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Resonant Inelastic X-Ray Scattering (RIXS)

e Probe elementary
excitations of matter

INITIAL FINAL
‘* with elemental
T e s specificity.
; ; e Has become a powerful
i Photen 2t and widely used
ko A 1 Ko technique to study
materials and
lOT. 4’ molecules.

L. J. P. Ament et al. (2011)



Challenges of Soft X-Ray RIXS

Schematic of grating-based RIXS spectrometer from F. Marschall et al. (2017)
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Efforts to Improve the Throughput of RIXS
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Outline of Rest of Talk

« Concept of Photoelectron Spectrometry for Analysis of X-rays (PAX)
applied to RIXS

* Analyzing PAX data with a deconvolution algorithm
« Simulated PAX performance

« Ongoing experimental work



Objective

Measure RIXS with

* High resolution,

« High efficiency and

« With a simple implementation.



Concept of Photoelectron Spectrometry for Analysis of

X-Rays (PAX)
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Example PAX Spectra

Intensity

Desired RIXS A
r(E)
Isolated Two
Photoemission .70 772 774 776 778 780 Photoemission
Peak Photon Energy (eV) Peaks (Ag 3d)
Photoemission Photoemission g
p(E) 2 p(E)
365 370 375 380 365 370 375 380
Binding Energy (eV) Binding Energy (eV)
Measured PAX C Measured PAX C
M(E) = r(E) * p(—E) m(E) = r(E) * p(~E)
395 400 405 410 395 460 4[')5 410
Model RIXS from Kinetic Energy (eV) 9

Kinetic Energy (eV)
J. Schlappa et al. (2012)



How do we Analyze and Understand a PAX spectrum?
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e Assume we have a separate
Desired RIXS A
measurement of the r(E)
converter material
photoemission spectrum -

770 772 ?';'4 7';'6 7':"8 780
e One option: Fit PAX Photon Energy (eV)

Photoemission
spectrum to a sum of RIXS 2 D(E)
features (e.g. Lorentzians) 2
convolved with the converter
_ _ ] 365 370 375 380
material photoemission Binding Energy (eV)
spectrum ) o e+ ploE) C

e Option explored in this talk:
estimate desired RIXS . : .
395 400 405 410
spectrum from measured Kinetic Energy (eV)
PAX spectrum
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Lucy-Richardson Deconvolution for Analysis of PAX

Spectra

The RIXS spectrum can be estimated
using the Lucy-Richardson
deconvolution Algorithm.
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p* 57

,;:E”-} Estimate of unknown RIXS spectrum
after n iterations

M Measured PAX spectrum
P Converter material photoemission spectrum

Photoemission
p(E)
N Ag 3d
375

365 370
Binding Energy (eV)

But this algorithm can amplify high frequency

noise with high numbers of iterations.
W. H. Richardson (1972), L. B. Lucy (1974)
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Avoiding High Frequency Noise Amplification

e One solution: convolve Lot L07
. . Electrons Electrons
with a Gaussian after ol
. . 351 A — B
each iteration. Peconvolved
. 3.0 - -
e How do we set the width A A
. 2.5 4 _ 70 me
of the Gaussian (degree y U'IUOD/V\/J\_L
220 .
of smoothness)?
E 1.5 4 357 -
1.0
Photoemission B 05 4
2 p(E)
E Ag 3d 0.0 - |
E 5 0 5 0
Energy Loss (eV)
365 370 375 380

Binding Energy (eV) T. T. Fister et al. (2007) 12



Estimating a Good Degree of Sharpness
(Regularization Hyperparameter)
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Simulated Performance of PAX in Measurement of a

Model RIXS Spectrum

e Mean squared error
decreases with increasing
number of detected
electrons.

e Sharpness of estimated
RIXS spectrum increases
with increasing number of
detected electrons.
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Simulated Performance of PAX in Measurement of a

Doublet

e With increasing

numbers of
detected 44
h N A
electrons, the two M 10/
—~ 3 z! \N\>==7 ‘o
peaks of the - n N N
doublet become >2 M
e \
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Pilot Study at LCLS Successfully Demonstrated Concgpj .

Dk M\

CoO Sample Results:

PAX and
Reconvolved Deconvolved
Spectra Spectra
A ﬁ N - PAX Spectra
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Raw data from G. L. Dakovski et al. (2017) 16



Ongoing Experimental Efforts

e We have assembled and
tested an endstation at
SSRL, a synchrotron
radiation light source at
SLAC.

e \We just moved the
endstation to an undulator
beamline to perform PAX
experiments in the next
few months.
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Summary ~ A

TN

e It is possible to accurately estimate an unknown
RIXS spectrum from the corresponding PAX
spectrum.

e Simulations show high potential of PAX for
moderate resolution experiments (characterizing
features with 100s of meV widths).

e PAX concept has been demonstrated with low
resolution, experimental work is ongoing.
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