol-Group

Tertiary structure element:

Disulfide formation:

The Thiol-Group

Radical repair reaction:

\[
R-SH + \cdot CRR \rightarrow R-S\cdot + H-CRR
\]

Disulfide formation:

Aromatic thiols:
- Higher nucleophilicity
- Higher reactivity towards disulfides
- Thiophenol increases protein folding/unfolding rates

The Thiol-Group

Radical repair reaction:

\[
\begin{align*}
R-S-H & \quad + \quad \cdot C-R \\
& \downarrow \quad \downarrow \\
R-S-\cdot & \quad + \quad H-C-R \\
\end{align*}
\]

Thiyl radical

The role of solvent cages:

- In cage radical pair
- In cage recombination
- Diffusive recombination
- Cage escape
- Radical pair survival

Aromatic thiols:

- Higher nucleophilicity
- Higher reactivity towards disulfides
- Thiophenol increases protein folding/unfolding rates

S. J. Harris et al., PCCP 15, 6567 (2013)
Disulfide Chemistry in Solution:

how does a sulfur-sulfur bond in solvated organic molecules break?
Time-Resolved Sulfur-1s Spectroscopy in Solution

100 ps

Laser System

storage ring

liquid jet

H₃C
S–S
CH₃

‘DMDS’
Energetics of DMDS variants

S. Borkar et al., JESRP 196, 165 (2014)
Sulfur-1s Spectroscopy of Dimethyldisulfide

Smallest stable Disulfide molecule
- Found in atmospheric and interstellar chemistry
- Contains basic photochemistry of disulfides
- Complex reaction pathways reported in many time-resolved studies

M. Ochmann et al., J. Am. Chem. Soc. 2018, 140, 6554
Sulfur-1s Spectroscopy of Dimethyldisulfide

![Chemical Structure: Dimethyldisulfide]

- Smallest stable Disulfide molecule
 - Solvent cage effects clearly play a role in product formation & relaxation

![Spectroscopic Data]

- In cage radical pair
- In cage recombination
- Diffusive recombination
- Cage escape
- Radical pair survival

M. Ochmann et al., J. Am. Chem. Soc. 2018, 140, 6554
Sulfur-1s Spectroscopy of Dimethyldisulfide

Smallest stable Disulfide molecule
- Solvent cage effects clearly play a role in product formation & relaxation
- Transient S₂ and/or thione formation?
- Formation of polysulfides?

M. Ochmann et al., J. Am. Chem. Soc. 2018, 140, 6554
Sulfur-1s Spectroscopy of Dimethyldisulfide

Smallest stable Disulfide molecule
- Found in atmospheric and interstellar chemistry
- Contains basic photochemistry of disulfides
- Complex reaction pathways reported in many time-resolved publications

M. Ochmann et al., J. Am. Chem. Soc. 2018, 140, 6554
The fs-TRXAS ... show that gas-phase DMDS ... undergoes fast direct dissociation into two CH3S radicals within 120 fs.

\[\text{4.6eV pump} \rightarrow \Delta t = 120\text{fs} \rightarrow \text{HHG probe} \]

\[J. \text{Phys. Chem. Lett. 10, 1382 (2019)} \]
Smallest stable Disulfide molecule

- Solvent cage effects clearly play a role in product formation & relaxation

M. Ochmann et al., J. Am. Chem. Soc. 2018, 140, 6554
Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy

Eileen Y. Sneeden,† Mark J. Hackett,‡,§ Julio J. H. Cotelesage,‡ Roger C. Prince, Além Monica Barney, Kei Goto,‖ Eric Block,¶ Ingrid J. Pickering,†¶ and Graham N. George

* J. Am. Chem. Soc. 2017, 139, 11519
Time-Resolved Sulfur-1s Spectroscopy in Solution

H₃C \(\text{S-S} \) CH₃

‘DMDS’
Time-Resolved Sulfur-1s Spectroscopy in Solution

L-Cystine
the L-cysteine dimer
From DMDS to L-Cystine

Absorption Change / arb. u.

Energy eV

2468 2470 2472 2474 2476 2478 2480 2482

Absorption Change / arb. u.

Time Delay / ps

-1 0 1 2 3 4 5

2469.3 eV

Low power

300 fs
From DMDS to L-Cystine

- Ultrafast geminate recombination (little electronic relaxation)
- 2-photon excitation leads to new sulfur species
From DMDS to L-Cystine

- Ultrafast geminate recombination (little electronic relaxation)
- 2-photon excitation leads to new sulfur species

Absorption Change / arb. u.

Energy eV

2468 2470 2472 2474 2476 2478 2480 2482

Absorption Change / arb. u.

Time Delay / ps

0 10 20 30 40 50 60 70 80 90

2469.3

2474.1

300 fs
Sulfur-Containing Aromatic Systems:

how do sulfur atoms coupled to aromatic electron systems behave?
Time-Resolved Sulfur-1s Spectroscopy in Solution
4-Methylthiophenol

SH

\[\text{hv}_{267 \text{ nm}} \]

\[\begin{array}{c}
\text{S}^- \\
\text{CH}_3
\end{array} \] + \[\text{H}^+ \]

Sulfur-1s Spectroscopy of 4-MTP

M. Ochmann et al., J. Am. Chem. Soc. 2017, 139 (13), 4797
Sulfur-1s Spectroscopy of 4-MTP

Regioselectivity of hydrogen attachment results from valence orbital symmetry

M. Ochmann et al., J. Am. Chem. Soc. 2017, 139 (13), 4797
Time-Resolved Sulfur-1s Spectroscopy in Solution
Time-Resolved Sulfur-1s Spectroscopy in Solution

Phoenix@SLS: with Chris Milne, Thomas Huthwelker & Majed Chergui
Synthesis and Photochemistry of a New Class of Photocleavable Protein Cross-linking Reagents

Time-Resolved Sulfur-1s Spectroscopy in Solution
• Unaltered spectra up to TW/cm²
• Biphasic rise of primary radical
• Slow geminate recombination
• Secondary product manifests
Conclusions and Thanks

- Aliphatic disulfides exhibit high degree of ultrafast geminate recombination
- New reaction pathways exist for excitation into higher electronic states
- Geminate recombination in aromatic disulfides is strongly suppressed, possibly due to efficient relaxation of the radical charge density
- Aromatic electron systems appear to channel higher excitations into the energetically lowest reaction pathway

Many Thanks

Miguel Ochmann, Abid Hussain, Oriol Vendrell, Nils Huse, Niko Höppel, Anke Puchert, Kateryna Kusyak
Tae Kyu Kim, Bob Schoenlein, Amy Cordones-Hahn, Kiryong Hong, Hana Cho, Jae Hyuk Lee, Rory Ma
Chris Milne, Majed Chergui, Thomas Huthwelker, Dominik Kinschel, James Budarz, Jochen Rittmann, Gediminas Galinas, Jon Marangos
The PAL-XFEL team for a great support and exciting results