\ !![{((

JJJ,I| 8
prismMa cloud

Final Report on Privacy and

Anonymization Techniques

(TOPOCERT)

Deliverable D5.7

Editor Nam Thomas Grofl (UNEW)
Type Report
Dissem. Level PU

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 644962.

More information available at https://prismacloud.eu.

Copyright Statement

The work described in this document has been conducted within the PRISMACLOUD
project. This document reflects only the PRISMACLOUD Consortium view and the
European Union is not responsible for any use that may be made of the information
it contains. This document and its content are the property of the PRISMACLOUD
Consortium. All rights relevant to this document are determined by the applicable laws.
Access to this document does not grant any right or license on the document or its contents.
This document or its contents are not to be used or treated in any manner inconsistent with
the rights or interests of the PRISMACLOUD Consortium or the Partners detriment and
are not to be disclosed externally without prior written consent from the PRISMACLOUD
Partners.

Each PRISMACLOUD Partner may use this document in conformity with the PRIS-
MACLOUD Consortium Grant Agreement provisions.

https://prismacloud.eu

N

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Executive Summary

PRISMACLOUD implements novel cryptographic concepts and methods to lift them into
practical application and improve the security and privacy of cloud based services, while
at the same time make the services accessible to providers and end users.

The purpose of this report is to outline the architecture and design of the cryptographic
tool TOPOCERT. The TOPOCERT tool aims to facilitate the certification and verifi-
cation of cloud infrastructures. The deliverable describes the design paradigms of the
tool, put in context of its terms and definitions. It outlines the component model and
static architecture, determining scope and responsibilities of components and roles in
cryptographic protocols. It summarizes the background on the confidentiality preserving
security assurance, provides an overview on the geo-location separation and presents re-
search regarding the application of the TOPOCERT tool beyond the application in the
e-Government use-case within PRISMACLOUD.

1 of 84

\ Fl'{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Table of Contents

Executive Summary 1
1 Introduction 6
1.1 Scope of the document 6
1.2 Relation to other project work 6
1.3 Structure of the document 6
2 The TOPOCERT Tool 7
2.1 OVerviewo 7
2.1.1 Scope Definition 7
2.1.2 Tool Architecture 8
2.1.3 Services Based on TOPOCERT 8
2.1.4 Software Implementation 9

2.2 Terms and Definitions 9
2.2.1 Roles e 9
2.2.2 Auditor 9
2,23 Signer 9
2.24 Provider 9
2.2.5 Recipient 10
2.2.6 Prover e e e 10
227 Tenant 10
2.2.8 Verifier e 10
2.29 Graph 10
2.2.10 Vertex L e e e e e 11
2211 Edge e e 11
2.2.12 Label o 11
2.2.13 Realization Model L 11
2.2.14 MesSage 11
2.2.15 Topology Certification, 11
2.2.16 Topology Certificate 12
2.2.17 Graph Signature Lo 12
2.2.18 Zero-Knowledge Proof of Knowledge 12
2.2.19 Signature Proof of Knowledge 12
2.2.20 Commitment Scheme 12
2.2.21 PublicKey 13

2 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W

(TOPOCERT) prisma clesud
2.2.22 Private Key oo 13
2223 Tssuing o .o 13
2.2.24 Graph Signature Scheme o oL 13
2.2.25 Anonymous Credential Scheme 13
2.2.26 Policy Predicate 13
2.2.27 Vertex/Label Identifier 0oL 13
2.2.28 Prime Representative L .. 14
2.2.29 Prime Encodingo 14
2.2.30 Camenisch-Grofl Encoding 14
2.2.31 Geo-Location 14
2.2.32 Proof of Representation 14
2.2.33 Proof of Possession L L 14
2.2.34 Proof of Vertex/Edge Composition 14
2.2.35 Proof of Separation. 14
2.2.36 Proof of Isolation 15
2.2.37 Proof of Connectivity 15
2.2.38 Partition L 15
2.2.39 Disjointness Lo 15

2.3 Component Model of the TOPOCERT Tool 15
2.3.1 Design Paradigms oL 15
2.3.2 Auditor 16
2.3.3 Provider 16

2.4 Tenant 16
2.5 TOPOCERT Tool e 17
2.5.1 Auditor 17
2.5.2 Provider 17
2.5.3 Tenant L 18
2.5.4 Abstract Description 18
2.5.5 Static Architecture and Design of the TOPOCERT Tool 20
2.5.6 Dynamic Architecture and Design of the TOPOCERT Tool 20

2.6 Graph Signature Library Lo 20
2.6.1 SignerS 22
2.6.2 Recipient R 22
2.6.3 Prover P. 22
2.6.4 Verifier V.o 23

3 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud
2.6.5 Proof Context 23
2.6.6 Abstract Description 23
2.6.7 Static Architecture and Design of the Library 27
2.7 Recommendations e 30
3 (Geo-Separation 33
3.1 Overview e 33
3.1.1 Our Contribution e 33
3.1.2 State-of-the-Art 33
3.2 Preliminaries and Building Blocks o oo 33
3.2.1 Our Framework 34
4 The TOPOCERT Tool in the Application Context 36
4.1 The e-Goverment Pilot s 36
4.2 Research on Additional Applications 36
4.2.1 Geo-location 36
4.2.2 Future Work 36
5 Conclusion 38
6 Appendix 39
List of Acronyms 81
List of Figures 81
List of Tables 82
Bibliography 84

4 of 84

Final

Report

on

(TOPOCERT)

Privacy

and Anonymization

Techniques

\ !![{((

J;ull L
prisma cloud

Document information

Project Context

Work Package

WP5 Efficient and Secure Implementations

Task T5.3 Secure and privacy preserving processing of authenti-
cated data
Dependencies D4.6, D4.7

Author List

Organization | Name E-mail
UNEW Thomas Grof thomas.gross@newcastle.ac.uk
UNEW Toannis Sfyrakis ioannis.sfyrakis@newcastle.ac.uk

Reviewer List

Organization

Name

E-mail

TU Graz

Daniel Slamanig

daniel.slamanig@tugraz.at

Version History

Version | Date Reason/Change Editor

0.1 2017-05-04 | 15* Draft Thomas Grof3

0.2 2017-07-05 | updated services paragraphs Toannis Sfyrakis

0.3 2017-07-10 | terms, definitions, abstract descrip- | Thomas Grof3
tion

0.4 2017-07-17 | added appendix, papers, back- | Ioannis Sfyrakis
ground, updated services

0.5 2017-07-24 | parameter specification Thomas Grof

0.6 2017-07-25 | detailed spec of algorithms, 1/O Thomas Grof3

0.7 2017-07-27 | detailed spec of TOPOCERT algo- | Thomas Grof3
rithms, I/O

0.8 2017-07-27 | Interface finalization, sync with | Thomas Grof3
D6.6

0.9 2017-07-27 | Integrated geo-separation spec Thomas Grof

1.0 2017-07-30 | Integrated UML diagrams, ZKPoK, | Thomas Grof3

background

5 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

1 Introduction

1.1 Scope of the document

The TOPOCERT tool offers an approach for integrity and privacy for clouds and is a
component of the PRISMACLOUD architecture as illustrated in Figure 1. TOPOCERT
yields the possibility to certify and prove properties of cloud infrastructures without dis-
closing the layout of the infrastructure. In this document, we describe the architecture and
design of the tool, starting from terms and definitions, over design paradigms and com-
ponent model, to the static software architecture. Subsequently, this document outlines
the background on confidentiality-preserving security assurance, discusses our contribu-
tion on geo-location separation and presents research directions investigating the use of
the TOPOCERT tool beyond the application context within the PRISMACLOUD pilots.

TOPOCERT realizes what could be described as a credential system on cloud topologies
and thereby follows the design paradigms of established anonymous credential schemes.

This report presents the final architecture and design for the set of libraries that define
the TOPOCERT tool. Details on the implementation are already presented in deliverable
D6.6.

1.2 Relation to other project work

This deliverable relates to the WP 4 and the corresponding research into cryptographic
primitives in that it offers a concrete design for the realization of theses primitives into
software. This deliverable is thereby related to the deliverables D4.6 and D4.7 representing
First Year Research and Progress Report on Privacy-Enhancing Cryptography respectively.
The deliverable D4.8 is the next iteration representing the Report on Privacy-Enhancing
Cryptography. Furthermore, the cryptographic techniques used in this report are also
related to D4.4 Overview of Functional and Malleable Signature Schemes

This deliverable lays the foundation for the TOPOCERT tool design as well as for the
services using the tool (cf. deliverables D7.3, D7.4, D7.5, D7.6, D7.8)

1.3 Structure of the document

This deliverable contains the description for the TOPOCERT tool. First, we give a high-
level overview. Second, we define terms and definitions important to set the stage for
the description of the tool. Third, we describe the component model of the tool. Fourth,
we describe distinct components including the static and possibly dynamic software ar-
chitecture. Fifth, discuss recommendations to be adhered for a secure implementation of
the tool. Sixth, we outline the background on confidentiality-preserving security assur-
ance. Seventh, we discuss our geo-location separation framework. Finally, we position
the TOPOCERT tool inside the e-Government pilot of PRISMACLOUD, and present our
research on additional applications beyond the use cases of PRISMACLOUD.

6 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma cloud
Applications
‘ Smart City ’ ‘ eGovernment ’ ‘ eHealth ’

Selective
Authentic
Exchange

Secure
Archiving

Data
Sharing

Encryption
Proxy

Privacy
Enhancing
IDM

Services

= o

ZE| | .
5 B 2 =
3 - = e 5 &
T e 283 as 5= g
52 = 5.8 o @ S = =
5 T eA = 8 = & &
o 3 5.9 =) (& k=)
g3 <2 o E) S5 <
Z - s = < S
g g3 5 & S 5
@ £3 = 2

53

<»n

Tools

Primitives

Figure 1: PRISMACLOUD architecture

2 The TOPOCERT Tool

2.1 Overview
2.1.1 Scope Definition
Goals

e During setup time, the auditor will specify a language for the graph signatures on
topologies.

o At setup time, the auditor will determine the largest graph size to be certified in
number of vertices n and of edges m, the alphabets and representatives for vertices
(V and Zy) as well as for labels (£ and Z7).

e Upon receiving a graph representation GG the auditor will issue a graph signature
thereon. This is facilitated in an interactive protocol with the provider.

7 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

e Holding a graph signature for G and having received a policy predicate P of a
tenant, the provider will compute a zero-knowledge proof of knowledge that shows
the predicate to be fulfilled for the signed G.

e The tenant is enabled to declare a policy predicate 3. Upon the interaction with the
provider, the tenant can verify with respect to the public key of the auditor that the
provider indeed holds a valid topology certificate of the auditor and that the policy
predicate 3 holds on the certified graph.

Non-Goals

e [t is out of scope of this specification how the graph representation of the infrastruc-
ture is derived. In the architecture there shall be a method Inspect(), which acts as
placeholder for the derivation.

e It is out of scope of this specification how the auditor verifies that the obtained
graph representation is indeed a faithful rendering of the current state of the cloud
infrastructure.

2.1.2 Tool Architecture

The TOPOCERT tool operates on top of a graph signature library, where the TOPOCERT
tool is responsible to organize the setup, issuing and proof processes pertaining to topolo-
gies, while the graph signature library is responsible to setup, issue and prove graph
signatures on general graphs.

The architecture of the graph signature library, in turn, is influenced by the established
design and realization of anonymous credential systems, especially, the IBM Identity Mixer
Library [IBM13]. The underlying reason for that is that Identity Mixer as well as the graph
signatures are based on the Camenisch-Lysyanskaya signature scheme [CL02].

Notably, the design of the graph signature library does not follow the JCE/JCA provider
paradigms. Instead, the graph signature library consists of a number of issuer, prover
and verifier algorithms that specialize in handling graph messages and in proving predi-
cates over graphs. One possible realization can build on-top of the IBM Identity Mixer
Library [IBM13] to draw upon efficient tried and tested implementations of low-level al-
gorithms on Camenisch-Lysyanskaya signatures.

2.1.3 Services Based on TOPOCERT

Infrastructure Auditing (IA) service. For this service, we have separated the main
functionalities into three services. In the following we outline the services:

o Audit-Profiles Management service: this service provides a REST interface to audi-
tors that can specify and certify audit profiles. Upon obtaining a graph representa-
tion using the REST API the service will issue a partial graph signature.

8 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

o Infrastructure Auditing Management service: cloud providers use this service to
search and select audit profiles according to their requirements. The service also
provides a REST API for providers that want to sign their infrastructure and provide
a graph representation to auditors.

o Geo-Separation service: provides a REST API that offers policy predicates. Tenants
can use this service to ask the provider for proofs on topologies.

2.1.4 Software Implementation
The software implementation will be in Java. It will not follow the Java Cryptography

Architecture. Instead it will be based on design paradigms commonly used in anonymous
credential systems, such as the realization of the IBM Identity Mixer Library [IBM13].

2.2 Terms and Definitions
2.2.1 Roles

The TOPOCERT implementation considers high-level and low-level roles.

e Auditor — Signer
e Provider — Recipient/Prover

e Tenant — Verifier

2.2.2 Auditor
An auditor is a party responsible for setting up a graph signature scheme for topologies and

for the certification of graphs obtained from the provider. It is the certification authority
of the TOPOCERT system.

2.2.3 Signer

The signer is a low-level role of the graph signature library that is responsible for the
low-level key setup and the signing of committed graphs.

2.2.4 Provider

The provider acts as topology certificate/graph signature recipient towards the auditor
and as prover of security properties towards tenants.

9 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.2.5 Recipient
The (signature) recipient is a low-level role of the graph signature library that is responsible

for initiating the provider side of the signing process and to complete the signature on the
provider’s side.

2.2.6 Prover

The prover is a low-level role of the graph signature library that is responsible for the
proof of possession and vertex and edge decomposition of the graphs.

2.2.7 Tenant
The tenant role is enabled to communicate to the provider a policy predicate B3, to which

the provider responds with a Zero-Knowledge Proof of Knowledge verifiable by the tenant
with respect to the public key of the auditor.

2.2.8 Verifier
The verifier is a low-level role of the graph signature scheme, poised to verify zero-

knowledge proofs of knowledge coming from the prover with respect to the signer public
key and the given policy predicate 3.

2.2.9 Graph

Graphs are defined over finite vertex sets with undirected edges and finite sets of vertex
and edge labels.

V Finite set of vertices

EC(VxV) Finite set of edges

G =& ty,te) Graph

Ly, Le Finite sets of vertex and edge labels

fv:V —=P(Ly) Labels of a given vertex
fe: € = P(Lsg) Labels of a given edge
n=|V|,m =|E| Number of vertices and edges

In terms of architecture, graphs are represented by a standard library, such as JGraph, that
support a serialization and deserialization with respect to standard graph data formats,
such as GML or GEFX.

10 of 84

N

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.2.10 Vertex

A vertex is a node in a graph or topology. In TOPOCERT, a vertex can represent a
physical or virtual device, for instance a virtual machine, a network or storage device.

2.2.11 Edge

In a graph an edge is a pair of two vertices, representing the connection between them.
In TOPOCERT, an edge can represent a physical connection, a hierarchical connection
(e.g., a VM being on-top of a physical machine), or a virtual connection (e.g., a VLAN
connection).

2.2.12 Label

A label is an associated datum from a pre-defined finite set, which annotate the graph.
In TOPOCERT, a vertex label can, for instance, represent the geo-location (country) of
a component.

2.2.13 Realization Model

The realization model [BGSE11, BVG14, BVGM15] is a graph/topology representation of
a virtualized infrastructure, which encodes physical and virtual components as well as the
connections between them.

2.2.14 Message

A message is a piece of information being signed. With respect to the underlying Camenisch-
Lysyanskaya signature scheme the message is a bit-string or an integer number. For the
graph signature scheme the high-level message is a graph, whose components (vertex and
edge descriptions) are then encoded into low-level messages over the integers.

2.2.15 Topology Certification

Topology certification [Grol4] is the process of the auditor to obtain a faithful graph
representation (realization model) of a cloud infrastructure representing its topology and
to sign this representation. The topology representation can be obtained from graph-based
cloud security analysis tools [BGSE11, BVG14, BVGM15].

11 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.2.16 Topology Certificate

A topology certificate is a signed representation of a provider’s topology. It consists of a
graph signature on the realization model and auxiliary information for the provider’s use
of the topology certificate in subsequent proofs.

2.2.17 Graph Signature

A graph signature is a digital signature on a graph data structure that enables a prover
to prove statements over the signed graph in zero-knowledge proofs of knowledge.

2.2.18 Zero-Knowledge Proof of Knowledge

A zero-knowledge proof of knowledge is a cryptographic methods that enables a prover to
convince another party (the verifier) that a given statement is true, without conveying any
information apart from the fact that the statement is indeed true. Per default, a proof of
knowledge (represented as PK) is an interactive protocol between a prover and a verifier,
in which the verifier contributes a random challenge.

We represent honest-verifier zero-knowledge protocols in the Camenisch-Stadler nota-
tion [CS97]. For example, the statement

PK{(z,r):
C = +R*S" mod N
}

denotes that a Prover and a Verifier execute an interactive honest-verifier >-proof, in
which the Prover proves the representation of the Integer commitment C = R*S” mod N.
The papers in the appendix contain additional explanation on how the notation is used.

2.2.19 Signature Proof of Knowledge

A signature proof of knowledge (represented as SPK) is a zero-knowledge proof which
is made non-interactive with the Fiat-Shamir heuristic, in that the prover computes the
challenge himself by hashing context and previous information of the protocol run. Only
a single message is non-interactively to the verifier.

2.2.20 Commitment Scheme
A commitment scheme is a cryptographic primitive that allows a committer to commit

to a chosen value, while keeping this value secret (hiding). Commitment schemes prevent
the committer from changing the value after having committed to it (binding). The

12 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

graph signature scheme and the underlying Camenisch-Lysyanskaya signatures operate on
committed values.

2.2.21 Public Key

The TOPOCERT scheme is governed by the public key of the auditor, a key distributed
widely with integrity, especially to providers and tenants.

2.2.22 Private Key

In TOPOCERT, the private key refers to the private signing key of the auditor, under
which graph signatures and topology certificates are issued.

2.2.23 Issuing
Issuing is the process of creating a new graph signature or topology certificate. The issuing
process is an interactive protocol between provider (prover) and auditor (signer), operates

on committed values and establishes the signature without the auditor gaining linkable
information in the process.

2.2.24 Graph Signature Scheme

A graph signature scheme [Grol5] is a cryptographic primitive and corresponding protocol
suite, which enables the signing of committed graphs and proofs of knowledge of predicates
over signed graphs.

2.2.25 Anonymous Credential Scheme

An anonymous credentials scheme is a cryptographic primitive and corresponding protocol
suite, which enables the signing of committed attributes and proofs of knowledge thereon.

2.2.26 Policy Predicate

A policy predicate, such as defined by Bleikertz and Grofi [BG11] is a statement over secret
values, here representing a graph, that may be evaluated to true or false.

2.2.27 Vertex/Label Identifier

A vertex or label identifier is a number which represents the vertex or label.

13 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.2.28 Prime Representative

A prime representative is a prime number that encodes a vertex or label in a prime
encoding.

2.2.29 Prime Encoding

A particular encoding for enumerations, binary values or finite sets into anonymous cre-
dential schemes [CG08, CG12].

2.2.30 Camenisch-Grof3 Encoding

Another name of the prime encoding [CG08, CG12].

2.2.31 Geo-Location

A label from pre-specified finite set that represents a location in the physical world [Grol7].

2.2.32 Proof of Representation
A proof of representation is a zero-knowledge proof of knowledge that proves a proof

predicate which shows that certain public values are well-formed with respect to a specified
representation and that the prover knows the secrets to compute the representation.

2.2.33 Proof of Possession
A proof of possession is a zero-knowledge proof of knowledge that convinces a verifier that

a prover possesses an anonymous credential or, in this domain, a graph signature or a
topology certificate.

2.2.34 Proof of Vertex/Edge Composition

A proof of a vertex or edge composition is a zero-knowledge proof of knowledge that
convinces the verifier that a graph signature can be decomposed into commitments which
encode the graph signature’s parts (vertex, edges and their labels).

2.2.35 Proof of Separation

A proof of separation (especially with respect to geo-location) is a zero-knowledge proof
of knowledge that convinces the verifier that the vertices of the graph can be classified

14 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

into a k-partition, for which holds that the partition’s subsets are disjoint with respect to
a class of vertex labels.

2.2.36 Proof of Isolation

A proof of isolation is a zero-knowledge proof of knowledge which convinces the verifier
that there exists a partition on a graph signature for which holds that there are no edges
bridging the subsets of the partition.

2.2.37 Proof of Connectivity

A proof of connectivity is a zero-knowledge proof of knowledge, which convinces the verifier
that there exists a path in a signed graph that connects two specified vertices with at most
k hops.

2.2.38 Partition

A Ek-partition is a way of separating of a set into k non-empty subsets, such that every
element of the overall set is contained in one and only one subset.

2.2.39 Disjointness

Sets are called pair-wise disjoint if the the intersection of any two distinct sets is empty.

2.3 Component Model of the TOPOCERT Tool

In the component model of anonymous credential schemes, there are signer, recipient,
prover and verifier components, which collaborate in interactive cryptographic protocols
to facilitate the signing and proof functions. We consider design paradigms first.

2.3.1 Design Paradigms

For each signer component there is a matching recipient component, for each prover com-
ponent, there is a matching verifier component.

Prover and verifier components offer methods for two stages: a commitment stage (Step 1)
and a response stage (Step 2). The commitment stage requires as input the policy predicate
B as well as the setup parameters (public key, language specification, group setup). The
commitment stage is responsible for storing the protocol state. The response stage requires
as input the verifier’s or Fiat-Shamir challenge and draws upon the commitment stage
state.

15 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

All prover components of a party are operating on the same proof context. In particular,
all provers operate on the same challenge. They also have access to the randomness
representing secrets in the proofs and all commitments computed in the vertex and edge
decomposition.

2.3.2 Auditor

The auditor component is responsible for the key setup and certification of a graph en-
coding scheme. The auditor inspects a provider’s infrastructure configuration, thereby
obtains a trustworthy graph representation of the infrastructure and signs an encoding of
this representation. The auditor draws upon the signer role of the graph signature scheme.

2.3.3 Provider

The provider interacts with the auditor to receive a graph signature on his infrastructure.
Subsequently, the provider is enabled to act as prover towards a tenant and prove in zero-
knowledge that required properties of the graph signature are fulfilled. The provider can
draw upon the recipient and the prover role of the graph signature scheme.

2.4 Tenant

The tenant acts specifies a policy predicate 3, which is subsequently proven by the
provider. The tenant acts as a verifier on the proof made by the providers. The ten-
ant draws upon the verifier role of the graph signature scheme.

GRAPH
TOPOCERT «— SIGNATURES
LIB

Figure 2: Library components of the TOPOCERT tool.

TOPOCERT
>
(=
=
=
Q
=
=
~
Q
5
O
e}
el
—
e}
Z
Z
—=

b’
«——

ﬁ ,
< o
[RECIPIENT/
o 3
5 aé SIGNER PROVER VERIFIER
(=)l
B

Figure 3: Abstract components of the TOPOCERT tool.

16 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.5 TOPOCERT Tool
2.5.1 Auditor

Setup. The auditor is responsible for setting up a certification environment for the
topology certification, which includes the certification of the topology language. As such,
the auditor is responsible for the selection of vertex identifiers and label identifiers. As
such, the auditor specifies the message space that can be governed by TOPOCERT, which
entails the pre-determination of the maximal graph size the system can handle. It delegates
the generation of further key material to the signer role.

Inspection. The auditor is responsible for the inspection of the provider’s cloud configu-
ration. It is out of scope for this architecture how the auditor facilitates this inspection and
how the auditor convinces himself that the actual configuration is faithfully represented
in the graph representation, the realization model. For the purpose of this architecture,
the auditor obtains graph representation G.

Issuing. The issuing is an interactive protocol between provider and auditor. At the
start of the protocol, it is assumed that the auditor has completed the inspection and
holds a known graph representation GG. The actual issuing protocol is initiated by the
provider and leads to the auditor computing a partial graph signature handed over to the
provider (recipient)

2.5.2 Provider

Inspection Assurance. The provider is responsible for delivering a graph representa-
tion of the topology to the auditor or to enable the auditor to inspect the infrastructure’s
configuration directly. This can happen through enabling the auditor with direct access
to the infrastructure, to management hosts, or through assurance evidence supporting the
graph representation.

Issuing Reception. The provider starts the issuing protocol by committing to his own
master secret key and possibly hidden values. He communicates this commitment to the
auditor along with a proof of representation. Once the auditor has issued the partial graph
signature, the provider will complete it to its full form.

Proving. In the proof protocol, the provider acts reactively to a policy predicate
received from the tenant. Having received that, the provider enters the prover role, draws
on the graph signature on the topology and the graph representation to create a zero-
knowledge proof of knowledge on the policy predicate 3. This is then communicated to
the tenant.

17 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.5.3 Tenant

Verifying. The tenant aims at verifying the cryptographic evidence on the policy pred-
icate 3 with respect to the public key of the auditor. The tenant starts the protocol by
sending the policy predicate P along with a nonce. In the interactive version (PK) of the
verification, the tenant responds with a random challenge. In the non-interactive version
(SPK), the provider computes the challenge himself with the Fiat-Shamir heuristic, based
on the context acquired up to that point. Hence, in this case the tenant will receive witness
commitments, along with the responses that conclude the protocol.

2.5.4 Abstract Description

The TOPOCERT tool draws upon the operations Keygen(1*, gs_params), Commit(G; R),
HiddenSign(C, VR, Vs, pks g), and Verify(pks g, C, R', o) from the underlying graph signa-
ture scheme defined in Section 2.6.6 below.

Core Interface. The TOPOCERT tool realizes operations for the topology certification.

Definition 2.1 (TOPOCERT Tool). The tool consists of the following algorithms:

((pks, sks), 05 kg) Keygen(1*, gs_params) A probabilistic polynomial-time algorithm which
computes the key setup of the TOPOCERT tool, delegating to the key generation
Keygen() of the underlying graph signature scheme.

((Pks g, sks), 05me; Mg) < GraphEncodingSetup((pks, sks), os kg, V, L, enc_params) A prob-
abilistic polynomial-time algorithm which creates and certifies the encoding scheme
for the topology certification. This process entails the systematic allocation of prime
representatives for all possible vertices and labels in a mapping Mg as well as the
creation of generators to act as message based for the graph signature scheme. The
latter is delegated to the graph signature library.

(G;€) < Inspect(G) An interactive algorithm by which the auditor inspects the provider in-
frastructure operation and obtains a trustworthy graph representation, the realization
model.

(0;€) < HiddenSign(pks g, Mg, C, VR, Vs) An interactive probabilistic polynomial-time al-
gorithm between auditor and provider which offers a topology signature on a issuer-
known graph Gobtained during Inspect(), delegates to the HiddenSign() operation of
the graph signature scheme. Private inputs: Recipient R: Gr, commitment random-
ness R; Signer S: sksg, Gs.

0 or 1 « Verify(pks,C, R',0) A wverification algorithm on graph commitment C and sig-
nature o. Delegates to the corresponding method of the graph signature scheme.

The proof of policy predicates 3 is realized with specified >-proofs in the graph signature.

18 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Algorithm Input/Output Specification. We define the inputs and outputs for the
abstract interface as follows.

Definition 2.2 (((pks, sks), 0s kg) < Keygen(1*, gs_params)). A probabilistic polynomial-
time algorithm which computes the key setup of the TOPOCERT tool, delegating to the
key generation Keygen() of the underlying graph signature scheme.

The specification of the inputs and outputs is identical with Definition 2.7, p. 24 of the
low-level Keygen().

Definition 2.3 (((pksE, sksE), 05 me; ME) <

GraphEncodingSetup((pks, sks), 0s kg, V, L, enc_params)). A probabilistic polynomial-time
algorithm which creates and certifies the encoding scheme for the topology certification.
This process entails the systematic allocation of prime representatives for all possible ver-
tices and labels in a mapping Mg as well as the creation of generators to act as message
based for the graph signature scheme. The latter is delegated to the graph signature library.

In addition to the inputs and outputs specified for the low-level GraphEncodingSetup()
defined in Definition 2.8 on p. 24, the TOPOCERT encoding setup accepts as inputs sets
of vertices and labels that constitute the message space. Note that the label set £ can
distinguish vertex and edge label sets, £y and L¢.

As default strategy for the TOPOCERT, labels Lare allocated low prime representatives.
The vertices Vare allocated prime representatives greater than the dedicated bit length
for the label encoding ¢/.. The reason for that default setting is the efficient encoding of
multi-labeled graphs.

The TOPOCERT GraphEncodingSetup() may call the graph signature library for its GraphEn-
codingSetup() or draw upon stored outputs of previous runs of the graph signature GraphEn-
codingSetup(). The reuse has the following interface:

((pks g, sksE), 05,me, ME) < GraphEncodingSetup((pks g, sksE), 05 es, V, L, enc_params)

As output the algorithm produces a mapping between prime representatives and graph
elements Mg. This mapping constitutes the alphabet that defines the message space for
a particular encoding scheme.

The algorithm outputs an instance of the extended public key (pks g, sksg) from the low-
level GraphEncodingSetup(), which is amended with the established mapping Mg, as well
as a signature os me. The signature os me incorporates the signature os s on the encoding
bases and certifies in addition mapping MEg.

Definition 2.4 ((o;¢) < HiddenSign(pks g a4, C, Vr, Vs)). An interactive probabilistic
polynomial-time algorithm between auditor and provider which offers a topology signature
on a issuer-known graph Gobtained during Inspect(), delegates to the HiddenSign() opera-
tion of the graph signature scheme.

The TOPOCERT version of the HiddenSign() algorithm establishes a graph signature

19 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

for a specified encoding mapping Mg. Private inputs: Recipient R: Gr, commitment
randomness R; Signer S: sksg, Gs. Otherwise, we refer to the interface of the graph-
signature library HiddenSign() (Definition 2.10, p. 25) for the specification of other inputs
and outputs.

Definition 2.5 (0 or 1 < Verify(pkg,C, R',0)). A wverification algorithm on graph com-
mitment C and signature o. Delegates to the corresponding method of the graph signature
scheme.

The input/output profile is identical with Definition 2.11, p. 26 of the low-level Verify().

2.5.5 Static Architecture and Design of the TOPOCERT Tool

The TOPOCERT tool is designed such that foundational operations are delegated to the
graph signature library. At the same time, the TOPOCERT tool offers methods to govern
the graph encoding setup suitable for topologies.

The TOPOCERT tool implements specialized prover and verifier pairs that focus on prov-
ing particular policy predicates. For that, they drawn upon the same proof context as the
graph signature library and on the values held therein (secrets, randomness, commit-
ments).

As specialized prover, for instance, the TOPOCERT tool includes a geo-location separation
proof, which depends on the graph signature library’s vertex decomposition.

2.5.6 Dynamic Architecture and Design of the TOPOCERT Tool

Issuing. Figure 4 shows the dynamic flow between auditor and provider during issu-
ing. Note that the inspection of the provider infrastructure/configuration is modeled as a
synchronous communication.

Proving. Figure 5shows the proof process between the provider and the tenant, in which
the provider offers an interactive proof of knowledge (PK) on the policy predicate of the
tenant. Note that the communication is asynchronous, where the nonce communicated in
the first message acts as reference for the session context between activations.

Figure 6 shows a proof process, executed non-interactively. Here the proof is done as
signature proof of knowledge (SPK) where a single response message is created with the
Fiat-Shamir Heuristic, constituting a signature on the nonce sent in the policy predicate
message.

2.6 Graph Signature Library

The graph signature library implements the corresponding signature scheme (GRS) speci-
fied by GroB [Grol5]. The library realizes the interactions between a signer and a recipient,

20 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

g RealizationModel Inspection()

g. RealizationModel()

i}, Commitment()

& PartialGraphSignature()

Figure 4: Sequence diagram of the issuing process between auditor and provider roles.

99 PolicyPredicateNonce()

B witness)

& Challenge(

Qb Responses()

Figure 5: Sequence diagram of the proof process between provider and tenant.

21 of 84

N

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

gb PolicyPredicate()

g CommitmentsHashResponses()

Figure 6: Sequence diagram of the proof process between provider and tenant.

meant to create a signature on a hidden committed graph, and the interactions between
a prover and a verifier, meant to prove properties of a graph signature in zero-knowledge.

Graph signatures can be formed by combining a committed (hidden) sub-graph from the
recipient and a issuer-known sub-graph from the signer. For the sake of the PRISMACLOUD
project, it is sufficient to realize issuer-known graphs, as the graphs will be known by the
signer (auditor).

2.6.1 Signer S

The signer is responsible to generate an appropriate key setup, to certify an encoding
scheme, and to sign graphs. In the HiddenSign() protocol the signer accepts a graph
commitment from the recipient, adds an issuer-known sub-graph and completes the signa-
ture with his secret key sks. The signer outputs a partial graph signature, subsequently
completed by the recipient.

2.6.2 Recipient R
The recipient initializes the HiddenSign() protocol by creating a graph commitment and
retaining randomness R, possibly only containing his master secret key, but no sub-graph.

In this case, it is assumed that the signer knows the graph to be signed. Once the signer
sends his partial signature, the recipient completes the signature with his randomness R.

2.6.3 Prover P

The prover role computes zero-knowledge proofs of knowledge with a policy predicate
on graph signatures. These proofs can either be interactive or non-interactive.

22 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.6.4 Verifier V

The verifier role interacts with a prover to verify a policy predicate 3. The verifier
initializes the interaction, sending the policy predicate 3 as well as a nonce that binds the
session context.

2.6.5 Proof Context

The different prover and verifier algorithms co-create, amend and draw upon a joint proof
context. The proof context is specific for a session of a zero-knowledge proof. It contains
the entire proof state, that is,

e Integer and graph commitments,
e witness commitments,
e challenge,

e responses.
The prover’s proof context contains additional secrets:

e The randomness of integer and graph commitments,
e the randomness corresponding to the secrets of the ZKPoK, and

e the secrets themselves (especially the actual graph and its encoding).

2.6.6 Abstract Description

Parameters. We offer the description of the parameters used for the graph signature
scheme in Table 1. We use the same notation as the Identity Mixer credential system, the
standard realization of the Camenisch-Lysyanskaya signature scheme [IBM13].

Core Interface. The graph signature library draws upon an interface with multiple
operations. We first specify the abstract interface itself in Definition 2.6 and then discuss
the inputs and outputs subsequently.

Definition 2.6 (Graph Signature Scheme). The graph signature scheme consists of the
following algorithms:

((pks, sks), 05 kg) Keygen(1*, gs_params) A probabilistic polynomial-time algorithm which
computes the key setup of the graph signature scheme and corresponding commitment
scheme.

23 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

((Pks g, sksE), 0s.es) <= GraphEncodingSetup((pks, sks), 0s kg, enc_params) A probabilistic
polynomial-time algorithm which computes the setup of the graph encoding, espe-
cially, a reserved certified set of bases which are meant to hold the verter and edge
messages.

C < Commit(G; R) A probabilistic polynomial-time algorithm computing an Integer com-
mitment on a graph.

(05 €) < HiddenSign(pks g, C, VR, Vs) An interactive probabilistic polynomial-time algorithm
between a recipient and a signer which signs a committed graph. We note that both
parties can have common inputs, namely a commitment C = Commit(Gg; R) encod-
ing the recipient’s graph and disclosed connections points Vr, Vs, and the Signer’s
extended public key pks g. Hence, the signer and the recipient can contribute sub-
graphs to be combined. Private inputs: Recipient R: Gr, commitment randomness

R; Signer S: sksg, Gs.

0 or 1 « Verify(pkg,C, R',0) A wverification algorithm on graph commitment C' and sig-
nature o.

Algorithm Input/Output Specification. We define the inputs and outputs for the
abstract interface as follows.

Definition 2.7 (((pks, sks), 0s kg) Keygen(1*, gs_params)). A probabilistic polynomial-
time algorithm which computes the key setup of the graph signature scheme and corre-
sponding commitment scheme.

The key generation algorithm takes as input the general security parameter 1* and the
key generation parameters of the graph signature scheme gs_params. The parameters are
described in detail in Table 1a.

The key generation outputs a secret key sks, including the factorization of a special RSA
group with modulus bit length ¢,, and the corresponding public key pkg. The both keys
contain the group setups of the special RSA group as well as the group setups of the
commitment group I

The key generation outputs as part of the group setups a foundational generator S for
the Quadratic Residues under the given Special RSA modulus QRj. The key generation
outputs a dedicated base for the Recipient’s master ket Ry.

The key generation digitally signs the given public outputs and makes the signature os g
public.

The parameters specified in gs_params are stored for this instantiation of the Signer S.

Definition 2.8 (((pks g, sksg), 0ses) < GraphEncodingSetup((pks, sks), o5 kg, enc_params)).
A probabilistic polynomial-time algorithm which computes the setup of the graph encoding,
especially, a reserved certified set of bases which are meant to hold the vertexr and edge
messages.

24 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

The graph encoding setup takes as input the Signer S’s secret key sks, public key pkg
as well as the encoding setup parameters enc_params. Table 1b offers a details on the
corresponding parameters.

As public output, the algorithm produces a number of bases reserved to hold vertex and
edge encodings, R;|i € {1,...,¢y} for vertices and R;|j € {1,...,{s} for edges.

The algorithm digitally signs the generators, proving knowledge of their representation
and binding them to public key pks. It outputs signature s es.

We call the certified combination of original public key pkg and the vertex and edge
encoding bases R;, R; the Signer’s extended public key pks g.

As private output, the algorithm returns the discrete logarithms of all produced bases with
respect to generator S, logg(Ry). The discrete logarithms stored securely persistently and
retained for the graph signing process.

Corresponding to the definition of the public key, we call the combination of original secret
key sks and the discrete logarithms logg(Ry) the Signer’s extended secret key sks g

Definition 2.9 (C' < Commit(G; R)). A probabilistic polynomial-time algorithm comput-
g an Integer commitment on a graph.

The Commit() algorithm takes a graph G and randomness R as input.

It commits to the graph in an appropriate encoding, that is, holding vertex and edge
representations in different bases. As specified in the graph signature definition [Grol5],
the algorithm will establish a commitment as follows:

O = ... gitlev@es RUCillersa®e gr 4N
(i) m(4,5) ’

V vertices i V edges (i,5)

where e; and e; are vertex representatives. The label representatives ej are obtained with
the vertex mappings fy (i) and edge mappings fe(i, 7).

The public output C' is the computed commitment. The Committer retains the random-
ness R for future commitment opening or proofs of representation.

Definition 2.10 ((¢; 0) < HiddenSign(pks g, C, VR, Vs)). An interactive probabilistic polynomial-
time algorithm between a recipient and a signer which signs a committed graph. We note

that both parties can have common inputs, namely a commitment C = Commit(Gg; R)
encoding the recipient’s graph and disclosed connections points Vg, Vs, and the Signer’s
extended public key pks g. Hence, the signer and the recipient can contribute sub-graphs

to be combined. Private inputs: Recipient R: Gr, commitment randomness R; Signer S:
sks e, Gs.

The abstract interface specification for the interactive algorithm decomposes into two
interfaces for Signer S and Recipient R.

Signer.HiddenSign(pks g, C, VR, Vs; sks g, Gs), and

25 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Recipient.HiddenSign(pks g, C, VR, Vs; Gr, R).

Let us first discuss public and private inputs. While the Integer commitment C' is publicly
known, it is usually computed by the Recipient R for the the given HiddenSign() operation
with the corresponding randomness R with Commit(). The Recipient will be required to
offer a proof of representation of the commitment as part of the interactive protocol.

Note that the key-pair inputs (pk57E, sks) refer to extended keys, that is, public and
private keys that contain the information on encoding bases of GraphEncodingSetup().

While the HiddenSign() algorithm allows for either both private input graphs Gg and Gs
to be present or absent, the standard case realized in TOPOCERT is that we have a
signer-known graph Gs, but no hidden/committed graph of the Recipient R.

In most cases the connection points Vg and Vs will be equal, but that is not necessary.!

As output on the Recipient side, R obtains a graph signature osg (or short o) on the
combined graph G = Gr U Gg valid with respect to pks’E.

The Signer S does not produce an output.

Definition 2.11 (0 or 1 < Verify(pks g, C, R',0)). A verification algorithm on graph com-
mitment C' and signature o.

The algorithm Verify() takes as inputs the Signer’s extended public key pkg g, a signed
graph commitment C' and its randomness R’ and the graph signature o.

The algorithm outputs either 0 or 1, signifying that o is either invalid or valid as graph
signature on C.

We note that usually graph signatures, such as o are used in proof of possessions and
further zero-knowledge proofs of knowledge to show certain properties. In such cases, we
can use Verify() to signify a proof of representation that the secrets encoded in commitment
C are equal to the secret messages of the graph signature o.

Then we have a zero-knowledge proof of knowledge defined as follows:

PK{(ei, ej,ex, e,v,7):

e; 11, i€k e;e;11y, i,5) €k
7 =+... g en@ R 7FEIEEDTE 428V mod N
7 (4) 7(4,5)
V vertices i V edges (4,5)
ein i\ €k eie-l'[k i.7)Ck
C=+...REUFEWOF . R VIREIeGDTE G mod N
(i) (4,5)
v ve;trices i V edges (,5)

1.

Here the first equation proves the representation of the graph signature o and the second

!The first graph signature [Grol5] proposal referred to the connection points as Vg, Vs, which would
mean the set of all vertices and not a subset.

26 of 84

\ !![{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

equation proves the representation of the commitment C, yielding equality over the secrets
€;, ¢; and ey.

We note that the proofs of knowledge on graph properties between prover and verifier are
specified as standard X-proofs.

2.6.7 Static Architecture and Design of the Library

& 1Params
eu.prismacloud. primitives.grs.parameters|
@ oetParam(): IParams

@ setParam(): void

G GSKeyGenParams
eu.prismacloud.primitives.grs.parameters
o | Gamma: int
o |_rho:int
o |_m:int
0 IGraphEncodingParams 0 IKeyGenParams o | res:int
|___eu prismacloud primitives grs.parameters eu.prismacloud.primitives.grs.parameters o le:int
@ setMaxVertexMofl V. int): void @ setCommitmentGroup{l_Gamma: void R | prime.e:int
@ setVertexEncodinglength{l_prima_\: int): void @ setSubGrouplengthil_rha: int): void o |v:int
@ setMaxEdgeNof(l_E: int): void @ setMaxMessageEncodingLengthil_m: inth: void 8 LEhiint
@ setMaxLabelNo(l L: int): void @ setReservediessagesNumber(l_res: int): void 8 | H:int
@ setlabelEncedinglengthil_prime_L: int): void @ setCertificateELength(l_e: int): void] 8 |r:int
@ setintervallengthE(l_prime_e: int): void o Lpt:int
T @ setCertificateVLength{lv: int): void @ setCommitmentGroup(l_Gamma: int}: void
@ setStatisticalZKParamil_Phi: int): void & setsubGroupLengthil_rho: int): void
@ GraphEncodingParams @ setHashLength{l_H: int): void d: setMaxMessageEncodinglength{l_m: int}: void
eu.prismacloud.primitives .grs. parameters @ setClLSecurityParami(Lr: int): vaid (f satReservedMessagesNumber(l_res: int): void
a |V int @ setPrimeProbability(l_pt: int): void @F setCertificateELengthil_e: int): void
o |_prime_V: int @ getStatisticalZKParami): int (f setintervallLengthE(l_prime_e: int): void
g |_E:int @ setCertificateVLength{l_v: int): void
o | L:int & setStatisticalZKParam({l_Phi: int): void
a |_prime_L:int GF setHashLength(l_H: int): void
(; setMaxVertaxMall V: int): void J setCLSecurityParam{l_r: int): void
J setVertexEncodingLengthil_prime_\: int): void d: setPrimeProbability(l_pt: int): void
QF setMaxEdgeMoil_E: int): void @ getStatisticalZKParami}: int
& setMaxLabelNa(l_L: int): void
o setLabelEncodinglength{l_prime_L: int): void

Figure 7: Parameters Class Diagram

In this section, we present the architecture of the graph signature library related to the
above abstract description. The following class diagrams present the main interfaces and
classes that comprise the graph signature library.

Figure 7 presents the interface hierarchy of the parameters used for the key generation
and the graph encoding. First, we create a generic interface called IParams that can
used to create and get parameters required for the library. Second, we use two different
interfaces for the key generation and encoding parameters. Third, the GSKeyGenParams
and GraphEncodingParams concrete classes in the diagram implement the creation of the
parameters for the graph encoding and for the key generation.

Figure 8 shows the key generation hierarchy for the library. First, we create an interface
for the key generation and one for the extended key pairs. Each of the classes imple-
menting a key pair interface acts as a wrapper encapsulating the private and public keys

27 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

@ signerPublicKey

eu.prismacloud.primitives.grs.keys
d privateKey: SignerPrivateKey
o params: GSKeyGenParams

@ ossignerKeyPair

eu.prismacloud.primitives.grs.keys
d privateKey: SignerPrivateKey

0 IGSKeyPair if SignerPublicKey(privateKey: SignerPrivateKey, params: GSKeyGanParams)

o publicKey: SignerPublicKey

eu prismacloud.primitives.grs.keys & keychiSignatdrkeyCenBgnatia 0"'—.-—.-" o getParamsi): GSKeyGenParams
licKey{): SignerP ST — = =

@ .etRbicKey(): Zonarislickey (-EC GSSignerkeyPairigs_params: GSParams)

@ getPrivateKey(): SignerPrivateKey

& getPublickey(): SignerPublicKey

. setsunawrel: Keibenfiunstirs (f gaetkey! nature(}: KeyGenSignature
& generateKeySignaturel): void Q:\
& getPrivateKey(): SignerPrivateKey ® SignerPrivateKey
& getSignature(): KeyGenSignature eu.prismacloud primitives.ors.keys
SignerPrivateKey{gsParams: GSKeyGenParams)
Gc SignerPrivateKey{)
@FgctPuoHcKev:\ SignerPublicKey
@ GSExtendedKeyPair
9 IGSExtendedKeyPair eu.prismacloud primitives . grs.keys @ ExtendedPrivateKey
e — o extendedPublickey: ExtendadPublicKey eu.prismacloud primitives.ars. keys
[getPublicKey(): EtendedPublickey K}—| o extendedPrivateKey: ExtendedPrivateKey o signerPrivatekey: SignerPrivateKey
@ getPrivateKey(): ExtendedPrivatekey f encodingSignature: EncodingSignature < —| f discratelogarithms: Vector<Bigintegers
J getEncodingSignature(): EncedingSignature Qc ExtendedPrivateKey| arPrivateKey: SignerPrivateKey)

@ getEncodingSignaturel): EncodingSignature

oF getPublicKey(): ExtendedPublicKey (,F getDiscreteLogarithms(): Vector<Bigintegers
J getPrivateKey(): ExtendedPrivateKey QF agetPrivateKey(): ExtendedPrivateKey

® ExtendedPublicKey

eu.prismacloud.primitives.grs keys
o publicKey: ExtendedPublickey

o vertexBases Vector<Biginteger>

o edgeBases: Vector<Biginteger>

& getPublickey(): ExtendedPublicKey
& getPrivatekey(): ExtendedPrivateKey
J getVertexBases(): Vector<Bigintegar>
&f getEdgeBases(): Vector<Bigintegers

Figure 8: Key pairs Class Diagram

as shown in the classes SignerPublicKey, SignerPrivateKey, ExtendedPublicKey and
ExtendedPrivateKey and their respective private and public outputs following the ab-
stract description of the graph signature library.

Figure 9 illustrates the architecture for the recipient and the signer. The recipient uses
first an interface (IRecipient) where we outline the main methods a concrete class must
implement. GSRecipient is the concrete class that implements the required methods and
includes the graph methods. The GSGraph and GSVertex classes act as wrappers for the
JGrapht library for the creation and manipulation of graphs.

The signer part of the architecture uses a similar hierarchy. First an interface called
ISigner) is used where we outline the main methods a concrete class must implement.
GSSigner is the concrete class that implements the required methods and includes the
graph methods in the same fashion as the recipient.

The library is designed such that there are dedicated pairs of provers and verifiers for
the purposes of the graph signature protocol. All provers and verifiers draw upon and
enrich the proof context with the values they have derived. Subsequent proofs that rely
on computed values of provers/verifiers in the dependency tree call upon the proof context
to obtain these values. Consequently, the proof context is the lynchpin to hold session
state and tie different component provers together.

The Proof of Possession prover only shows that the prover indeed owns a graph signature

28 of 84

\ !![{((

Final Report on Privacy and Anonymization Techniques (1%
(TOPOCERT) prisma clesud

[1] ISigner
eu.prismacloud. primitives.grs.signer
@ keyGen(gs_params: IParams): IGSKeyPair
@ commit{gsGraph: GSGraph, rnd: Biginteger): GSCommitment
@ hiddenSignicmt: GSCommitment, signerVertex: GSVertex, recipientVertex: GSVertex, extendedPublicKey: ExtendedPublicKey, gsGraph1: GSGraph, extendedPrivateKey: ExtendedPrivateKey): GSGraphSignature
@ setGraph(signerGraph: GSGraph}: void
® essigner
eu.prismacloud.primitives.grs.signer
o signerGraph: GSGraph
@ keyGen(gs_params: IParams): IGSKeyPair
@ commit{gsGraph: GSGraph, rnd: Biginteger): GSCommitment
@ hiddenSign(cmt: GSCommitment, signerVertex: GSVertex, recipientVertex: GSVertex, extendedPublicKey: ExtendedPublicKey, gsGraph1: G8Graph, extendedPrivateKey: ExtendedPrivateKey): GSGraphSignature
@ getSignerGraphi): GSGraph
@ createGraph): void
@ initGraph(): GSGraph
@ sendM ge(signeri geToRecipient: GSMess): GEMessage
@ setGraph(signerGraph: GSGraph): void
® GscGraph
eu.prismacloud.primitives.grs.graph
o g: SimpleGraph<GSVertex, DefaultEdge> @ csvertex
S DEFAULT EDGE WEIGHT: double leu.prismacloud.primitives.grs.graph|
o e1: DefaultWeightedEdge o label: String
@ addVertex(nama: GSVertex): void ® getlabel): String
@ addEdge(v1: GSVertex, v2: GSVertex): DafaultEdge @ setlabel{label String): void
& GsGraph()
@ creataGraphi): SimpleGraph <G5SVertex, DefaultEdge>
@ addConnectingVertex(vertex: GSVertex, label: String): void
@ GsRecipient
eu.prismacloud.primitives.grs.recipient
o recipientGraph: GSGraph
@ hiddenSignicmt: ICommitment, gsGraph: GSVertex, gsGraph1: G5Vertex, extendedPublicKey: ExtendedPublicKey, gsGraph2: GSGraph, rnd: Biginteger): IGraphSignature
@ keyGen(gs_params: IParams): IGSKeyPair
@ commit{gsGraph: GSGraph, rnd: Biginteger): ICommitment
@ hiddenSignicmt: GSCommitment, gsGraph: GSVertex, graph: GSVertex, extendedPublicKey: ExtendedPublicKey, gsGraph1: GSGraph, extendedPrivatekey: Biginteger): void
@ getRecipientGraphi): GSGraph
@ createGraph): void
@ initGraph(): GSGraph
@ sen ssage({recMessageToSigner: GSM }: GSM bl
@ setGraph(recipientGraph: GSGraph): void
@ verifylextendedPublicKey: ExtendedPublicKey, recigientCommitment: ICommitment, rndRecipient: Biginteger, graphSignature: GSGraphSignature): Boolean

eu.prismacloud primitives.grs.recipient
@ hiddenSignicmt: ICommitment, signerCennectingVertex: GSVertax, recipientConnectingVertex: GSVertex, extendedPublicKey: ExtendedPublicKey, recipientGraph: GSGraph, rndRecipient: Biginteger): |GraphSignature
@ keyGenigs_params: |Params): IGSKeyPair
@ commitigsGraph: GSGraph, rnd: Biginteger): ICommitment
@
L]

setGraph(recipientGraph: GSGraph): void

verifylextendedPublicKey: ExtendedPublicKey, recipientCammitment: ICommitment, rndRecipient: Biginteger, graphSignature: GSGraphSignature): Boolean

Figure 9: Recipient and Signer Class Diagram

and knows all corresponding secrets. As an operationalization of the graph signature, the
prover can compute and transfer integer commitments on all message attributes of the
graph signature. A Proof of Vertex Composition prover computes integer commitments
that separate vertex identifiers and labels and proves their correct decomposition. A Proof
of Edge Composition prover computes integer commitments that separate the edges’ vertex
identifiers and labels and proves their correct decomposition.

29 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

2.7 Recommendations

To securely use the graph signature scheme and the TOPOCERT tool, it is necessary to
follow key size requirements specified for the Identity Mixer cryptographic library [IBM13].
Here we note that the TOPOCERT tool is meant to operate in an implementation with a
2048-bits key strength and appropriately selected parameters, which implies parameters as
defined in Table 1. For a detailed specification of the parameter selection for the underlying
Camenisch-Lysyanskaya signature scheme, we refer to Tables 2 and 3 of the Specification
of the Identity Mixer Cryptographic Library, Version 2.3.40, on p. 43 [IBM13].

Remark 1 (Security Parameter). The security parameters, especially bit length for the
group setups, flow from the specification of the bit length of the special RSA modulus ¢,
and the message space £,,. The constraints placed on the respective bit lengths are crucial
to maintain the soundness of the security proof of the underlying Camenisch-Lysyanskaya
signature scheme (cf. Table 3 of the Specification of the Identity Mixer Cryptographic
Library, Version 2.3.40, on p. 43 [IBM13]).

Remark 2 (Encoding Parameters). We consider the choices made for the graph encoding
scheme.

Encoding Defaults The bit length parameters for the prime encoding ¢}, and ¢, follow
from the available message bit length, assuming that the labels are encoded as the
lowest prime representatives. However, the given defaults for number of vertices,
edges, labels to be encoded ¢y, f¢, and £, are not the theoretical maxima.

Maximal Number of Labels For a single-labeled graph with ¢, = 16, the maximal
encodable number of labels is 6542. The restrictions of the number of labels is
in place to allow for multi-labeled graphs, in which case the product of the label
identifiers occupies the reserved space.

Maximal Number of Vertices The maximal number of vertices for the reserved bit
length £}, = 120 is 1.5981034. The limiting factor for the number of encoded vertices,
however, is not the reserved bit length of the message space, but the space required
to store the corresponding based dedicated vertex and edge encoding. For each
possibly encodable vertex and edge the graph signature scheme needs to reserve a
group element with an bit length of ¢, = 2048. A encoding for fully connected
graphs with ¢y = 1000 and ¢g = £y (¢y, — 1) = 999000 would consume 244.28 kBytes
for vertices and 243.89 MBytes for the edges.

Remark 3 (Signature Size). A signature of the graph signature scheme consists of one
group element and two exponents A, e, v). A single signature has the following bit length
for the default parameters in Table 1:

|(A7 67U)|2 = gn + EU + fe = 5369 bits.

Remark 4 (Base Randomization). We note here that the graph signature scheme proposed
by Grof§ [Grol5] requires a base randomization for multi-use confidentiality of graph ele-
ments. This is because the bases referenced in the ZKPoK are public knowledge and each
proof reveals which exponents are harbored by which base.

30 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma closud
Table 1: Parameters of the graph signature scheme gs_params and encoding setup

enc_params. Parameters for the underlying Camenisch-Lysyanskaya signature scheme are
largely adapted from the Identity Mixer Specification [IBM13]. In the implementation,
this table is referred to as table:params.

(a) Parameters of Keygen()

Parameter Description Bit-length
Ly Bit length of the special RSA modulus 2048
lr Bit length of the commitment group 1632
I Bit length of the prime order of the subgroup of I' 256
b, Maximal bit length of messages encoding vertices and edges 256
Lres Number of reserved messages 1t
le Bit length of the certificate component e 597
4 Bit length of the interval the e values are taken from 120
Ly Bit length of the certificate component v 2724
Uy Security parameter for statistical zero-knowledge 80
L Bit length of the cryptographic hash function used for the 256

Fiat-Shamir Heuristic

Ly Security parameter for the security proof of the CL-scheme 80
Cpt The prime number generation to have an error probability 807
to return a composite of 1 — 1/2£”t
Note: 1 refers to numbers that are integers, not bit lengths.
(b) Parameters of GraphEncodingSetup()
¢y Maximal number of vertices to be encoded 100011
£, Reserved bit length for vertex encoding (bit length of the 120
largest encodable prime representative)
le Maximal number of edges to be encoded 50.0001%
£, Maximal number of labels to be encoded 25671
¢/» Reserved bit length for label encoding 16

Note: 1 refers to numbers that are integers, not bit lengths; I refers to the default

parameter, not the theoretical maximum.

31 of 84

N

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

The base randomization asks that random permutations my and wg be applied to the
vertex and edge bases respectively. A space-efficient solution for that requirement could
use keyed pseudorandom permutations.

Let an appropriate family of pseudorandom permutations F on group elements in QR y
be given, where pseudorandom permutations (PRPs) are defined as by Katz and Lin-
dell [KL14]. Theoretical work on constructions of pseudorandom permutations from pseu-
dorandom functions was spawned by the seminal work of Luby and Rackoff [LR88]. As
an alternative approach, we also refer to constructions of Verifiable Secret Shuffles, such
as Neff [Nef01], which allow a Prover in a honest-verifier zero-knowledge proof scenario to
convince a Verifier that a secret shuffled was computed correctly.

1. During the Signer’s round of HiddenSign(), S chooses a uniformly random permuta-
tion key k with appropriate bit length.

2. S applies the pseudorandom permutations (my, m¢) with common key & to the certi-
fied base sets, obtaining permuted base sets.

3. Signer S then encodes graph G on the derived base sets.

4. Signer S shares permutation key k with the Recipient together with the correspond-
ing signature o, = (A, e,v); along with a proof of representation that oy indeed
fulfills the CL-equation on the derived bases.

Hence, the Signer will issue multiple signatures, one for each permutation. Each signature
has a size of one group element, two exponents, and one permutation key.

32 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

3 Geo-Separation

3.1 Overview

The geo-location separation [Grol7] first specified in deliverable D4.7 aims at certifying a
topology graph in such a way that a Provider can convince a Tenant with the TOPOCERT
tool that the resources of a Tenant are distributed over different geo-locations, for example
multiple European countries.

The geo-separation scenario is built upon the Abstract Interface of the TOPOCERT tool,
as defined in Section 2.5.4 on p. 18.

3.1.1 Our Contribution

We are the first to propose a geo-separation proof on graphs realized with the graph
signature scheme proposed by Grof§ [Grol5]. The geo-separation scenario demonstrates
the utility of the graph signature scheme and the TOPOCERT tool in the wider context
of PRISMACLOUD.

Our contribution contains the specification of an encoding scheme for TOPOCERT as well
as of the corresponding zero-knowledge proofs of knowledge between Provider and Tenant.

3.1.2 State-of-the-Art

Previous proposals on graph signatures offered predicates to prove Graph 3-Colorability [Grol5]
or predicates such as connectivity and isolation [Grol4]. They all use prime numbers as
representatives to encode graphs such that their constituent components (vertices, edges
and labels) remain accessible to discrete-logarithm-based zero-knowledge proofs of knowl-
edge. The underlying graph signature scheme [Grol5] is based on the Strong-RSA version

of the Camenisch-Lysyanskaya signature scheme [CLO02].

3.2 Preliminaries and Building Blocks

The geo-separation protocol builds directly upon the TOPOCERT tool defined in Sec-
tion 2.5.4. It relies on a special mapping Mg suitable for a geo-location encoding of a
finite list of countries. In this scenario, the TOPOCERT Auditor is responsible to map
GPC coordinates into the appropriate United Nations country code.

Furthermore, the system is based on discrete-logarithm-based proofs of knowledge that
prove pair-wise co-primality of committed exponents without disclosing information about
those exponents. While these techniques are well-known in the field, they have been no-
tably employed in the NOT-proofs of the Camenisch-Grof3 encoding scheme for anonymous
credentials [CG08, CG12| as well as in work on Credential Authenticate Key Exchange
and Identification (CAKE/CAID) [CCGS10].

33 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

3.2.1 Our Framework

Setup We assume that the key generation of the TOPOCERT tool Keygen() has already
been completed successfully, yielding a certified graph signature key pair ((pks, sks), os kg)-

We continue to specify the message space which will eventually yield the graph encoding
mapping Mg geo. As the labels set £ we specify the set of 249 United Nations country
codes as defined in IS0 3166-1 alpha-2 [ISO06] in alphabetical order.

The country codes are encoded into label prime representatives in the low-bit range,
occupying the prime numbers from 2 to 1579 inclusive, at a maximal bit length of 11 bits.
L is set to 249. Note that this can be realized with the default setup of TOPOCERT as
outlined in Table 1 on p. 31.

The vertex set V and its maximal size £y, is set to fit the needs of the application scenario,
yet not exceeding the bit length £},. Otherwise the standard parameters of TOPOCERT
are adopted.

The graph encoding is produced with a call to TOPOCERT algorithm:
((Pks, ks ,E), 05 me;s ME geo) < GraphEncodingSetup((pks, sks), 0s kg, V, L, enc_params),

taking as inputs the described parameters and the given certified key pair ((pks, sks), 05 kg)-
The encoding mapping ME geo is part of the certified extended public key pks g, which is
then distributed to Provider and Tenant roles with integrity.

Certification For the certification operation by the Auditor, we assume that we are
only dealing with a Signer-known graph G, which is obtained through the Auditor’s in-
spection. The Auditor determines for each physical server in the virtualized infrastructure
represented in G the geo-location as per trusted GPS coordinates and systematically maps
this geo-location into IS0 3166-1 alpha-2 [ISO06] country codes.

To obtain a graph signature, the Provider initiates the interactive protocol by creating a
commitment C' on the Provider’s master secret key and inputting that into the Provider’s
side of the TOPOCERT.HiddenSign() algorithm.

Recipient.HiddenSign(pks g, C, 0, 0; ¢, R)

Given this protocol initiation, commitment C will be transferred to the Auditor with a
zero-knowledge proof of representation. Receiving that, the Auditor initiates its part of
the protocol:

Signer.HiddenSign(pks g, C, 0, 0; sks g, Gs)

The Auditor then uses the encoding mapping MEg geo to look-up the prime identifier for
each country label and associates the labels with the vertices of all physical machines.

The Auditor encodes this information in message blocks of the graph signature scheme
along with the unlabeled edges in G. Once, the encoding is complete, the Auditor derives

34 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

the pre-signature, which is then securely communicated back to the Provider along with
a proof of representation and the encoding of G.

Remark 5 (Simplifying Assumptions). For the proof of geo-separation as demonstrated
in PRISMACLOUD, we assume that the Auditor enforces that vertex identifiers uniquely
identify resources. For instance, if there is a particular server identified as e;, there could
not be another server of the same name. A violation of this rule will only yield false
positive alarms, i.e., a TOPOCERT proof outcome yielding that the geo-separation is not
fulfilled, even if it is. There will be no false negatives. Making this assumption allows
for streamlined computations, saving on a complex vertex-decomposition into a tree of
commitments.

Proof of Geo-Separation The proof of geo-separation is initiated by a Tenant asking
for a proof for a geo-separation predicate while submitting a nonce.

Upon receiving such a predicate, the Provider computes commitments on all vertex mes-
sages:
C; = RMkeiv®® ST mod N

. The provider, then, establishes (either interactively or non-interactively) a zero-knowledge
proof of knowledge as follows:

PK{(e,ej,er,e,v,75, a4, b 5,7 5) :

. eillery, (i) ek e;e;
Z:i"'Rw(i)e vOEE o Rﬁ(ifj)”'ABSv mod N

V vertices i V edges (4,5)
Ci = REMEer % 87 mod N
V vertices ¢

R=+ Ciai’j Cgi’j S"i mod N

V lower-triangle pairs ,j

The first equation proves the possession of the graph signature. The second equation
proves the representation of the commitments C; as well as the equality with the message
exponents in the graph signature. Finally, the third equation yields a proof of co-primality
between the different vertex commitments, through Bézout’s identity:

1 = a;jm; + b; jm;
= aij(ellyep, (yer) + bij(eillke,(jyen)

Factors a; j and b; ; only exist if m; and m; are co-prime, which further entails that their
labels must be co-prime.

Consequently, after having verified this zero-knowledge proof of knowledge, the Tenant will
be convinced that the physical servers hosting the Tenant’s resources will be in separate
geo-locations, without learning which countries harbor the servers.

35 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

4 The TOPOCERT Tool in the Application Context

In this section, we first briefly set our architecture in the context of the pilot applications
within PRISMACLOUD. Then we present our research on additional applications and also
discuss how those applications would comply with the architecture of our framework.

4.1 The e-Goverment Pilot

In the e-Government use case a regional government IT company called LISPA delivers
TaaS services to customers such as municipalities and other local public bodies. Customers
can use this service to setup their infrastructure. We aim to use the TOPOCERT tool in
this use case to allow the regional government I'T company to certify its infrastructure and
to prove policy predicates to public bodies without disclosing the layout of its infrastruc-
ture. The policy predicate supported by TOPOCERT tool is the geo-location separation.
Using this policy predicate a public body can be assured for instance, that its physical
servers and virtual machines reside in different countries.

Further implementation details reside in deliverables D7.6 and D7.8 for the architecture
of the Infrastructure Auditing (IA) service that is used in the e-Goverment use case. The
TOPOCERT tool plays a central role to the TA service as it supports all the crucial low-
level operations for certification of virtualized infrastructures and proving geo-location
separation.

4.2 Research on Additional Applications

4.2.1 Geo-location

While we have specified a scheme for geo-location separation in Section 3 meant for virtu-
alized infrastructures, we have also investigated graph signatures and corresponding proofs
on graphs of geo-locations and their routes. Furthermore, we have investigated the use of

attribute-based credentials on GPS-based geo-locations to enable a direct binding between
the geo-location coordinates and the graph signatures.

4.2.2 Future Work

Future research directions include:

e certification of software-defined networks,
e provenance graphs (e.g., in the Open Provenance Model [MFF108]), and

e causality representations (e.g. Structured Occurrence Nets [KR09]).

36 of 84

5 u({((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

Such future applications will be investigated in the European Research Council (ERC)
Starting Grant Confidentiality-Preserving Security Assurance (CASCAde, GA n°716980).

37 of 84

5 !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

5 Conclusion

In this deliverable, we have presented our final design for the TOPOCERT tool. We have
established a flexible design with an easy to use API which is compatible with all the
requirements imposed by the Prismacloud pilots. While the design itself represents a final
iteration of the design already presented in D5.6, we have presented additional research
on applications going beyond the use cases within the Prismacloud pilots, and assessed
the possibilities of an integration of the primitives required by those extended application
scenarios.

38 of 84

5 u({((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

6 Appendix

In the following we have attached the publications that relate to Sections 2 and 3 of this
deliverable.

39 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Signatures and Efficient Proofs on Committed Graphs
and NP-Statements

Thomas Grof3
School of Computing Science, Newcastle University, UK
thomas.gross@ncl.ac.uk

No Institute Given

Abstract. Digital signature schemes are a foundational building block enabling
integrity and non-repudiation. We propose a graph signature scheme and corre-
sponding proofs that allow a prover (1) to obtain a signature on a committed graph
and (2) to subsequently prove to a verifier knowledge of such a graph signature.
The graph signature scheme and proofs are a building block for certification sys-
tems that need to establish graph properties in zero-knowledge, as encountered in
cloud security assurance or provenance. We extend the Camenisch-Lysyanskaya
(CL) signature scheme to graphs and enable efficient zero-knowledge proofs of
knowledge on graph signatures, notably supporting complex statements on graph
elements. Our method is based on honest-verifier proofs and the strong RSA as-
sumption. In addition, we explore the capabilities of graph signatures by estab-
lishing a proof system on graph 3-colorability (G3C). As G3C is NP-complete,
we conclude that there exist Camenisch-Lysyanskaya proof systems for state-
ments of NP languages.

1 Introduction

Digital signature schemes are foundational cryptographic primitives; they are useful
in themselves to ensure integrity and non-repudiation and as building block of other
systems. From their first construction by Rivest, Shamir and Adleman [26], digital
signatures have been on bit-strings or group elements, on a committed sequence of
bit-strings [10] or structure-preserved group elements [1]. In this work, we establish a
signature scheme and corresponding proof system for committed graphs.

The basis for this work is the Camenisch-Lysyanskaya proof system: a collection
of distributed algorithms that allow an issuer, a prover and a verifier to prove knowl-
edge of committed values, issue a Camenisch-Lysyanskaya (CL) signature [9,10] on
committed values, and prove knowledge of such a signature in zero-knowledge, while
selectively disclosing values or proving statements about them. It uses honest-verifier
X-proofs (Schnorr proofs [27]) and has the advantage that it keeps all attributes in the
exponent. It thereby allows us to access attributes with known discrete-logarithm-based
zero-knowledge proofs of knowledge [27,16,18,11,4,13]. The attributes that could be
signed are, however, limited by the message space of the CL-signature scheme: a se-
quence of small bit-strings.

We study how to extend the Camenisch-Lysyanskaya proof system to establish sig-
natures on committed graphs and, by extension, on committed statements from NP

40 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

languages. Zero-knowledge proofs of certified or committed graphs with the capability
of selective disclosure of graph elements or complex statements over graph attributes
have many significant applications beyond classical graph proof techniques [21,3] or the
more recent proposal of transitive signatures [23]. The key difference to earlier work is
that the graph encoding is universal, enables direct access to graph elements, and allows
a prover to be flexible in the statements proven after the graph is certified. Such graph
proofs are instrumental in foundational techniques, such as the zero-knowledge proof
of knowledge of certified Petri nets as well as in various application scenarios, such
as for the certification of audited cloud topologies for which we proposed a dedicated
framework for topology proofs [2]. including coverage, disjointness and partitions as
well as connectivity and isolation.

First, we establish a new encoding of undirected graphs into the message space of
CL-Signatures. The encoding allows for unlabeled, vertex- or edge-labeled graphs. The
graph encoding is universal and operational in the sense that it supports efficient proofs
over graph elements (vertices, edges, labels) and their relations.

Second, we extend the Camenisch-Lysyanskaya proof system to graphs by integrat-
ing the graph encoding into integer commitments and the CL-Signature bootstrapping
process. This allows prover and issuer to sign committed graphs with sub-graphs con-
tributed by both parties and to prove knowledge of graph signatures in honest-verifier
X -proofs. The obtained graph proof system in itself allows for efficient zero-knowledge
proofs of interesting graph properties, such as partitions, connectivity and isolation [2],
already demonstrated in an application scenario of topology certification and proofs
in virtualized infrastructures. Graph proofs with a level of indirection between the au-
thority on the graph (the issuer) and the verifier, established by a graph signature and
with access to a wide range of graph properties, have not been covered by existing
zero-knowledge graph proofs, such as [21,3,20], or transitive signatures [23]. While the
former graph proofs are powerful constructions allowing for NP statements, e.g., graph
3-colorability or directed Hamiltonian cycle, their encoding does not cater for proving
relations over graph elements in zero-knowledge. The latter is focused on the transitive
closure along graph edges.

Third, we establish a proof system for graph 3-colorability (G3C) that allows us
to obtain CL-Signatures on committed instances of 3-colorable graphs and to prove
knowledge thereof to a verifier in zero-knowledge. Given that graph 3-colorability is
NP-complete, we can lift the Camenisch-Lysyanskaya proof system to NP statements.
Based on the 3-colorability proof system in a special RSA group and under the Strong
RSA assumption, we show that there exists a Camenisch-Lysyanskaya proof system
for any NP language, that is, the proof is capable of issuing CL-Signatures on com-
mitted statements from the NP language and to prove knowledge of such signatures in
honest-verifier X-proofs. Whereas the G3C-reduction does not offer particularly effi-
cient constructions for graph proofs, it shows the theoretical expressiveness of the graph
credential system.

In effect, this work extends the reach of the Camenisch-Lysyanskaya proof system
to signatures and proofs on structures of entire systems. To our knowledge, it is the
first work to enable signatures on committed graphs. Notably, the graph elements are

41 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

present in the exponents and, thereby, accessible to known discrete-logarithm-based
zero-knowledge proofs on a wide range graph properties in honest-verifier proofs.

1.1 Outline

In §2, we discuss the preliminaries of our graph proof construction: Camenisch-
Lysyanskaya signatures and Camenisch-Grof3 encoding. Based on the Camenisch-Grof3
encoding, we establish a canonical encoding for vertex- and edge-labeled graphs in §3.
§4 establishes how integer commitments and CL-Signature are extended with the graph
encoding. In §5 we show how graph 3-colorability can be expressed in the graph proof
system as proof of the encoding’s theoretical reach. §7 considers earlier work on zero-
knowledge proofs and signatures on graphs, while §8 draws conclusions of this work’s
properties.

2 Preliminaries

2.1 Assumptions

Special RSA Modulus A special RSA modulus has the form N = pq, where p = 2p’ + 1
and ¢ = 2¢' 4 1 are safe primes, the corresponding group is called special RSA group.
Strong RSA Assumption [26,18]: Given an RSA modulus N and a random element
g € Zy, it is hard to compute h € Z}; and integer e > 1 such that h® = g mod V.
The modulus N is of a special form pq, where p = 2p’ + 1 and ¢ = 2¢’ + 1 are safe
primes. Quadratic Residues The set QR j is the set of Quadratic Residues of a special
RSA group with modulus V.

2.2 Integer Commitments

Damgard and Fujisaki [16] showed for the Pedersen commitment scheme [24] that if it
operates in a special RSA group and the committer is not privy to the factorization of the
modulus, then the commitment scheme can be used to commit to integers of arbitrary
size. The commitment scheme is information-theoretically hiding and computationally
binding. The security parameter is . The public parameters are a group G with special
RSA modulus N, and generators (go, . . ., gm) of the cyclic subgroup QR . In order
to commit to the values (V4,...,V;) € (Z%)!, pick a random R € {0,1}* and set

l v;
C= 9§ [Tici 9

2.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for proving
statements about discrete logarithms, such as (1) proof of knowledge of a discrete log-
arithm modulo a prime [27] or a composite [16,18], (2) proof of knowledge of equality
of representation modulo two (possibly different) composite [11] moduli, (3) proof that
a commitment opens to the product of two other committed values [5,11], (4) proof
that a committed value lies in a given integer interval [4,11], and also (5) proof of the

42 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

disjunction or conjunction of any two of the previous [15]. These protocols modulo a
composite are secure under the strong RSA assumption and modulo a prime under the
discrete logarithm assumption.

Proofs as described above can be expressed in the notation introduced by Camenisch
and Stadler [12]. For instance,

PK{(oz,ﬁ,é):y:go‘hﬁ/\ﬂzgo‘fz‘s/\(ugagv)}

denotes a “zero-knowledge Proof of Knowledge of integers o, 3, and § such that y =
g*hP and § = §*h° holds, where u < o < v,” where y, g, h, 7, §, and h are elements
of some groups G = (g) = (h) and G = (3) = (h). The convention is that Greek letters
denote quantities of which knowledge is being proven, while all other values are known
to the verifier. We apply the Fiat-Shamir heuristic [17] to turn such proofs of knowledge
into signatures on some message m; denoted as, e.g., SPK{(«) : y = g®}(m). Given a
protocol in this notation, it is straightforward to derive an actual protocol implementing
the proof.

2.4 Camenisch-Lysyanskaya Signatures

Let us introduce Camenisch-Lysyanskaya (CL) signatures in a Strong RSA setting [10].
Let a4, Le, £n, £ and L be system parameters; £, is a security parameter, £ 4 the
message length, /. the length of the Strong RSA problem instance prime exponent, £
the size of the special RSA modulus. The scheme operates with a ¢-bit special RSA
modulus. Choose, uniformly at random, Ry, ..., Rr_1,S5,Z € QR . The public key
pk(l)is (N, Ro, ..., Rp—_1,S, Z), the private key sk(l) the factorization of the special
RSA modulus. The message space is the set {(mo, ...,mp_1) : m; € £{0,1}m}.

Signing hidden messages. On input mg, ..., mr_1 , choose a random prime number e
of length ¢, > ¢4 + 2, and a random number v of length ¢, = {x + { o + £,-. To sign
hidden messages, user U commits to values V' in an integer commitment C' and proves
knowledge of the representation of the commitment. The issuer | verifies the structure
of C and signs the commitment:

1/e
Z
A= — T R mod N.
CR™...R; 2" SV

The user completes the signature as follows: o = (e, 4,v) = (e, 4, (v + R)).

To verify that the tuple (e, A, v) is a signature on message (mo, . ..,mp_1), check
that the following statements hold: Z = A°Ry™...R;"*['SY (mod N), m; €
+{0,1}**, and 2% > e > 21 holds.

Theorem 1. [10] The signature scheme is secure against adaptive chosen message at-
tacks under the strong RSA assumption.

43 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Proving Knowledge of a Signature. The prover randomizes A: Given a signature
(A, e,v), the tuple (A’ := AS™" mod N,e,v' := v + er) is also a valid signature
as well. Now, provided that A € (S) and that r is chosen uniformly at random from
{0, 1}~ +*2 the value A’ is distributed statistically close to uniform over Z% . Thus,
the user could compute a fresh A’ each time, reveal it, and then run the protocol

PK{(Ev V/a/J'[)v s ,ML,l) :
Z=+RM...RYTTACSY (mod N) A
pi € £{0, 1} A e 2f71 £ 1,2% 1]}

2.5 Set Membership from CL-Signatures

Set membership proofs can be constructed from CL-Signatures following a method pro-
posed by Camenisch, Chaabouni and shelat [7]. For a set S = {mq,...,mi,...,m;},
the issuer signs all set members m; in CL-Signatures o; = (A, e,v) and publishes
the set of message-signature pairs {(m;, 0;)} with integrity. To prove set membership
of a value committed in C, the prover shows knowledge of the blinded signature o7
corresponding to the message m; and equality of exponents with C. We explain this
technique in detail in the extended version of this paper and denote a set membership
proof u[C] € S, which reads p encoded in commitment C' is member of set S.

2.6 Camenisch-Grof3 Encoding

The Camenisch-Grof3 (CG) Encoding [8] establishes structure on the CL message space
by encoding multiple binary and finite-set values into a single message, and we will use
a similar paradigm to encode graphs efficiently. We explain the key principles briefly
and give more details in the extended version of this paper.

The core principle of the CG-Encoding is to represent binary and finite-set attribute
values as prime numbers. It uses divisibility and coprimality to show whether an at-
tribute value is present in or absent from a credential. The attribute values certified in a
credential, say e;, e, and e;, are represented in a single message of the CL-Signature,
by signing the product of their prime representative £ = e;-¢;-¢; in an Integer attribute.
The association between the value and the prime number of the encoding is certified by
the credential issuer.

Divisibility/AND-Proof. To prove that a disclosed prime representative e; is present in
E, we prove that e; divides the committed product E, we show that we know a secret
1/ that completes the product:

PK{(i/,p): D==+(¢°)*n" (mod N)}.

Coprimality/NOT-Proof. We show that one or multiple prime representatives are not
present in a credential, we show coprimality. To prove that two values E and F' are
coprime, i.e., gcd(E, F)) = 1, we prove there exist integers a and b such that Bézout’s
Identity equals 1, where a and b for this equation do not exist, if gcd(F, F') > 1.

PK{(p,p,0,8,0') : D= +¢"h” (mod N) A g=+Dg")Ph’" (mod N)}.

44 of 84

\ Fl'{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

OR-Proof To show that a credential contains an attribute e that is contained in an OR-
list, we show there exists an integer a such that ae = Hf e;; if e is not in the list, then
there is no such integer a as e does not divide the product. We use the notation « C =
for an OR-proof that a contains one or more values of =.

3 Graph Encoding

We consider graphs over finite vertex sets, with undirected edges or directed arcs, and
finite sets of vertex and edge labels. Vertices and edges may be associated with multiple
labels. We leave the encoding of directed arcs to the extended version of this paper.

V Finite set of vertices

EC(VxV) Finite set of edges

G =(V,E&,ty,te) Graph

Ly, Le Finite sets of vertex and edge labels
fv :V = P(Ly) Labels of a given vertex

fe: & — P(Lg) Labels of a given edge

n = |V|, m = |€| Number of vertices and edges

For each vertex ¢ in)V, we introduce a vertex identifier, a prime e;, which represents
this vertex in credential and proofs. The symbol L, associated with identifier e repre-
sents that a vertex is not present. All vertex identifiers are pair-wise different. We call
the set of all vertex identifiers =y, their product yy = II=y,. For each label k in the
label sets £y, and in L¢, we introduce a prime representative e;. All label representa-
tives are pair-wise different. We call the set of all label representatives =, their product
xc = II =,. Vertex identifiers and label representatives are disjoint:

EyNEe = 0 < ng(XV7X£) =1.

Random Base Association We encode vertices and edges into the exponents of integer
commitments and CL-Signatures and make them therefore accessible to proofs of linear
equations over exponents. We randomize the base association to vertices and edges:
For a vertex index set V= 0,...,i,n-1 with vertex identifiers e;, we choose a uniformly
random permutation 7y of set V to determine the base R, ;) to encode vertex i. Edge
bases Ry (; ;) are chosen analogously with a random permutation re.

Encoding Vertices To encode a vertex and its associated labels into a graph commitment
or CL-Signature, we encode the product of the vertex identifier e; € =y and the prime
representatives e, € =, for k € fy,(i) of the labels into a single of the signature
message. The product of prime representatives is encoded as exponent of dedicated
vertex bases R € Gy.

Encoding Edges To get a compact encoding and efficient proofs thereon, the encoding
needs to maintain the graph structure and to allow us to access it to proof higher-level
properties, such as connectivity and isolation. The proposal we make in this paper after

45 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Table 1. Interface of the graph signature scheme.

Commit(G; R) A PPT algorithm computing an Integer commitment on a graph.
Keygen(1¢, params) A PPT algorithm computing the key setup.
HiddenSign(C, Vy, W, pk,) An interactive PPT algorithm signing a committed graph.

Private inputs: User U: Gy, commitment randomness R; Issuer I: G, sk.
Verify(pk,, C, R, o) A verification algorithm on graph commitment C' and signature o.

evaluating multiple approaches is to use divisibility and coprimality similar to the CG-
Encoding to afford us these efficient operations over the graph structure, while offering
a compact encoding of edges.

Recall that each vertex is certified with an vertex identifier from =y, e.g., e; or e;.
For each edge (i,7) € &, we include an edge attribute as exponent of a random edge
base R, (; ;) € Ge, containing the product of the vertex identifiers and the associated
label representatives e, € = for k € fe(i,j) of the edge:

E) = €i-ej - Hyege(ijyek-

Whereas we usually consider simple graphs, specialties such as multigraphs, loops (4,)
encoded as e? or half-edges encoded as (e;, e,) can be included.

Well-formed Graphs

Definition 1 (Well-formed graph). We call a graph encoding well-formed iff 1. the
encoding only contains prime representatives e € =y U = in the exponents of des-
ignated vertex and edge bases R € Gy U Gg, 2. each vertex base R € Gy contains
exactly one vertex identifier e; € =y, pair-wise different from other vertex identifiers
and zero or more label representatives ey, € =, and 3. each edge base R € G¢ con-
tains exactly two vertex identifiers e;,e; € =y and zero or more label representatives
er € =r.

Theorem 2 (Unambiguous encoding and decoding). A well-formed graph encoding
on the integers is unambiguous modulo the base association. [Proof A.1]

4 Signatures on Committed Graphs

CL-signatures are signatures on committed messages, where messages can be con-
tributed by issuer and user. This translates to a user committing to a hidden partial graph
Gu, which is then completed by the issuer G, as outline in the interface in Table 1. We
establish the setup for the construction first, explain the proof of representation second,
and the issuing third. We discuss notions of secrecy and imperfections of this construc-
tion in §4.1.

As a point of reference, we give the structure of the graph signatures first. We have
bases Rr(;y € Gy, which store attributes encoding vertices, and bases R, (; ;) € Ge,

46 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

which store attributes encoding edges. Observe that which base stores which vertex or
edge is randomized by permutations 7y and 7¢.

e; I, ek e;e; I} i,5)Ck
Z = ... RRENOT RISk [Ae QU 116d N
(i) m(i,5)

V vertices 4 V edges (4,7)

4.1 Secrecy Notion

In a known-graph proof, the structure of the graph G = (V, £) is an auxiliary input to
the verifier. Such a proof occurs if the prover needs to prove knowledge of a (NP-hard)
property of the entire graph, e.g., a proper coloring in graph 3-colorability (cf. §5.1).

A hidden-graph proof keeps the structure of the graph G = (V, £) secret. For in-
stance, there are graph proofs in which a local property is proven and the graph structure
itself kept secret, e.g., when proving that disclosed vertices of the graph are connected
by a hidden path.

The number of bases from Gy, and G¢ in a CL-Signature reveals an upper-bound on
the number of vertices n and edges m of the signed graph. A suitable padding can be
introduced by encoding nil-vertices e and nil-edges (e, e,).

Proving properties over multiple attributes reveals which bases were involved in
the proof. Characteristic patterns over said bases may interfere with the CL-Signature’s
multi-use unlinkability. For instance, if the prover shows that vertices ¢ and j are con-
nected by an edge (i, j) along with properties on the vertices themselves, the verifier
will learn that the bases for the vertex identifiers e; and e; are related to the base for
the encoding of edge (4,). To overcome this linking, the prover can obtain a collec-
tion of CL-Signatures on the same graph, each with a randomized association between
bases and vertices/edges, that is, using different random permutations 7y, and 7¢. When
proving a property over the graph the prover chooses a CL-Signature from the collection
uniformly at random and proves possession over that instance.

4.2 Proof of Representation

For a full proof of representation, we need to establish that the encoded graph in a graph
commitment or CL-Signature is indeed well-formed (Def. 1). Given a graph commit-
ment C' the prover and verifier engage in the following proof of representation (the
proof for a CL credential work analogously). We show that vertex bases contain a bi-
partition of one and only one vertex identifier e; € =y and a set of labels ¢; € =.
Edge bases contain a bi-partition of a product of exactly two vertex identifiers (e; - €;)
and a set of labels e; € Z. To prove that the representation contains exactly one vertex
identifier for a vertex base and two vertex identifiers for an edge base, we establish a set
membership proof.

1. Commitments The prover computes Integer commitments on the exponents of all
vertex and edge bases. For each vertex ¢ and for each edge (4, j), the prover computes
commitments on vertex attribute and identifier (all mod NV)::

C; = RéMreryer 8™ and C; = R S™;

47 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

C(z’]) — Reiejﬂkefg(iyj)ek ‘SV’I“7 Cvf(l,]) — Reiej S% and Cz — ReiS’f‘.

2. Proof of knowledge. We build up the proof of possession and well-formedness
step by step, where it is understood the proofs will be done in one compound proof
of knowledge with referential integrity between the secret exponents. Let us consider a
proof fragment for vertices 4, j and an edge (4, j) committed in a graph commitment C'
(the same proof structure is used for CL-Signatures).

2.1 Proof of representation. We prove that commitment C' can be decomposed into
commitments C, C;, one for each vertex 7, j and one commitment C'; ;) for each edge

(i,5):
PK{(MH Hi, M(’L,])7 Ps Pis Pjs p(z,])) :
— i i H(i,g)
C=tRY, R - RSP (mod N) A 0
Ci=+RMSP (mod N) A C;=+R%SP (mod N) A (2)
C(’L,j) = :l:Rﬂ“"j)Sp(i’j) (mOd N)} (3)

2.2 Vertex composition. Second, we need to show properties of the vertex composition,
that the encoding for each vertex ¢ contains exactly one vertex identifier e; € =5 and
zero or multiple label representatives e, € =,. We show this structure with help of
the commitments C;; and set membership and prime-encoding OR proofs. This proof is
executed for all vertices.

PK{(El7ﬁ27715p;) :
C; = RSP (mod N) A C; = +Ci §Ph (mod N) A 4)

v

vlCil CEr N &]Ch) € Ev}.)]

2.3 Edge composition. Third, we prove the structure of each edge (i, j) over the
commitments C(; ;y, showing that each commitment contains exactly two vertex iden-
tifiers e;, e; € =) as well as zero or more label representative e, € Z:

PE{(5, i3y Vig)s Plig))

Clig) = £C(i5) 8769 (mod N) A)
vi; € =} ®)

2.4 Pair-wise difference. Finally, we prove pair-wise difference of vertices by show-
ing that the vertex representatives are pair-wise co-prime over the commitments C; and
Cj.

J

PK{(Vi,j : 55, Bi,pij) R= :tcv’?l'jéfi’jSp’“j (mod N)}. 9)

Theorem 3 (Proof of Well-formedness). The compound proof of knowledge estab-
lishes the well-formedness of an encoded graph according to Def. 1. [Proof B]

48 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

4.3 Joint Graph Issuing

To jointly issue a graph CL-signature, a user commits to a hidden partial graph and the
issuer adds further elements to the graph (cf. §2.4)

In the setup, the issuer establishes a user vertex space and issuer vertex space, i.e.,
a bi-partition on vertex and edge bases, Gy and G¢ and on vertex identifiers =y,. Thus,
user and issuer can encode partial graphs without interfering with each other.

In the joint graph issuing, user and issuer designate and disclose connection points
(vertex identifiers) that allow the user and the issuer to connect their sub-graphs delib-
erately. The user constructs a graph representation by choosing two uniformly random
permutation 7y, and 7¢ for the base association on the user bases and commits to his
sub-graph in a graph commitment. The user interacts with the issuer in a proof of repre-
sentation of his committed sub-graph. The issuer verifies this proof, chooses uniformly
random permutations for his graph elements and encodes them into his base range. The
issuer creates the pre-signature of the CL-Signature scheme on the entire graph, proving
that the added sub-graph is well-formed. The user completes the CL-Signature with his
own randomness.

Theorem 4 (Security of graph signatures). The graph signature scheme maintains
confidentiality and integrity of the encoded graphs and offers existential unforgeability
against adaptive chosen message attacks under the strong RSA assumption.[Proof A.1]

5 Graph 3-Colorability and NP Statements

5.1 Graph 3-Colorability
We adapt the following definition from Goldreich, Micali and Wigderson [21].

Definition 2 (Graph 3-Colorability). A graph G = (V, E) is said to be 3-colorable if
there exists a vertex label mapping fy : V — {R, G, B} called proper coloring such
that every two adjacent vertices are assigned different color labels. This means that for
each edge (i,7) € € fy(i) # fv(j). The language graph 3-colorability, denoted G3C,
consists of the set of undirected graphs that are 3-colorable. Graph 3-Colorability is
known to be NP-complete. [19]

We adapt the graph 3-colorability problem to show in honest-verifier zero-knowledge
that the prover knows an CL signature on an instance of a proper coloring of a given
graph G.

Without loss of generality, we assume that graph G is simple and connected. The
three color labels £ = {R, G, B} are encoded with three primes =, = {eg, ec, eg }. The
graph is encoded with vertex identifiers =y, and these vertex labels. In addition to the
conditions for a well-formed graph (Def. 1), we require that each vertex base contains
exactly one label representative from =z, which we show with a set membership proof
on the secret vertex label.

The prover shows knowledge of a proper graph coloring by showing that the product
of vertex identifiers and label representatives for each pair of adjacent vertices (i, j) are
coprime.

49 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

Fig. 1. Example of a 3-colored graph, where the vertex identifiers are prime numbers, and the
labels R,G, and B are represented as colors.

Common inputs: Graph G, public-key of the CL-issuer.
Prover input: CL-Signature on proper coloring for G3C.

1. Credential randomization and commitments. The prover computes randomiza-
tions for the graph signature as well as for all occurrences of set membership proofs.
The prover computes Integer commitments on the exponents of all vertex and edge
bases. For each vertex ¢, the prover computes two commitments on the vertex attribute
and the vertex identifier:

C; = R%v@® 8" mod N and C; = R%S” mod N.

For each edge (i, 7), the prover computes the commitment:

v

Ciﬁj = R%% S" mod N.

2. Proof of knowledge. The prover sends the commitments to the verifier. Then,
prover and verifier engage in the following proof of possession over the graph signature
and vertices 7 and j and all edges (4, 7). We build upon the proof of representation and
well-formedness presented in §4.2 with the following differences: Instead of proving
that a vertex contains zero or multiple labels, we prove that the vertex contains ex-
actly one label. Further, the proof is simplified because the edges do not contain labels.
Again, we explain the proofs step by step, while it is understood that the proofs are
executed as compound proof of knowledge with referential integrity between the secret
exponents.

2.1 Possession of CL-Signature. First, we prove of possession of the graph signature
and representation of the commitments. Clause 1 proves possession of the CL-Signature
on the graph. The clauses 2 and 3 prove the representation on the integer commitments
on signed attributes for vertices j, j and edges (4,), and, thereby, make the attributes
accessible for the analysis of the exponents.

PEA{(is 155 13,3y €55 Pis g (i g)
Z=h- R REL - REGD L (AD)FSY (mod N) A (1)
C; = £RMSP" (mod N) A C; =+£R*SP (mod N) A 2
Ci,j) = £RFENSPED (mod N) A 3)
Ky s ((i,5)) € £10, 1M A ee 2t 41,20 — 1]}
2.2 Well-formedness. Second, we establish that thevvertex attributes are well-
formed: Clause 4 establishes the relation between C; and C; and, thereby, shows that a

50 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

vertex attribute is bi-partitioned onto a vertex identifier and a label representative part.
Clause 5 establishes that they contain exactly one vertex identifier and label represen-
tative of the certified sets =y, and = .

PK{(EZ7p27’Yz:ﬁl) :
C; = +R%S” (mod N) A C;=+C"5% (mod N) A 4)

9]

vilCil € Er N &]Ci] € By})

Clause 5 is different from a proof of well-formedness as introduced in §4.2, as it en-
forces that that vertex ¢ contains exactly one label.

2.3 Proper coloring. Third, clauses 6 and 7 complete the statement by establishing
that there is a proper coloring for the adjacent vertices ¢ and j: Clause 6 shows that
commitment C(; ;) is on an edge (3, j). Finally, Clause 7 establishes that the attributes
for vertex ¢ and j are coprime, by proving that Bézout’s Identity equals 1. It follows that
the labels of both vertices must be different.

PE{(ei, p() i.)s Biagy» Py -

Cligy = £C518%w0 (mod N) A (6)
R=£C{ 008705 (mod N)}. 7

3. Verification. The verifier outputs accept if the proof of knowledge checks out;
reject otherwise.

Lemma 1 (Knowledge of a CL-Signature of G3C). The prover convinces the verifier

in zero-knowledge that the prover knows a proper graph 3-coloring for known graph G.
[Proof B.1]

Lemma 2. The proof has an asymptotic computation complexity of O(n+m) exponen-
tiations and a communication complexity of O(n + m) group elements and is thereby
a polynomial time proof. [Proof B.1]

5.2 Proofs Systems for Languages in NP

Having established a proof for certified graph 3-colorability, we can use the fact that
G3C is NP-complete to establish that such Camenisch-Lysyanskaya proof systems exist
for statements from other NP languages.

Definition 3. We call a Camenisch-Lysyanskaya proof system a set of PPT machines
Prover P, Verifier V and Issuer | that engage in the following protocols:

Proof of representation P — | : Proof of representation on committed values V.
Issuing | — P : Issuing of CL-Signature o on hidden committed values V.
Proof of possession P — V : Proof of possession of CL-Signature o.

The issuer | can act in the role of the verifier V and thereby allow the bootstrapping of
further CL-Signatures from the hidden v alues of existing CL-Signatures.

51 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Compared to a zero-knowledge proof system for an NP language, this construction
offers a level of indirection: The issuer acts as auditor with authority to decide whether
the statement of an NP language is fulfilled in a certain environment, and its signature
binds this statement to that environment. The instance of the NP language can either be
provided by the issuer or provided by the prover and verified by the issuer.

The proof follows the same strategy as one of the initial results that all languages
in NP have zero-knowledge proof systems, by Goldreich, Micali and Widgerson [21]:
Given a CL proof system for G3C, we use the existing poly-time NP reductions to
transform any NP language statement into an instance of G3C. This instance is then en-
coded as a graph in a CL-Signature and knowledge of the signature proven to a verifier.
Lemma 1 shows that this is a zero-knowledge proof of knowledge of a proper coloring.

Theorem 5. Statements of languages in NP can efficiently be proven in a Camenisch-
Lysyanskaya proof system based in honest-verifier zero-knowledge. [Proof B.2]

6 Efficiency Analysis

We display the efficiency analysis for the proof predicates in Table 2, where vertex
and edge composition proofs show the overhead over the basic proof of possession
(cf. topology proofs [2]). We measure computational complexity in multi-base expo-
nentiations. The communication complexity is dominated by the transmitted group el-
ements from Z3;, which is equal to the number of multi-base exponentiations (one for
each Integer and Schnorr proof commitment). The most expensive proof is the com-
plete graph representation established in the issuing, where the set membership proofs
(4 MExps) and the OR-based subset proofs (6 MExps) constitute significant overhead.
The square-complexity is introduced by the final disjointness proof to establish that the
graph is indeed well-formed. In the down-stream proofs, the verifier trusts the issuer
to only certify well-formed graphs, which allows us to reduce complexity by only the
computing the proof of possession and the statement proven.

The modular exponentiations for message bases R; are with small exponents of
size of /5 < £y, where the parameter ¢, can be chosen similarly small as in Direct
Anonymous Attestation (DAA) [6].

In addition, the X'-proofs employed in this work benefit from batch-proof tech-
niques, such as [25]. The graph proofs are likely to be transformed to signature proofs
of knowledge with the Fiat-Shamir heuristic [17] and can thereby be computed offline.

We have evaluated the system experimentally in [2], in computations using compo-
nents of the Identity Mixer Library [22] with modulus length ¢,, = 2048 bits and default
system parameters (£,, etc.). The performance analysis is executed on 64-bit Java JDK
1.7.13 on a Windows 7 SP 1 Thinkpad X220 Tablet, on Intel CPU i5-2520 with 2.5 GHz,
8 GB RAM, where all computations are performed on a single processor core only, a
very conservative setup. Figure 2 contains the results of a prototypical implementation
of computations of the graph signature scheme, on representative computations of com-
mitments and a proof of knowledge thereof. Based on uniform random bit-strings of the
prescribed length and number (as in the actual Schnorr proof witnesses), we compute:
C:=R{j°---R;"“S”" mod N,

52 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Table 2. Efficiency of proofs of predicates in multi-base exponentiations (MultiExps) dependent
on the number of vertices n and of edges m. For a simple graph holds m < %

Predicate Basis Commitments MultiExps
@]
Possession n+m 2n+2m+1 O(n+m)
Vertex Composition ~ Possession n 3n O(n)
Edge Composition Possession 2m 4m O(m)
Total Well-formed Graph 2n4+3m n*+8n+8m+1 O(n?)
Graph-3 Colorability (§5) n+m 6n+4m+1 O(n+m)

The simulation uses random graphs with specified number of vertices n and a de-
rived number of edges m := 2n as major independent variable (on the x-axis), the
dependent variable is computation time in milliseconds (in log-scale on the y-axis).

7 Related Work

Establishing zero-knowledge proofs on graphs and their properties is a classic area of
research. Such proofs were instrumental in showing that there exist zero-knowledge
proof systems for all NP languages. We discuss their graph modeling: Goldreich, Mi-
cali and Wigderson [21] offered such a construction with O(m?) rounds and O(n)
messages each. Based on the existence of a non-uniformly secure encryption function,
they explored graph isomorphism and non-isomorphism as well as graph 3-colorability
(G3C). Blum’s proof [3] shows directed Hamiltonian cycles (DHC) in graphs. Both
proofs use a metaphor of locked boxes to formulate the proof. Goldreich et al.’s G3C
proof encodes the colors of adjacent vertices in boxes. Blum’s proof of Hamiltonian
cycles encodes the graph’s adjacency matrix randomly in n + (Z) such boxes, giving
the verifier the choice to either verify the correct graph representation or the knowledge
of the Hamiltonian cycle. Blum offers an alternative construction for G3C with a sim-
ilar methodology, encoding the graph representation and the coloring of each vertex in
separate yet related boxes and operating on an adjacency matrix lifted to the labeling.
Goldreich and Kahan [20] offered a constant-round construction based on the existence
of collections of claw-free functions, also using G3C as NP-problem. We observe that
these constructions are specific to the statement to be proven and do not cater for a level
of indirection through a signature scheme.

A related notion to full graph signatures is transitive signature schemes, e.g., as
proposed by Micali and Rivest [23]. They are concerned with the transitive closure of
signatures on graph elements, where vertices and edges are signed individually; how-
ever, they do not offer zero-knowledge proofs of knowledge on graph properties.

53 of 84

\ !![{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

Full Decomposition: 3 hours
1.00E+07

Representation: 5 minutes

1.00E+06

1.00E+05

4 Decomposition
1.00€+04

—#—Vertex Composition
- Edge Composition

Representation
Issuing: 1 second
1.00€+03 —>=Signature Generation

100E402 N/x//_/’_-

1.00€+01

Time in milliseconds (log-scale)

1.00€400 \
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Vertices n (# Edges m=2n)

Fig. 2. Experimental performance analysis with a secure modulus length of 2048 bits, in the worst
case of a non-parallelized computation on a single processor core (adapted from [2]). z-axis con-
tains the number of vertices n and the y-axis a log-scale of computation time in milliseconds.
Blue colors denote provider computations to prove properties of a committed graph, where the
green line shows a proof of representation of a graph signature. Red colors denote auditing sys-
tem/issuer computations to sign the graph.

8 Conclusion

We have introduced a practical construction of signatures on committed graphs and
zero-knowledge proofs over their structure. The scheme is special in that it enables
proofs over the entire graph structure, including statements such as isolation (two ver-
tices are not connected by any sequence of edges). The construction derives its secu-
rity from the properties of the Camenisch-Lysyanskaya (CL) signature scheme under
the Strong RSA assumption. The interactive proofs are honest-verifier zero-knowledge
if executed with multiple rounds with small challenges. While we have established a
framework for graph topology proofs separately [2], this work focuses on the founda-
tions of graph encoding in CL-signatures itself. We show its theoretical expressiveness
by proving that the scheme is capable of signing committed NP statements and prov-
ing properties thereof, via reduction to graph 3-colorability. The presented scheme is
efficient and practical because once the issuer has established graph well-formedness
in O(n?), the prover can resort to proofs over the graph structure in linear time. The
used X-proofs can be handled efficiently with batch processing techniques [25]. As fu-
ture work, we aim at establishing a differential graph signature scheme, which can be
employed for large-scale graph topologies as found in virtualized infrastructures.

54 of 84

\ Fl'{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud
References

1. ABE, M., FUCHSBAUER, G., GROTH, J., HARALAMBIEV, K., AND OHKUBO, M.
Structure-preserving signatures and commitments to group elements. In Advances in
Cryptology—CRYPTO 2010. Springer, 2010, pp. 209-236.

2. ANONYMIZED FOR REVIEW. Anonymized for review. In conference proceedings to appear
(Nov. 2014).

3. BLUuM, M. How to prove a theorem so no one else can claim it. In Proceedings of the
International Congress of Mathematicians (1986), vol. 1, p. 2.

4. BouDpoT, F. Efficient proofs that a committed number lies in an interval. In Advances in
Cryptology — EUROCRYPT 2000 (2000), B. Preneel, Ed., vol. 1807 of Lecture Notes in
Computer Science, Springer Verlag, pp. 431-444.

5. BRANDS, S. Rapid demonstration of linear relations connected by boolean operators. In
Advances in Cryptology — EUROCRYPT ’97 (1997), W. Fumy, Ed., vol. 1233 of Lecture
Notes in Computer Science, Springer Verlag, pp. 318-333.

6. BRICKELL, E., CAMENISCH, J., AND CHEN, L. Direct anonymous attestation. In Proc.
11th ACM Conference on Computer and Communications Security (2004), acm press,
pp- 225-234.

7. CAMENISCH, J., CHAABOUNI, R., AND SHELAT, A. Efficient protocols for set membership
and range proofs. In Advances in Cryptology-ASIACRYPT 2008 (2008), Springer, pp. 234—
252.

8. CAMENISCH, J., AND GRoss, T. Efficient attributes for anonymous credentials. ACM
Transactions on Information and System Security (TISSEC) 15,1 (2012), 4.

9. CAMENISCH, J., AND LYSYANSKAYA, A. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Advances in Cryptology —
EUROCRYPT 2001 (2001), B. Pfitzmann, Ed., vol. 2045 of LNCS, Springer Verlag, pp. 93—
118.

10. CAMENISCH, J., AND LYSYANSKAYA, A. A signature scheme with efficient protocols. In
Security in Communication Networks SCN 2002 (2003), vol. 2576 of LNCS, Springer Verlag,
pp- 268-289.

11. CAMENISCH, J., AND MICHELS, M. Proving in zero-knowledge that a number n is the
product of two safe primes. In Advances in Cryptology — EUROCRYPT ’99 (1999), J. Stern,
Ed., vol. 1592 of Lecture Notes in Computer Science, Springer Verlag, pp. 107-122.

12. CAMENISCH, J., AND STADLER, M. Efficient group signature schemes for large groups. In
Advances in Cryptology — CRYPTO ’97 (1997), B. Kaliski, Ed., vol. 1296 of Lecture Notes
in Computer Science, Springer Verlag, pp. 410-424.

13. CHAN, A., FRANKEL, Y., AND TSIOUNIS, Y. Easy come — easy go divisible cash. In
Advances in Cryptology — EUROCRYPT 98 (1998), K. Nyberg, Ed., vol. 1403 of Lecture
Notes in Computer Science, Springer Verlag, pp. 561-575.

14. COOK, S. A. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing (1971), ACM, pp. 151-158.

15. CRAMER, R., DAMGARD, I., AND SCHOENMAKERS, B. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Advances in Cryptology — CRYPTO 94
(1994), Y. G. Desmedt, Ed., vol. 839 of LNCS, Springer Verlag, pp. 174-187.

16. DAMGARD, 1., AND FUJISAKI, E. An integer commitment scheme based on groups with
hidden order. http://eprint.iacr.org/2001, 2001.

17. FIAT, A., AND SHAMIR, A. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology — CRYPTO 86 (1987), A. M. Odlyzko, Ed.,
vol. 263 of Lecture Notes in Computer Science, Springer Verlag, pp. 186—-194.

55 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

18. FUIJISAKI, E., AND OKAMOTO, T. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology — CRYPTO 97 (1997), B. Kaliski, Ed.,
vol. 1294 of Lecture Notes in Computer Science, Springer Verlag, pp. 16-30.

19. GAREY, M. R., JOHNSON, D. S., AND STOCKMEYER, L. Some simplified np-complete
problems. In Proceedings of the sixth annual ACM symposium on Theory of computing
(1974), ACM, pp. 47-63.

20. GOLDREICH, O., AND KAHAN, A. How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology 9, 3 (1996), 167-190.

21. GOLDREICH, O., MICALI, S., AND WIGDERSON, A. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. Journal of the ACM
(JACM) 38, 3 (1991), 690-728.

22. IBM. Specification of the Identity Mixer cryptographic library, v. 2.3.40. Specification, IBM
Research, Jan. 2013. http://prime.inf.tu-dresden.de/idemix/.

23. MICALI, S., AND RIVEST, R. L. Transitive signature schemes. In Topics in Cryptology-
CT-RSA 2002. Springer, 2002, pp. 236-243.

24. PEDERSEN, T. P. Non-interactive and information-theoretic secure verifiable secret sharing.
In Advances in Cryptology — CRYPTO 91 (1992), J. Feigenbaum, Ed., vol. 576 of Lecture
Notes in Computer Science, Springer Verlag, pp. 129-140.

25. PENG, K., BoYD, C., AND DAWSON, E. Batch zero-knowledge proof and verification and
its applications. ACM Transactions on Information and System Security (TISSEC) 10, 2
(2007), 6.

26. RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 2 (Feb. 1978), 120-126.

27. SCHNORR, C. P. Efficient signature generation for smart cards. Journal of Cryptology 4, 3
(1991), 239-252.

A Proofs

A.1 Well-formed Encoding and Security

Proof (Unambiguous encoding and decoding: Theorem 2). We show that there is a bijection
between encoding and graph.

Graph — encoding: For each graph there exits a unique encoding modulo base association. For
all vertices ¢ € V choose the vertex identifier e; € =y, for the labels k& € fy (i) choose the prime
representative e, € =, and compute their product. As said factors are prime, it follows from
the fundamental theorem of arithmetic that the e; ITj.¢ s, ;) ex represents a unique integer. Given
that the user is not privy to the discrete logarithm between one base and another (guaranteed by
the CL-Signature setup), the bases unambiguously separate the exponents. Thus, apart from the
random permutation of the base association, the encoding is unambiguous.

Encoding — graph: With knowledge of the elements of =) and =, an encoded product can
be decoded efficiently and unambiguously into the elements of the graph. That the parties are not
privy to the discrete logarithm between base and another guarantees attribute separation. The base
designates unambiguously whether a vertex or an edge is encoded. Given that all representatives
of the encoding are prime, the product can be decomposed into a unique factorization by the
fundamental theorem of arithmetic. Each representative unambiguously represents either a vertex
identifier in =y or a label in =, as both sets are disjoint. O

Proof (Security of graph signatures: Theorem 4). The security of the scheme is directly derived
from the unambiguous embedding into Integer commitments and Camenisch-Lysyanskaya sig-
natures and their security properties. Theorem 2 establishes that the graph encoding encodes

56 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

graphs unambiguously into the CL-message space. The graph structure is encoded in the expo-
nents of the Integer commitment and CL-signature schemes. Confidentiality is derived from the
information-theoretical hiding property of the Integer commitment scheme and the hiding proper-
ties of CL-signatures on committed messages. Under the condition that the adversary is not privy
to the group-order of the commitment and the CL signature scheme, we obtain that integrity for
both schemes holds over the integers and thereby the graph encoding (cf. [16]). We obtain exis-
tential unforgeability against chosen message attacks directly from the CL-signature scheme in
Theorem 1 [10].

B Well-formedness Proof

The following proof is representative for the argument structure of the proofs for different predi-
cates; others use the same tools.

Proof (Wellformedness proofs, Theorem 3).

The Schnorr proofs used in the construction are honest-verifier zero-knowledge if executed re-
peatedly with small challenges, otherwise witness-indistinguishable. It is standard to extract from
a successful prover knowledge on the secrets ranging over Vi, j:

Wiy (i) Ps Pis P(isg) s Eis Bis Yis Pis Eis V(i,3)s Plisg)s Qingis Bigis Pisg

such that all equations of the CS-notation hold for some ¢, where ¢t must be 1 as modulus NV is

a product of two safe primes [16]. As CL-signatures are existentially unforgeable [10], we obtain
that the messages p; and fu(; ;) are indeed signed, and that the membership proofs for ¢; establish
thate; € =y, i.e., are certified vertex identifiers (the CL multi-show unlinkability ensures that the
verifier learns no other information about €;). The CG-OR proofs [8] yield that -y; and (; ;) must
encode valid vertex label identifiers (but yield no further information on the labels). Therefore,
we have fixes the roots p;, 1(; ;) and the leaves €;, i, (;,;) of the proof tree in the CL-notation.
It remains to show what can be derived from the equations that connect the roots to the leaves

in the vertex and edge composition statements and from the pairwise difference. The technique
used is a standard decomposition of certified messages in Integer commitments to make their
components accessible to discrete-logarithm based proofs of knowledge; if the same secret is
referenced we have an equality proof, if not there is no further information learned about the re-
lation of the secrets. For the vertices, the equation C; = :I:Cu’] iSP i (4) establishes that 11; = €;s,
given that the prover does not know a multiple of the group order, C; separates out £; connected

to the membership proof. For edges, the equation C; ;) = ié:i(;l’;) S? (i) (7) establishes that

HGig) = M(i j)V(ij)» Where Cv'(w-) is shown to contain a product £;€; in equation (3), which are
in turn shown to be valid vertex identifiers (8). By that all variables are bound and the connection
between the roots and the leaves established.

Finally, we claim pair-wise difference on vertices from the equation

R=+CCligres (9).

Unless the prover knows a multiple of the group order or the discrete logarithm log S, the
following equation must hold over the integers:

L= eicij +€ifi;

It is well-known that cv; ; and (; ; only exist if ; and €, are coprime, which gives us the pair-wise
difference claimed.

57 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

B.1 Graph 3-Colorability (G3C)

Proof (Graph 3-Colorability: Lemma 1). 1. Proof of Knowledge. It is standard to show that there
exists a knowledge extractor for all exponents of the proof such that the equality of exponents
equations are fulfilled.

We obtain from Clause 1 that the prover knows the representation of a CL-Signature of the
given structure. From the existential unforgeability of CL-Signatures, we see that the issuer must
have signed the secret attributes p1;, p1; and g5, ;). Proving equality of exponents with correspond-
ing integer commitments is standard, by which the arguments over the commitments, such as C},
C; and C's,5) transfer to the structure of the signed messages.

The Clause 4 shows that a message p; consists of two factors known to the prover: p; = €;7;.
The following Clause 5 employs a set membership proof to show thate; € =y and thaty; € =Z¢.
‘We use that the set membership from §2.5 guarantees that €; and y; are exactly one member of the
set to conclude that a message j; contains exactly one vertex identifier and one label identifier.
Thus, p; is well-formed. Similarly, Clause 6 establishes the structure i(; ;) = €;¢ for the edge
(4, 7), showing it to be well-formed. Because the prover is not privy to the group order, these
statements hold over the integers, by the results of Damgard and Fujisaki [16]. Therefore, with
the proof of representation including pair-wise difference, we conclude that the signed graph is
well-formed.

Clause 7 shows that the labeling fy of the signed graph is a proper coloring. Again, we
employ Damgard and Fujisaki’s [16] result that equations hold over the integers. We have that for
each edge (i, 7), the corresponding signed messages have the following structure:

i =¢eye and py = g57;.

We show that the secret labels v; and «y; are different by showing that y; and p; are coprime,
where we use Bézout’s Identity:

ged(pispg) =1 & 1= aq pi + Bugky-

The equality of exponent proof of Clause 7 achieves this as follows

R=+C])C)0) 5769 (mod N)
R' = £(RI'SP)* 69 (RESPI)PG0) §PG9) (mod N)
R' = £R¥Gi#Hi §26.9)Pi RPG.IMI §P.5)PI §PG.) (mod N)
RY = + ROG.HHitBG) ki §OG,5)PitB(i,5)PiTPG,5) (mod N)

From this equation we can conclude that gcd(u;, ;) = 1 and that, therefore, v; # ~;, which
implies that fy (i) # fv(j) and that the CL signature indeed contains a proper coloring. d

2. Zero-Knowledge. We claim that proof does not disclose anything else than the statement
made that the prover knows a CL-Signature of a proper coloring on known graph G.

The X '-proofs here are zero-knowledge in an honest verifier setting if performed with multiple
rounds and small challenges. It is standard to construct a simulator for all X-proofs of representa-
tion for the CL-Signature and the commitments as well as for their conjunction [12,15], showing
that the verifier does not learn anything else than the relations on exponents shown.

It remains to be shown what the relations disclose. We will argue on the statements made on
the secret messages i, which contain the color. Clause 4 establishes that y; is part of commitment
('}, but does not disclose further information than the equality of exponents.

Clause 5 proves that ; is a member of the set =z = {eR7 €G, eB}. This statement itself is part
of the known problem definition of G3C. The set membership proof is a proof of representation

58 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

for an anonymized CL-Signature and a standard proof of equality of exponents, and thereby, does
not disclose further information.

Finally, Clause 7 references p; = €;y; to prove that ; and v, of an adjacent edge are
coprime. As the vertex identifiers are pair-wise different by definition and as all representatives
are primes, this only establishes that ; # -y, as required by the G3C problem, but nothing else.
d

Proof (Polynomial Proof of G3C: Lemma 2). Precomputation: The prover computes 2n + 1
signature randomizations with one exponentiation each and 2n + m integer commitments with 2
exponentiations each. The pre-computation phase uses 6n 4 2m + 1 exponentiations, transmits
4n + m + 1 group elements, and thereby has a computation complexity of O(n + m) and a
communication complexity of O(n + m).

Proof of Knowledge: The Schnorr proofs in the proof of knowledge are zero-knowledge if
executed with small challenges over multiple rounds and can be connected with techniques from
Cramer et al. [15]. The round complexity of the overall protocol is dependent on the proof mode
(cf. Brands [5]).

Clause 1 is executed once yielding a Schnorr proof with n + m + 2 exponentiations for the
prover.

The clauses 2 are executed once for each vertex, such as ¢ and j, Therefore we have n Schnorr
proofs with 2 exponentiations each for the prover.

The clauses 3 are executed once for each edge (3, j), making m Schnorr proofs with 2 expo-
nentiations each for the prover.

The clauses 4 are executed once for each vertex, such as ¢ or j. We have 2n Schnorr proofs
with 2 exponentiations each for the prover.

The set membership proofs of Clauses 5 are executed once for each vertex and its label. Each
set membership proof is a proof of representation of a designated CL-Signature for the set mem-
ber, amounting to 3 exponentiations for the prover. In total, we have 2n such proofs of posses-
sions, all done with a single Schnorr proof proving equality of exponents with the corresponding
commitment.

Clause 6 proves the edge structure and is executed once per edge, yielding m Schnorr proofs
with 2 exponentiations each for the prover. Finally, the proper graph coloring in Clause 7 is shows
once for each edge (7,) amounting to m Schnorr proofs with 3 exponentiations for the prover.

The proof of knowledge of graph coloring thereby requires 5n + 3m + 1 = O(n + m)
Schnorr proofs with a computational complexity for the prover of 13n +8m + 2 = O(n + m)
exponentiations.

The total computational complexity is therefore O(n + m), the communication complexity
is O(n + m) group elements. The G3C proof is done in polynomial time. The round complexity
depends on the proof mode, where variants with multiple rounds (number of rounds depending
on the error probability), with four rounds and initial commitments of the verifier on challenges,
and three rounds in a X-proof (not zero-knowledge) are possible. g

B.2 CL Proof Systems for NP-Statements

Proof (Sketch NP-Statements: Theorem 5). Let a NP language £ be given. Let 7 be a polynomial-
time computable and invertible reduction from £ to Graph 3-Colorability (G3C): 7 can be con-
structed by composing a polynomial-time reduction of £ to 3SAT by Cook’s proof [14] and a
polynomial-time reduction from 3SAT to G3C. We have that z € £ iff 7(x) is 3-colorable.

On common input z, both prover and verifier compute graph G < 7(z). In Goldreich, Micali
and Widgerson’s work, the proof proceeds to use any interactive zero-knowledge proof system to

59 of 84

N

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

prove that GG is 3-colorable and thereby show that x € £. Our proof continues from this point to
show that there exists a Camenisch-Lysyanskaya proof system.

On obtaining G = 7(z), the prover constructs a graph commitment C' on G as defined in §3,
including a labeling fy of a proper coloring of G. The known-graph proof transmits G itself, yet
keeps the proper coloring confidential as default.

Proof of representation P — | : The prover interacts with an CL-Signature issuer, proving
representation and well-formedness of the commitment C' in a known-graph proof, disclosing
information to satisfy the verification requirements of the issuer. As 7(z) is invertible, this proof
of representation of G and the proper coloring serves as proof of representation for x and = € £.

Issuing | — P : Upon acceptance of the proof, the issuer signs the committed graph G in
a CL-Signature o. Given the invertibility of 7, this signature holds for x as well. sigma is a
CL-Signature on 7 () and the proper coloring of 7(z) iff z € £.

Proof of possession P — V : The prover interacts with the verifier to proof knowledge of the
CL-Signature o on a proper coloring on G and thereby shows graph 3-colorability of 7(x), which
holds iff z € £. Thereby, the proof of possession of ¢ translates to a proof of possession of the
statement € £. The proof is zero-knowledge if executed with small challenges over multiple
rounds. O

60 of 84

Final Report on

(TOPOCERT)

Privacy

and Anonymization

\ !![{((
Techniques W
prisma cloud

Efficient Certification and Zero-Knowledge Proofs of
Knowledge on Infrastructure Topology Graphs

Thomas Grof3
School of Computing Science, Newcastle University, UK

thomas.gross@newcastle.ac.uk

ABSTRACT

Digital signature schemes are a foundational cryptographic build-
ing block in certification and the projection of trust. Based on a
signature scheme on committed graphs, we propose a framework
of certification and proof methods to sign topology graphs and
to prove properties of their certificates in zero-knowledge. This
framework allows an issuer, such as an auditing system, to sign the
topology representation of an infrastructure. The prover, such as
an infrastructure provider, can then convince a verifier of topology
properties including connectivity and isolation without disclosing
the blueprint of the topology itself. By that, we can certify the
structure of critical systems while still maintaining confidentiality.
We offer zero-knowledge proofs of knowledge for a general spec-
ification language of security goals for virtualized infrastructures
such that high-level security goals can be proven over topology cer-
tificates. We offer an efficient and practical construction, built upon
the Camenisch-Lysyanskaya signature scheme [11], honest-verifier
proofs and the strong RSA assumption.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption—Public key cryptosystems

General Terms
Algorithms, Design, Security

Keywords

Cloud; topology; digital signatures; graph signature scheme

INTRODUCTION

Digital signature schemes are foundational cryptographic prim-
itives, in particular to ensure the primary security property of in-
tegrity. From their conception [33], digital signature schemes have
been employed to sign messages or committed messages [11].
Nowadays, they establish the integrity of systems and their compo-
nents via certification of software or attestation of software stacks.
Their use in attestation of a system, as pursued with Direct Anony-
mous Attestation (DAA) [8], is particularly relevant when a tenant

1.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author.

CCSW’14, November 7, 2014, Scottsdale, Arizona, USA.

ACM 978-1-4503-3239-2/14/11.

http://dx.doi.org/10.1145/2664168.2664175

69

delegates computation, networking or storage to a provider, such as
in outsourcing or cloud computing. In this work, we focus on the
question how digital signatures can ensure structural integrity of an
infrastructure while maintaining its confidentiality.

The tenants will question the integrity of the systems in which
their resources are hosted, in particular, as misconfigurations and
insider attackers are considered by ENISA [19] and CSA [17] as
high risks exposing the tenants to, e.g., isolation failure. Con-
sequently, cloud security assurance sought to establish structural
properties of virtual infrastructures for isolation and deployment
patterns [4, 3] as well as for hidden dependency graphs [38, 37].
Our own work with an infrastructure cloud and auditing system
provider similarly indicates that structural security properties and a
projection of trust from an auditing system to a provider are deemed
important.

The systems are typically large topologies with flat hierarchies,
by which structural properties, inter-connectivity and isolation are
important for the security of the tenants’ sub-systems and the sys-
tem at large. The tenants (and collaborating providers in clouds-of-
clouds) will naturally expect the provider to convince them that the
system is well-structured and that their own resources are properly
isolated from other tenants. However, this fundamental integrity re-
quirement of the tenants is at odds with the confidentiality require-
ment of the provider. The infrastructure provider naturally requires
the blue-print of the infrastructure to be secret. The provider also
aims to protect the other tenants from exposure and to ensure that
the tenants own confidentiality requirements on their sub-systems
are fulfilled. Therefore, we ask: How can a provider convince a
verifier that the topology fulfills security properties, such as zone
isolation, without disclosing the blueprint of the topology?

We believe that a signature scheme on committed graphs and ef-
ficient zero-knowledge proofs of knowledge thereon offers a build-
ing block to solve this problem. It provides us with proofs of
knowledge that show elaborate statements on topology security
properties, while keeping the topology itself confidential. Our work
complements existing results in the tenant-verifiable integrity of in-
frastructures with host-based monitoring [34] and the attestation of
physical hosts and virtual machines [8]: Graph signatures offer the
confidential attestation of the system structure and enable a pro-
vider to convince a verifier that the system is structured securely,
while keeping the blueprint of the system secret.

Contributions: 1) We specify the first framework for efficient
zero-knowledge proofs of knowledge over signatures on topology
graphs, directly applicable to security goals raised by tenants in the
domain of virtualized infrastructures expressed in high-level lan-
guage. 2) The graph signatures and proof systems are a generic
solution for arbitrary vertex-/edge-labeled undirected graphs in var-
ious problem domains, such as dependency and hierarchy graphs,

61 of 84

Final Report on

(TOPOCERT)

Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

access control policy and provenance graphs or attack trees and
structured occurrence nets of incidents. Thus, the scheme has fur-
ther applications in the cloud, beyond the infrastructure topology
itself. 3) We establish general efficient zero-knowledge proofs of
knowledge for standard statements over topologies, which allow
us to make statements over vertex and edge sets, connectivity and
isolation. Combined with known discrete-logarithm based proofs
of knowledge [35, 18, 21, 15, 12, 6, 14], we obtain an expressive
framework. We believe that the presented topology graph signa-
tures are a suitable building block to close the gap between existing
attestation of individual components of the infrastructure and state-
ments on the security of the entire infrastructure. 4) In particular,
we propose an efficient general method to prove isolation in lin-
ear complexity, while keeping the topology itself confidential. 5)
Our system comes with systematic asymptotical and experimental
performance evaluation on a prototypical implementation. We are
working with an infrastructure cloud and auditing system provider
to ensure that the approach is practicable.

The graph signature scheme allows us to bridge the gap between
the integrity requirements of the tenant and the confidentiality re-
quirements of the provider in virtualized infrastructures.

2. SCENARIO AND KEY IDEA

The key idea of this work is to enable a trusted third-party au-
diting system to certify a virtualized infrastructure, such that an in-
frastructure provider can prove to tenants (or other infrastructure
providers) that security properties are fulfilled, without disclosing
the confidential blueprint of the virtualized infrastructure. Whereas
we focus this paper on the tenants, yet see applications for cross-
provider proofs as well.

Let us consider the scenario in Figure 1 vis-a-vis the nature of the
virtualized infrastructure as a large-scale distributed system, which
is dynamically changing through self-provisioning, elastic scalabil-
ity and provider-issued migrations for optimization of utilization.
The sheer scale of an infrastructure will require certification to be
partitioned while the dynamics of the system will require that the
auditing system is continuously present.

Auditing System.

We may imagine the auditing system as a flight recorder, which
keeps track of the infrastructure state as it observes it. The auditing
system analyzes the virtualized infrastructure through the manage-
ment host interfaces with its own eyes: It employs a topological
security analysis tool which comes with its own discovery probes
to establish the state of the virtualized infrastructure.

We stress that the audit system can consider arbitrary topology
properties such as the dependency graphs investigated by the Struc-
tural Reliability Auditor (SRA) [38]. For information flow prop-
erties considered here, we find examples of suitable tools in the
research domain, e.g., Bleikertz et al. [4, 3], or in industry prod-
ucts, e.g., IBM PowerSC Trusted Surveyor, where both kinds yield
a realization model (i.e., a graph representation of the infrastruc-
ture’s topology). The realization model contains high- and low-
level components of compute, network and storage resource as well
as their connections as described in the management host’s config-
uration. Research in this space had a considerable focus on en-
suring that the realization model is a faithful representation of the
actual infrastructure. For instance, such a model would contain
PortGroups as vertices with associated VLAN identifiers as labels.
The auditing system annotates the graph further, for instance with
its own geolocation.

From this graph representation of the infrastructure, the auditor
issues a graph signature o to the provider: The auditing system

70

certifies the topology and configuration as seen by the discovery
probes of the security tool. Given the dynamically changing na-
ture of the virtualized infrastructure, the auditing system will sign
a continuous sequence of graphs bound to a time index in short suc-
cession. Therefore, we will have a requirement that the issuing can
be done rapidly.

Infrastructure Provider.

Given such a graph signature, the provider can prove to tenants
in zero-knowledge that security properties specified in a high-level
language, such as VALID [2] or a graph rewriting language, such
as GROOVE, are fulfilled. Observe that the graph signatures are
generic and independent from tenants and the security properties
they ask for. In practice, this is driven by tenant requests, by which
the infrastructure provider stores a batch of signatures for a reten-
tion period.

Tenant.

A tenant auditing his own virtualized infrastructure fixes a time
index ¢ and asks the provider questions about the topology of the
infrastructure at that time, after the fact. Examples include the fol-
lowing questions:

e “Are my resources isolated from any competitor?” (Zone
isolation)

e “Are all my resources geolocated in Europe?” (Deployment
correctness)

e “Are all my resources reachable by two independent paths?”
(Availability)

Upon receiving such a question, the provider can then look up the
graph signature for time index ¢, and compute a zero-knowledge
proof of knowledge that the required property is fulfilled on the
signature without disclosing further information about the infras-
tructure: “Yes, I hold a graph signature for time index ¢ issued by
a trusted auditing system, for which the property holds that your
resources are isolated from any competitor.” The tenant verifies the
zero-knowledge proof with respect to the public key of the audit-
ing system and can, thereby, be convinced that the property was
fulfilled in the state the auditing system has observed.

Building Blocks and Outline.

To establish the topology certification, we need multiple build-
ing blocks spanning a range of conceptual levels. First, we need
a graph signature scheme that can be employed for a certification
by an auditing system. The key idea here is to establish an anon-
ymous credential system that operates on graphs. It must be capa-
ble of binding different elements of graphs together (e.g. vertices
and their labels) and of making them accessible to zero-knowledge
proofs. The preliminaries in §4 are setting the stage: Camenisch-
Lysyanskaya signatures and Camenisch-Grof3 encoding. Having
established the preliminaries, §5 introduces the cryptographic in-
terfaces for the graph signature scheme algorithms and the library
of proof predicates we construct subsequently.

Second, we need to establish how the signature scheme can be
implemented, in particular, how the foundational primitive of a
proof of representation works. Thus, the next sections focus on
the implementation of the graph signature interfaces, where §5.2
establishes the underlying encoding for undirected. §5.3.1 offers
the core building blocks of proofs of representations as well as key
generation.

Third, we will investigate how to compile zero-knowledge proofs
for specific statements, by which §6 offers constructions for a li-

62 of 84

Final Report
(TOPOCERT)

on Privacy

and Anonymization

\ !l[{((
Techniques L (1%
prisma cloud

2. issues graph signatures o for time t

¢ operates on

1. analyzes & audits [Security Analysis
Tool

operates on

Graph Representation of Virtualized Infrastructure Auditor& Realization Model of Virtualized Infrastructure
Tenant A Other Tenants Issuer Tenant A Other Tenants
[ttty et 1
|
A\ ¥
Provider lencoding\ | | y
! Il
3. requesty/property : I
proof for time ¢ | "
4. provegs property | Portgroups: | Portgroups
on g/ffor time t : "
A 1 VLAN 2
Tenant A Network

Figure 1: System Model of an auditing system operating on a realization model of a virtualized infrastructure. The auditing system
continuously inspects the infrastructure with a security analysis tool at its disposal and certifies graph signatures to the infrastructure
provider. The provider, in turn, proves properties of the infrastructure to tenants upon request.

brary of graph proofs, including statements over vertex sets, con-
nectivity and isolation.

Fourth, we need to convince ourselves that a graph signature and
proof system can be implemented sufficiently efficiently and scal-
ably, which we investigate in §7 asymptotically as well as experi-
mentally. §8 compares this work with earlier proposals for transi-
tive and homomorphic graph signatures and zero-knowledge proofs
on graphs, while §9 discusses future work.

3. SYSTEM MODEL

As system model (Figure 1) we consider a virtualized infrastruc-
ture, with compute, network and storage resources, operated via
management hosts. A typical example of such an infrastructure
is VMware administered with vCenter. We consider three parties:
an infrastructure provider operating the virtualized infrastructure
(acting as recipient of graph signatures and as prover towards ten-
ants), a trusted auditing system with read-only access to the man-
agement hosts (acting as issuer of graph signatures) and multiple
tenants (acting as verifiers of zero-knowledge proofs of knowledge
on graph signatures).

Trust is asymmetric: The provider trusts the auditor to keep the
infrastructure configuration confidential; the tenants trust the au-
ditor to sign only well-formed graphs and only as faithfully ob-
tained from the realization model of the security tool. The faithful
representation of virtualized infrastructure configurations (and their
changes) in graph models has been studied in the recent years start-
ing from Bleikertz et al. [4] and is assumed as given in this work.

Fault Model: We assume hypervisors and management hosts to
be correct: Software failures of hypervisors are out of scope; se-
curity failures, in particular, both spawning from misconfigurations
(non-malicious human faults) and insider attackers (malicious hu-
man faults) are in the scope of this work. We stress that even if the
virtualized infrastructure uses secure hypervisors and is protected
by TPMs, malicious or non-malicious misconfigurations are a ma-
jor problem [19, 17] and have been observed in our own work with
industrial partners.

4. PRELIMINARIES

4.1 Assumptions

Special RSA Modulus. A special RSA modulus has the form
N = pq, where p = 2p’ + 1 and ¢ = 2¢’ + 1 are safe primes,
the corresponding group is called special RSA group. Strong RSA

71

Assumption [33, 21]. Given an RSA modulus N and a random ele-
ment g € Zy, itis hard to compute h € Z7 and integer e > 1 such
that h® = g mod N. The modulus N is of a special form pq, where
p=2p' +1and g = 2¢' + 1 are safe primes. Quadratic Residues.
The set QR is the set of Quadratic Residues of a special RSA
group with modulus N (cf. [36]).

4.2 Integer Commitments

Damgard and Fujisaki [18] showed for the Pedersen commit-
ment scheme [31] that if it operates in a special RSA group and
the committer is not privy to the factorization of the modulus, then
the commitment scheme can be used to commit to integers of ar-
bitrary size. The commitment scheme is information-theoretically
hiding and computationally binding. The security parameter is /.
The public parameters are a group G with special RSA modulus
N, and generators (go, . . ., gm). In order to commit to the values
(Vi,..., Vi) € (Z3)}, pick arandom R € {0,1}¢ and set

l
C = Commit(R, V1,..., V) :gé?'HgZVi.
i=1

4.3 Known Discrete-Logarithm-Based Proofs

In the common parameters model, we use several previously
known results for proving statements about discrete logarithms,
such as (1) proof of knowledge of a discrete logarithm modulo
a prime [35] or a composite [18, 21], (2) proof of knowledge of
equality of representation modulo two (possibly different) prime
[15] or composite [12] moduli, (3) proof that a commitment opens
to the product of two other committed values [7, 12], (4) proof that
a committed value lies in a given integer interval [6, 12, 14], and
also (5) proof of the disjunction or conjunction of any two of the
previous ones [16]. These protocols modulo a composite are se-
cure under the strong RSA assumption and modulo a prime under
the discrete logarithm assumption.

Proofs as described above can be expressed in the notation intro-
duced by Camenisch and Stadler [13]. For instance,

PK{(047B76)5y:9ah5Ag:§aE6/\(USa§U)}

denotes a “zero-knowledge Proof of Knowledge of integers o, (3,
and & such that y = g“h® and §j = G*h° holds, where u <
a < v,” where y, g, h, 7, g, and I are elements of some groups
G = (g) = (h) and G = (g) = (h). The convention is that Greek
letters denote quantities of which knowledge is being proven, while

63 of 84

Final Report on

(TOPOCERT)

Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

all other values are known to the verifier. We apply the Fiat-Shamir
heuristic [20] to turn such proofs of knowledge into signatures on
some message m; denoted as, e.g., SPK{(a) : y = g®}(m).
Given a protocol in this notation, it is straightforward to derive an
actual protocol implementing the proof.

We introduce the following short-hands: i. A modulus statement
(mod N) in the PK-header denotes the default modulus for subse-
quent non-range proof congruences. ii. An all quantifier Vi denotes
that the secrets/terms in its scope are iterated over ¢. iii. We decom-
pose proofs of knowledge statements in multiple steps and require
referential integrity between the secrets of the steps.

4.4 Camenisch-Lysyanskaya Signatures

Let us introduce Camenisch-Lysyanskaya (CL) signatures in a
Strong RSA setting [11].

Let a1, Le, {n, £ and L be system parameters; ¢, is a secu-
rity parameter, £, the message length, /. the length of the Strong
RSA problem instance prime exponent, £y the size of the special
RSA modulus, L the number of message bases. The scheme op-
erates with a ¢n-bit special RSA modulus. Choose, uniformly
at random, Ry, ..., Rr-1,5,Z € QRy. The public key pk, is
(N,Ro,...,Rr-1,5,Z), the private key ski, the factorization of
the special RSA modulus.

The message space is {(mo, ..., mr—1) : m; € £{0,1}*M}.
Signing algorithm. On input mo,...,mr—1 , choose a random
prime number e of length £. > ¢4 + 2, and a random number v of
length ¢, = N + {aq + 4. Compute

1/e
0 - Ry

The signature consists of (e, A, v).

Verification algorithm. To verify that the tuple (e, A, v) is a signa-
ture on message (mo, ..., mr—1), check that the following state-
ments hold:

Z=A°RJ®---R}'F7'SY (mod N),

with m; € £{0,1}*M, and 2 > e > 2%,

THEOREM 4.1. [11]
The signature scheme is secure against adaptive chosen message
attacks [23] under the strong RSA assumption.

Proving Knowledge of a Signature. A prover can prove that she
possesses a CL-signature without revealing any other information
about the signature (as well as use the primitives in §4.3). The
prover randomizes A: Given a signature (4, e, v), the tuple (A’ :=
AS™" mod N, e,v' := v+ er) is a valid signature as well. Now,
provided that A € (S) and that r is chosen uniformly at random
from {0, 1}~ 142 the value A’ is distributed statistically close to
uniform over QR ;. Thus, the user could compute a fresh A’ each
time, reveal it, and then run the protocol

PK{(E,V,,[,L(),. . 7NL71) :
Z=%Ry - R{“P A5 (mod N) A
pi € £0, 1} A ee 27 41,2 1]}

4.5 Set Membership from CL-Signatures

Set membership proofs can be constructed from CL-Signatures
following a method proposed by Camenisch et al. [9]. For a set
S = {mo,...,mi,...,mi}, the issuer signs all set members m;
in CL-Signatures o; = (A, e, v) and publishes the set of message-
signature pairs {(m;,o;)} with integrity. To prove set member-
ship of a value committed in C, the prover shows knowledge of the

72

blinded signature o corresponding to the message m,; and equality
of exponents with C. We describe the implementation in the ex-
tended version [26] and denote a set membership proof u[C] € S,
which reads p encoded in commitment C' is member of set S.

4.6 Camenisch-GroB Encoding

The Camenisch-Grof3 (CG) Encoding [10] gives the CL message
space structure by encoding multiple binary and finite-set values
into a single message, and we will use a similar paradigm to encode
graphs efficiently.

The core principle of the CG-Encoding is to represent binary
and finite-set attribute values as prime numbers. It uses divisibility
and coprimality to show whether an attribute value is present in or
absent from a credential. The attribute values certified in a creden-
tial, say e;, e;, and e;, are represented in a single message of the
CL-Signature, by signing the product of their prime representative
E = e; - e; - ¢; in an Integer attribute. The association between
the value and the prime number of the encoding is certified by the
credential issuer.

Divisibility/AND-Proof. To prove that a disclosed prime repre-
sentative e; is present in E, we prove that e; divides the committed
product E, we show that we know a secret u’ that completes the
product:

PE{(1,p):

Coprimality/NOT-Proof. We show that one or multiple prime
representatives are not present in a credential, we show coprimality.
To prove that two values E and F are coprime, i.e., gcd(E, F') =
1, we prove that there exist integers a and b such that Bézout’s
Identity equals 1, where a and b for this equation do not exist, if
gcd(E, F) > 1.

PE{(p,p,, 8,p"): D ==£g"h" (mod N) A
g=+D%(g")’h”" (mod N)}.

D = +(g°)* h* (mod N)}.

OR-Proof To show that a credential contains an attribute e that
is contained in an OR-list, we show there exists an integer a such
that ae = Hf ei; if e is not in the list, then no such integer a as
e does not divide the product. We use the notation C = for an
OR-proof that a contains one or more values of =.

5. GRAPH SIGNATURE SCHEME

This section establishes the core graph signature scheme: The
key point here is that we offer a graph encoding that lifts the anony-
mous credential scheme given by the Camenisch-Lysyanskaya sig-
natures (§4) to entire graphs as messages. The encoding is special
in that it keeps all elements of the graph (vertices, edges, labels)
accessible to efficient zero-knowledge proofs.

5.1 Cryptographic System Interface

Let us first specify the abstract interface of a graph signature
scheme and associated proofs over graph properties. The core sig-
nature scheme consists of five algorithms:

Commit(), Keygen(), Sign(), HiddenSign(), and Verify(),

where we consider HiddenSign() and Verify() in the extended ver-
sion [26], that is, the joint signing of hidden committed graphs.

Commit(G; R) is a probabilistic polynomial-time algorithm,
providing an Integer commitment lifted to graphs. It takes as in-
put a graph G encoded with the encoding encode(G) specified in
§5.2 and randomness R.

Keygen(1%, params) establishes the key setup for the graph sig-
nature scheme in a probabilistic polynomial-time algorithm. It

64 of 84

Final Report on

(TOPOCERT)

Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

takes as input the security parameter ¢ and the public parameters
of the commitment scheme Commit. It outputs a key pair (pk, sk),
where pk is the public key of the issuer and sk is its secret key.

Sign(pk,) is a probabilistic polynomial-time algorithm run by
issuer |. It signs a graph G;. The public input is a commitment
on the user sub-graph issuer’s public key pk,. The issuer’s private
input is the graph G, and his secret key sk;. The output is a signature
on the graph o = o(G).

In addition, we provide proof predicates for graph signatures (cf.
with Table 1): First, we provide predicates for the graph proof
of representation possession as well as decompositions to vertex
and edge level, both implemented in §5.3.1. Second, we consider
sets of graph elements with set coverage cover, pair-wise disjoint-
ness disjoint and partition partition. Third, we have predicates
on connectivity edge and connected and its complement isolation
isolated = —connected. We establish an implementation for zero-
knowledge proofs of knowledge thereof in §6. These proofs can
be combined with known proofs of knowledge based on discrete-
logarithms and composed to Boolean formulas with logical con-
nectives A and V.

REMARK 1 (CLOUD SECURITY ASSURANCE).

The predicates introduced in Table 1 correspond to the major pred-
icates of VALID [2], a formal specification language of cloud se-
curity goals suitable for automated model checking. VALID ex-
presses goal states as a set (conjunction) of positive and negative
facts constrained by a Boolean condition list. It uses terms, such
as edge(-, -) or connected(-, -) to express alarm states on topology
graphs.

Subsequently, we will introduce the implementations for proofs
of knowledge for these different functions successively. §5.2 intro-
duces the encoding of undirected graphs itself. §5.3 introduces the
key generation Keygen, the proof of representation graph and the
issuing and verification algorithms HiddenSign and Verify. Subse-
quently, §6 contains the constructions for the set and connectivity
predicates.

5.2 Graph Encoding

The key idea of the graph encoding is this: we represent vertex
identifiers and labels as prime numbers. This allows us to bind dif-
ferent elements of the graph together by signing the product of their
representations. In addition, we can have efficient proofs of proper-
ties such as connectedness and isolation, by arguing over divisibil-
ity and coprimality of the prime products. The proofs can be imple-
mented efficiently with discrete-logarithm zero-knowledge proofs.

We consider strict undirected graphs over finite vertex sets and
finite sets of vertex and edge labels, where vertices and edges can
have multiple labels. We describe the encoding and proofs for di-
rected graphs in the extended version of this paper [26].

1% Finite set of vertices
EC(VXV) Finite set of edges

G =W, tyv,te) Graph

Ly, Le Finite sets labels

fv:V —=P(Ly) labels of a given vertex

fe: € = P(Le) labels of a given edge
n=1|V|,m=|E] number of vertices and edges

We call a prime representative, a prime number which denotes an
element of a graph. For each vertex ¢ in V, we introduce a ver-
tex identifier, a prime e;, which represents this vertex in credential
and proofs. The symbol _L, associated with identifier e | represents
that a vertex is not present. All vertex identifiers are pair-wise dif-
ferent. We call the set of all vertex identifiers =y, their product

73

xv = IIZy. For each label k in the label sets £y and in Lg, we
introduce a prime representative ej. All label representatives are
pair-wise different. We call the set of all label representatives =z,
their product x 2 = II=Z,. Vertex identifiers and label representa-
tives are disjoint:

EvﬂEgI@ = ng(XV7X£):1-

5.2.1 Encoding Vertices and Edges

To encode a vertex and its associated labels into a graph commit-
ment or CL-Signature, we encode the product of the vertex identi-
fier e; € Zy and the prime representatives e, € E¢ for k € fy (i)
of the labels into a single message of the signature. The product of
prime representatives is encoded as exponent of dedicated vertex
bases R € Gy.

To get a compact encoding and efficient proofs thereon, the en-
coding needs to maintain the graph structure and to allow us to
access it to prove higher-level properties, such as connectivity and
isolation. The proposal we make in this paper after evaluating mul-
tiple approaches is to use divisibility and coprimality similar to the
CG-Encoding to afford us these efficient operations over the graph
structure, while offering a compact encoding of edges.

Recall that each vertex is certified with a vertex identifier from
=y, e.g., €; or e;. For each edge (i,j) € &, we include an edge
attribute as exponent of a random edge base R.(; ;) € Ge, con-
taining the product of the vertex identifiers and the associated label
representatives e, € = for k € fe (i, j) of the edge:

Eij) =ei-ej - Upege i€k

DEFINITION | (WELL-FORMED GRAPH).

We call a graph encoding well-formed iff 1. the encoding only
contains prime representatives e € =y U =, in the exponents of
designated vertex and edge bases R € Gy U Gg, 2. each vertex
base R € Gy contains exactly one vertex identifier e; € 2y, pair-
wise different from other vertex identifiers and zero or more label
representatives ey, € Zr, and 3. each edge base R € G¢ contains
exactly two vertex identifiers e;,e; € Zy and zero or more label
representatives e, € Er.

5.3 Signing Committed Graphs

Once we have the encoding, the next question is how graphs can
be signed. Luckily, the encoding embeds the graph directly into
the Camenisch-Lysyanskaya signature scheme, we can employ the
signing method given in the preliminaries (§4) directly for the sim-
ple case that an audit system inspects a topology and signs the graph
it observes.

The full graph signature scheme supports a joint issuing of graph
signatures with a hidden committed subgraph contributed by a user
and another known subgraph contributed by the issuer. We define
the issuing process, including the considerations for hidden graphs
being merged in the extended version.

As a point of reference, we give the structure of the graph sig-
natures, as it guides how we prove representation of such signa-
tures. We have seen in the encoding (§5.2) that it operates over
bases R.(;y € Gy, which store attributes encoding vertices in the
exponent, and bases Rr(; ;) € Ge, which store attributes encod-
ing edges in the exponent. The base association is randomized by

65 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud
Table 1: Proof of knowledge predicates for graph signatures (cf. VALID [2]).

Predicate Description
possession(G, o, 11;) Proof of possession of a graph signature o §5.3.1
vertices(G, ;,7i) Proof of composition of graph vertices of a proof of possession §5.3.1
edges(G, &;, €4, 'Y(i,j)) Proof of composition of graph edges of a proof of possession §5.3.1
graph(G, ;) Proof of representation and well-formedness (extended version [26]) §5.3.1
set(V, V) Representation of aset V- C V §6.1
cover(V, Vi,..., Vg) Vertex set coverage U(Vl, V)=V §6.1
disjoint(V, V1, ..., Vi) Vertex set pair-wise disjointness ﬂ(Vl, Vi) =0 §6.1
partition(V, V1,...,V;) Vertex set partition | J(Vi,..., Vi) =VA[(V1,..., V&) =0 §6.1
edge(G,1,7) VALID-rule: Adjacency of (i, 7) §6.2
connected(G, 4, 7, £) VALID-rule: Existence of an £-path between vertex ¢ and vertex j §6.2.1
isolated(G, 1, 5) VALID-rule: Isolation of vertices 7 and j: There exists no path between i and j =~ §6.2.2

permutations 7y, and 7¢.' The following congruence holds in Z}:

Reiejnkefg(id)ek AeSv

_ eillpe gy, (i) ek
Z==£k. R

v vertices i V edges (4,5)

5.3.1 Proof of Representation

Establishing zero-knowledge proofs on (graph) signatures usu-
ally starts with a proof of representation: This proof shows that the
prover knows all the secrets contained in the signature equation. It
shows that the prover actually possesses the graph signature. To
talk about further properties of the values in the signature, we need
to make these values available in a commitment and thereby acces-
sible to individual treatment. For instance, if a proof is to make
statements about the vertices, we need to have commitments on the
vertex identifiers and prove that the values in the commitments are
equal to the values in the signature. We call this process decom-
position; it creates a tree of commitments with the graph signature
at its root and equality proofs connection the nodes. Whereas a
proof of possession of a signature is standard, we expand on it to
show how the graph signature is decomposed in commitments on
its components. These decompositions implement the predicates
possession, vertices, edges, and graph from Table 1 and constitute
reusable building blocks for many proofs.

REMARK 2 (FULL GRAPH DECOMPOSITION).

1t is crucial to note that the full graph decomposition including a
proof of well-formedness and pair-wise difference graph (Def. 1) is
only needed when a user contributes a hidden graph. For proofs
considered in this paper, the parties can trust the auditing system
that it will only sign well-formed graphs, by which the infrastruc-
ture provider can limit its proof computations to the decomposition-
level required to answer the tenant’s question. For instance, if the
tenants asks “Were all my resources geolocated in Europe?” (a
property on vertex labels), the provider computes the proof of repre-
sentation possession including vertex decomposition vertices, but
no edge decomposition.

1. Commitments.

The zero-knowledge proofs operate on committed values, which
requires us to compute commitments for all values referenced in
the proof. The prover computes Integer commitments on the ex-
ponents of all vertex and edge bases. First, the prover computes

! The randomization is required for multi-use unlinkability once
a single graph signature is used in proofs with multiple verifiers.
While the extended version specifies this in detail, we keep it her
to maintain consistency.

74

commitments on all messages to allow their decomposition into
components. Commit(possession(G, o, ti); 74,7 (i ;)) are in Zy
with uniformly chosen randomness r;,7(; ;) € {0, 1}

C; = Reikeryiyen gri
Clijy = ReiCillkere (i) €k §7(,5)

For each vertex 4, the prover computes Commit(vertices(G); #;) in
Z on vertex attribute and identifier using uniformly-chosen ran-
domness #; € {0,1}":

éi =R% Sf’ .

For edges (%, j), the commitments are in Z3; with uniformly chosen
randomness 7(; j), (i) € 10, 1}%:

Commit(edges(G); (i,), 7(5,5))

Cijy = RS and Oy = R8G9,

2. Proof of knowledge.

We construct the proof of possession and well-formedness step
by step, where it is understood the proofs will be done in one com-
pound proof of knowledge with referential integrity between the
secret exponents. Let us consider a proof fragment for vertices i, j
and an edge (4, j) committed in a graph commitment C' (the same
proof structure is used for CL-Signatures).

2.1 Proof of representation. We prove that commitment C' can
be decomposed into commitments C’;, C}, one for each vertex ¢, j
and one commitment C{; ;y for each edge (i, j):

PEA{(15 1455 135y Ps Pis s Plirgy) = (mod N)
_ i Mg H(ig) qp
C==]]ruy R, [RS A @
irj (i.3)
Ci=+RMiS" A C;=+R"S" A)
Clijy = £RPGD §PG Y, 3)

The same proof of representation can be applied to graph signatures
to prove the predicate possession:

7=+ HRM R H R'“‘(iyj)A/E/SP/
- w(i)" w(4) 7(4.5)
4,3 (4,5)
2.2 Vertex composition. Second, we need to show properties of
the vertex composition that the encoding for each vertex ¢ con-

tains exactly one vertex identifier e; € =y and zero or multiple
label representatives e € Z,. We show this structure with help of

66 of 84

Final Report
(TOPOCERT)

on Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

the commitments C; and set membership and prime-encoding OR
proofs. This proof is executed for all vertices.

PK{(VZE’H/BZ?W“p;) : (mOd N)
Ci = £R%S% A Ci=+C7 8% A @)
'yZ[C’Z] CZz A Ez[éz] S Ev}. 5)

Clause 4 establishes the predicate vertices(g s Wiy Eiy 'yi), where its
second sub-clause links to the possession commitments.

2.3 Edge composition. Third, we prove the structure of each edge
(4, 7) over the commitments C{;_;), showing that each commitment
contains exactly two vertex identifiers e;, e; € Zy as well as zero
or more label representative e, € =.:

PK{(éi?éjap(i,j)af}/(i,j)apl(i,j)) : (mOd N)
Ciujy = +C 8P A Cy=+R5IS" (6)
_ “Y(iyi /i .
Clagy = £C 3 87D A @)
Vig) €Ee A &[Ca] € Evi) ®)

Clauses 6 and 7 realize the predicate edges(G, €:,€5,7(,5)), for
which Clause 7 binds the edges commitments to the possession
commitments. Clauses 5 and 8 establish that identifiers and labels
are valid.

2.4 Pair-wise difference. We give the proof of pair-wise differ-
ence of vertices for completeness; it is not required in the appli-
cation scenario in which we trust the audition system to only sign
well-formed graphs. We show that the vertex representatives are
pair-wise co-prime over the commitments C;; and C’j.

PEA{(Yi,j : i3, Bijs pig) :

R=£0{" "8 (mod N)}. ©)

THEOREM 5.1 (PROOF OF WELL-FORMEDNESS).
The compound proof of knowledge establishes the well-formedness
of an encoded graph according to Def. 1. [Proofin [26]]

6. PROOFS OF GRAPH PROPERTIES

Having established encoding and foundational bootstrapping cy-
cle of proof of representation and issuing, we continue to establish a
library of graph proof predicates. First, we explore with proofs over
vertex and edge sets, including coverage and pair-wise disjointness,
which are the basis of partition proofs. Second, we discuss differ-
ent proofs over presence and absence of labels. Third, we establish
results on connectivity and isolation in undirected graphs.

6.1 Sets as Cumulative Products

The idea to reach a compact set representation is: given that the
elements of the set are all primes, we can safely multiply all set
members without losing access to individual values. Hence, we
represent a set of vertices V' C)V with £ elements by the cumulative
product of its vertex identifiers:

By =Ilieve;.

The normal set representation only includes the vertex identifiers
of the vertex set, the extended set representation also all associated
vertex labels. An edge set is represented at the cumulative prod-
uct of all the vertex identifiers of the edges involved. We will use
proofs over cumulative products repeatedly and establish a generic
interface for those. In the following, we rename the vertex identifier
indices to range over 1, ..., ¢, without loss of generality.

75

1. Commitments. The prover commits to the vertex set rep-
resentation as the cumulative product Eyv. To prepare the proof
of representation the prover establishes intermediate commitments
Commit(set(V, V'); #1,...,7¢) in Z} on partial products using
uniformly chosen randomness 71, . . . , 7'¢:

v < o 0. o~
Cy1=RS™ ... Cye=RMeigm™,

2. Proof of Representation. To establish a proof of representation

of aset set(V, V') that a cumulative product E'y is composed of the

identifiers of certified vertices, the prover engages with the verifier
in the following proof of knowledge over the cumulative product:

PE{((¥i s piy2i), -, pe) i (mod N)
possession(G, o, ;) A vertices(G, pi, €)
Cu'VJ =+R18% A
CV'V72 = iéf,?lsﬁz A
év,z = :I:Cv'f/‘i[_lsp[

REMARK 3 (EDGE SETS).
Edge sets can be represented as products of their vertex identifiers,
as well. This is a degenerate representation as it does not maintain
the edge structure, but only the vertices present, however as we
shall see in §6.2.1 it serves its purpose for edge partitions.

6.1.1 Coverage

We want to find out whether a given set of vertex sub-sets com-
pletely covers the entire graph. The predicate cover establishes
U{Vh Va,...,Vk} D V. As the set is represented as product of
vertex identifiers, this equivalent to the product of all vertex iden-
tifiers of the graph xy dividing the product representation of the
sets:

k k
Xv| HEVi < daaxy = HEV“
i=1 i=1
where By, = H]. cv, €i- The product representation of Zy is
i

signed with Cy as part of the issuing. Thus, given proofs for
set(G, V;), we compute set(G, {Vi,..., Vi}), which results in a
commitment on the cumulative product of all sets:

Cy = rRIL Pvigr

To complete the proof of coverage, we prove that the cumulative
product over all subset in the commitment Cy; divides the product
of all vertex identifiers Cy,.

PE{(a,p) :
set(G,Vi) A--- A set(G, Vi) A
set(g,{Vl,A..,Vk}) A

Cy = £CyS” (mod N)

6.1.2 Pair-wise Disjointness

The predicate disjoint establishes that vertex sets have no joint
vertex, [{V1, Vz,..., Vi} = 0. Recall that the sets are products
of primes. Hence, we can use the fact that two vertex sets V; C V'
and V; C V are pair-wise disjoint if their product representations
are coprime:

VimVjZQ 54 ng(EVi,EVj):l.

67 of 84

Final Report on

(TOPOCERT)

Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

If two sets share a vertex, i.e., a prime factor, this equation cannot
be proven.

Based on given commitments C'y; and predicates set(G, V;) and
set(G, V;), we establish coprimality and thereby disjointness with
Bézout’s Identity,

ng(EV“EVj) =1 = CLEV,; + bEVj =1,

resulting in the following proof:
PK{(VZ7.] : ai,jmgi,jvpi,j) : (mOd N)
set(G, Vi) A---A set(G, Vi) A
Vi,j: R= ic‘ij’j ng” SPi

6.1.3 Partition

In a partition proof we seek to establish that a several sets of
vertices cover the entire graph and that they are all pair-wise dis-
joint. Hence, we combine both proofs above on coverage and
pair-wise disjointness operating on commitments for the predicate
set(G, Vi).

6.2 Statements over Edges

‘We now turn our attention to edges and connectivity, where we
start with existence of a single before we proceed with connectivity
and isolation.

Here we seek to prove that there exists an edge between two
secret vertices, that is, the edge predicate. Thus, we need to show
that there exists an edge base with an exponent £ which encodes
the edge (4, 7). This, in turn, means that the product of the edge’s
vertex identifiers divides the exponent.

(eiej)|E < Ja : alee;) = E.

This is realized by the prover engaging with the verifier in the fol-
lowing proof of knowledge:

PRL((Yi - i), 1)
possession(G, u;) A

Ciijy = £(RE) S (mod N)}.

6.2.1 Connectivity

A major area of interest for hidden-graph proofs is connectivity:
How can we show that different vertices of a hidden graph are con-
nected by a chain of ¢ edges? The predicate connected(G, i, j, £)
means that there exists a sequence of at most ¢ edges, such that the
end vertex of one edge is the start vertex of the next.

EXAMPLE 1.
Let us consider the following chain of connected edges:

(ei-e1),(e1-e2),(e2-e3), (e3 - ej)

We observe that two vertices are connected if and only if there exists
a sequence of edge products, such that their the edges match in the
Jjoint vertex identifier. By that, we have for instance for the first pair
of edges:

eil(ei - e1) Aerl(er - e2)

The idea here is to prove connectivity by showing that the vertex
identifier of the connection point between two adjacent edges di-
vides both edge representations. We will chain these divisibility
proofs.

Recall that the predicate edges(G, €i,€5,7(;,;)) from cf. §5.3.1
computes the following commitments in Z3:

Cijy = R 87 a) and € = R S"GD

76

for each edge (4, j), allowing us to compose statements over adja-
cent edges via Cv'(i?j) and the subsequent C;. We show that a joint
factor ¢ divides adjacent edges (4, 7) and (j, k) with the following
proof of knowledge:

PK{(e,p,p'): (mod N)
é’(i,j) = :thRp N Cj = RESP,}.
6.2.2 Isolation

Proving isolation of sub-graphs in zero-knowledge efficiently is
a daunting task as the prover could “forget” an edge, which nor-
mally forces the proof to iterate over all edges (quadratic complex-
ity). We can do better: We can partition the graph into two edge
sets, each containing one vertex of the isolation claim. If there is
any connection between these two sets, then there must be an edge
from one set two the other, which means that they have a joint fac-
tor.

For vertices ¢ and j isolated(, j) means that there exists no con-
nected path between both vertices ¢ and j. For undirected graphs,
isolation means that the vertices ¢ and j are in separate sub-graphs.
Two vertices ¢ and j are isolated, if there exists a bi-partition of the
edge set V'UV" = EAV'NV" = (), such that without loss of gen-
erality i € V' and j € V"'. Recall that §6.1 represents an edge set
in a degenerate form, as the product of the edges’ vertex identifiers
E’ and E"”. We obtain commitments and proofs for the predicates
set(G, V') and set(G, V') which give us two commitments in Zy:

S11

é’El = RE/SW and éE// = RE”ST .

We can derive coverage already from the fact that all commitments
of the predicate edges are used to establish the cumulative products
for both edge sets. The disjointness of the edge-set bi-partition
gives the isolation result, which we prove by showing that both
products are coprime:

gced(E',E"Y=1 < 3Fa,b:al’ +bE" =1.

The complete the proof of the predicate isolated, the prover and
the verifier engage in the following proof of knowledge:

PK{(a,B,p): (mod N)
set(G, V') A set(G, V") A
R = iég/é’g,,Sp

REMARK 4 (ISOLATION ON VLAN IDS).
The isolation predicate constructed in this section argues over the
edges only. In actual topologies, such as infrastructure clouds, it
is however the case that graph labels are important to decide upon
connectivity and isolation. This holds in particular for the VLAN
IDs of virtualized infrastructures, which allow communication if
components have matching VLAN IDs. The isolation predicate can
be easily extended to show pair-wise disjointness for labels as well.

7. PERFORMANCE EVALUATION

7.1 Asymptotic Evaluation

We display the efficiency analysis for the proof predicates in Ta-
ble 2, where each row shows the overhead over the basis predicate
stated in the first column. We measure computational complexity in
multi-base and modular exponentiations. The communication com-
plexity is dominated by the transmitted group elements from Z};,
which is equal to the number of multi-base exponentiations (one for
each Integer and Schnorr proof commitment). In the scenario we
consider in this paper, the verifier trusts the issuer to only certify

68 of 84

Final Report on

(TOPOCERT)

Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

well-formed graphs. As we do not need to prove well-formedness
of a hidden graph, we have linear complexity for all proofs.

The modular exponentiations for message bases R; have small
exponents of size a4 < £, where the parameter £ can be cho-
sen similarly small as in Direct Anonymous Attestation [8]. Imple-
menting the proofs of representation as multi-base exponentiations
will reduce the number of multiplications significantly and thereby
offer a significant speed-up. In addition, the 3-proofs employed
in this work benefit from batch-proof techniques [32]. The system
allows signature proofs of knowledge with the Fiat-Shamir heuris-
tic [20], which can be computed offline.

‘We note that the public key size (that is the certification of vertex
and label identifiers) is linear in the maximal number of vertices
and label types, a case in point to partition the infrastructure repre-
sentation and cover it with multiple (hierarchical) graph signatures.

7.2 Experimental Evaluation

Figure 2 contains an experimental performance analysis, based
on the following parameters: The issuer has established the setup
with Quadratic Residues QR 5, under a special RSA modulus N as
specified by the Identity Mixer Library, where the modulus length
£, = 2048 bits and system parameters (¢,, etc.) are chosen ex-
actly as prescribed in the library setup [27]. Bases for vertex and
edge encoding are computed according to the library setup. The
performance analysis is executed on 64-bit Java JDK 1.7.13 on a
Windows 7 SP 1 Thinkpad X220 Tablet, on Intel CPU i5-2520 with
2.5 GHz, 8 GB RAM, where all computations are performed on a
single processor core only. This is a very conservative estimate as
an infrastructure provider can use multiple cores and parallelize the
computations on all levels. The performance analysis uses the math
utility functions of the Identity Mixer Library for the computation
of randomness and exponentiations, that is, its MultiExp facility.

The experiments performed on a prototypical implementation
of computations required for the graph signature scheme, that is,
on representative computations of commitments and a proof of
knowledge thereof. For a commitment, we would have a struc-
ture C' := Ry --- RZ”" SY mod N, where the exponents are uni-
form random bit-strings of the prescribed length and number (as in
the actual Schnorr proof witnesses). The simulation uses random
graphs with specified number of vertices n and a derived number
of edges m := 2n as major independent variable (on the x-axis),
the dependent variable is computation time in milliseconds (in log-
scale on the y-axis). Again, these computations give a conservative
estimate of the expected computation time: issuing and proofs that
disclose attributes operate on smaller exponents, by which they are
more efficient. Any implementation on actual graphs, with multiple
cores or parallelization strategies will perform much better.

Discussion.

If we consider the computations done by the issuer, we see that
the issuer can sign large graphs with 10, 000 vertices and 20, 000
edges (a realistic size for an in-house cloud) in 532 milliseconds,
if the issuer uses his knowledge of the discrete-logarithms between
generator and bases for optimization?. This means the issuer can
sign large graphs rapidly. The user’s proof of representation of a
signature with 10, 000 vertices and 20, 000 edges, in turn, can be
performed in a time of 238 seconds, ~ 4 minutes, which is feasible
again. We believe that the usual use case will be that the size of
the user-contributed subgraph is very small compared to the size

2 An implementation using the standard CL-issuing without this op-
timization will use 476 seconds, ~ 8 minutes

71

of the issuer-contributed subgraph. Such use cases can thereby be
implemented efficiently.

EXAMPLE 2 (VIRTUALIZED INFRASTRUCTURE).

Let us consider the scenario of the system model of §2 again. The
auditing system certifies the virtualized infrastructure after a se-
curity analysis and issues a graph signature to the infrastructure
provider. The auditor gets privileged access to the infrastructure,
hence, no user-generated proof of well-formedness of a committed
graph is needed. The auditing system can issue signatures with a
frequency in the order of seconds. Upon tenant request with a time
index t, the infrastructure provider looks up the appropriate graph
signature for time t to prove to tenants in zero-knowledge that se-
curity properties, such as isolation from competitors, are fulfilled.
The provider fixes a time of infrastructure state and corresponding
signature, and computes the proof of knowledge disclosing only the
properties in question, in the order of minutes. We expect the ten-
ants will only query the provider sporadically for proofs over the
graph signatures.

REMARK 5 (SCALABILITY).

First, we note that the core algorithms have linear complexity in
number of vertices and edges, with a low slope constant. Sec-
ond, we observe that the decomposition is highly parallelizable:
All information (message blocks and random exponents) is known
a priori and there are no state inter-dependencies between com-
mitment computations or Schnorr proofs: The commitments can
be computed in parallel and once they are computed the Schnorr
proofs can be computed in parallel, as well. This requires comput-
ing all the witnesses first, then synchronize the computation results
to compute the challenge with the Fiat-Shamir heuristic, to finally
compute all the responses in parallel again. Thus, we believe graph
signatures to be scalable.

8. RELATED WORK

Structural and Topological Cloud Assurance.

Whereas past work was often on hardening hypervisors and pre-
venting isolation breaches in the systems themselves, there are mul-
tiple lines of work in the (structural) security assurance of virtual-
ized infrastructures assuming that the hypervisors and management
hosts are correct, yet might be misconfigured. Zhai et al. [38] pro-
posed a structural reliability auditor, which discovers dependen-
cies between cloud components. This was later extended by Xiao
et al. [37] to achieve this privately in secure multi-party compu-
tation (SMPC). Their work argues over the dependency graph of
cloud components, a data structure which can be directly imple-
mented in the graph signature scheme presented here. The goal
of our works is different, however: Whereas they allow multiple
parties (e.g., providers) to compute jointly whether there are hid-
den dependencies without disclosing secret information, our work
proves properties of audited dependency graph, e.g., absence of a
single-point-of-failure or isolation from a particular dependency, in
zero-knowledge.

SAVE and subsequent works of Bleikertz et al. [4, 3] pursue se-
curity analysis of virtualized infrastructures based on a graph rep-
resentation. Their work employs discovery probes or sensors for
virtualized infrastructure change events to maintain a graph rep-
resentation in sync with the actual topology of the infrastructure.
Their work first focused on information flow analysis by graph col-
oring, yet has been extended subsequently with general purpose
model checkers, verifying the graph model against a high-level se-
curity policy in abstract language, either the set rewriting dialect

69 of 84

Final Report on

(TOPOCERT)

Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

Table 2: Efficiency of proofs of predicates in multi-base and modular exponentiations (MultiExps and ModExps). For a simple

n(n—1)

graph holds m <

. Note that the constant £ is the number of sets considered, e.g., & = 2 for a bipartition. In practice holds

k < £ < nand O(kf) = O(n), hence, all proofs are linear in n or m.

Predicate Basis Commitments MultiExps ModExps

O
possession(G, o, f4;) n+m 2n +2m + 1 5n 4+ 5m + 2 O(n+ m)
vertices(G) possession n 3n 6n O(n)
edges(G) possession 2m 4m 8m O(m)
set(V, V), with £ = |V| vertices L 20 440 O(¢) = O(n)
cover(V, Vi,..., Vi) vertices k(¢+1) 2k(0+1)+1 4k(l+1)+2 O(ke)
disjoint(V,V4,..., Vi) vertices ke k2 + 2k¢ 3k2 + 4kt O(k? + k0)
partition(V, V1,..., V) vertices k(€ +1) k2 +2k(0+1) 3kZ4+4k(+1)+2 O(k? + kb)
edge(G,1,7) possession 0 1 2 0(1)
connected(G, i, j,) edges 0 20 44 O(¢) = O(m)
isolated(G, 7, §) edges m 2m +1 4m+ 3 O(m)

VALID [2] or graph rewriting languages. The most recent advances
in that line of work include a fast differential analysis on change
events. Their graph representation and information flow overlay
can serve as basis for this work’s auditing system and issuing of
graph signatures. At the same time, the tenant can query for zero-
knowledge proofs based on the security policies employed. By
that, our work could extend theirs by a projection of trust: Whereas
Bleikertz et al. have the infrastructure provider specify the security
policy for the analysis, run the analysis tool, and have the tenant
trust that all this was done correctly, the provider can now delegate
running the tool to a trusted auditor and satisfy the tenants own
security policies in zero-knowledge.

TPM-protected host-based monitoring of virtualized infrastruc-
tures offers an alternative to structural security assurance. Cloud
Verifier [34], for example, allows a remote tenant to specify in-
tegrity criteria for which Cloud Verifier will monitor a node server.
This approach employs an integrity verification proxy as well as
TPM support for attestation. The monitored policies include VMin-
fos, the network and host security policies and the host memory, all
of which are limited to host properties. Our approach of graph sig-
natures is complementary to host-based auditing, as it allows for
proofs over the inter-connectivity of components beyond the host’s
boundaries. For instance, a host’s assurance of a correct VLAN ID
configuration is not sufficient for VLAN-based network isolation,
as there could be a VLAN ID collision anywhere in the network.
Similarly, a host’s assurance that it is connected to the correct re-
mote storage partition does not guarantee that there is no other com-
ponent connected to that partition.

Zero-Knowledge Proofs and Signatures on Graphs.

Zero-knowledge proofs on graphs and their properties is a classic
area of research and have been instrumental in showing that there
exist zero-knowledge proof systems for all NP languages, e.g., [22,
5] Both proofs use a metaphor of locked boxes to construct known-
graph proofs of Graph 3-Colorability (G3C) or Directed Hamil-
tonian cycles (DHC). The constructions focus on zero-knowledge
proofs of knowledge and do not cater for a level of indirection
through a signature scheme or proofs of knowledge on graph prop-
erties in a hidden-graph setting.

A related notion to full graph signatures is transitive or homo-
morphic signature schemes, such as [29, 28, 1]. They are con-
cerned with the transitive closure of signatures on graph elements,
such that from signatures from edges (7,) and (j, k) everybody
can derive a valid signature on the edge (i, k). These signature
schemes have the advantage that one can produce a signature of the

78

transitive path over multiple edges. Therefore, they allow showing
signatures equivalent to the connected predicate without disclos-
ing the number of edges on the path and without overhead because
of path length. The constructions are not meant to be on com-
mitted graphs and consider the signatures as public information.
They have limited support for labels and do not have provisions for
proofs of isolation as signatures could be withheld.

Authenticated and Verifiable Graph Computations.

Authenticated data structures for graph connectivity have been
thoroughly investigated by Goodrich et al. [25], whose approach
is restricted to hash-based authentication and does not yield zero-
knowledge properties. Subsequent work [24] has been applied to
Web-content searching and proposed an authenticated web crawler,
whose problem statement also exhibits the highly dynamic nature
of the authenticated data structure. The authentication is based on
a root-signed Merkle tree, which prevents a zero-knowledge ac-
cess to the underlying data structure as pursued in this work. The
intersection proofs based on the certification of succinct relations
presents an interesting avenue for future graph proofs.

One can realize graph proofs with Verifiable Computation (VC),
in which a client outsources a computation to an untrusted worker
and is subsequently enabled to verify the correctness of the com-
putation result. The recent Pinocchio scheme by Parno et al. [30]
employs quadratic programs to achieve a highly efficient verifica-
tion and constant-size proofs of computation. Whereas the proofs
of computation can be made statistically zero-knowledge at low
cost, the zero-knowledge certification of the auxiliary worker input
(in our case the topology graph) is not considered. However, VC
may provide an alternative to compiling 3-proofs on the graph sig-
nature. In parallel to this work, Zhang et al. [39], have proposed
ALITHEIA, a verifiable graph processing framework and offered
a comprehensive comparison of Verifiable Computing results on
graphs. Zhang et al. state that the verifiable execution of BFS on
Pinocchio suffered from the need to be expressed as a circuit and
the involved quadratic blow-up, which resulted in an implemen-
tation scaling up only to 50 vertices. The 15GB-RAM experiment
machine was running out of memory when compiling the certifying
algorithm code on graphs with more than 10, 000 vertices. Thus,
whereas the verification time offered by the ALITHEIA graph VC
only grows sub-linearly and can be considerably faster than the
compiled Schnorr proofs we use in this approach, this comes at
a high storage cost for the server.

70 of 84

Final Report
(TOPOCERT)

on Privacy

and Anonymization

\ !l[{((
Techniques L (1%
prisma cloud

1.00E+07

Full Decomposition: 3 hours

1.00E+06 -

1.00E405 -

1.00E+04

1.00E+03

Representation: 5 minutes

——Decomposition
s Vertex Composition
~#=Edge Composition

Representation

Issuing: 1 second

Time in milliseconds ~(log-scale)

—>¢=Signature Generation

1.00E402 A///’/’/_A

1.00E+01 +

1.00E+00 -

1000 2000 3000 4000 5000

6000
Vertices n (# Edges m=2n)

7000 8000 9000 10000

Figure 2: Experimental performance analysis with a secure modulus length of 2048 bits, in the worst case of a non-parallelized
computation on a single processor core. x-axis contains the number of vertices n and the y-axis a log-scale of computation time in
milliseconds. Blue colors denote provider computations to prove properties of a committed graph, where the green line shows a proof
of representation of a graph signature. Red colors denote auditing system/issuer computations to sign the graph.

9. CONCLUSION AND FUTURE WORK

We have introduced a signature scheme on committed graphs
together with a framework of proof predicates on sets, connectiv-
ity and isolation. The scheme covers undirected, unlabeled and
labeled graphs and enables honest-verifier zero-knowledge proofs
of knowledge over graph properties, while keeping the graph it-
self confidential. It constitutes a building block to overcome the
requirement gap between the confidentiality requirements of a pro-
vider and the integrity requirements of a tenant.

The signature scheme and its proofs are created in a special RSA
setting; their security is based on the Strong RSA assumption. The
signature scheme is based on the Camenisch-Lysyanskaya (CL)
signature scheme [11] and its existential unforgeability directly de-
rived from that. The proofs can be transformed to signature proofs
of knowledge with the Fiat-Shamir [20] heuristic. The construc-
tions for the proof predicates are efficient and practical; their per-
formance can be vastly improved with parallelization.

As future work, we see great potential in linking the graph sig-
natures to Direct Anonymous Attestation (DAA) [8]. This allows
the combination of attestation results for system components (e.g.,
physical and virtual machines) with statements over the system
topology. Furthermore, we believe that a systematic parallelization
and a differential approach will allow graph signatures and corre-
sponding proof systems perform well, by which we will pursue a
cloud implementation of the signing and decomposition proofs.

Acknowledgments

The author’s research on graph signatures currently supported by
the EU FP7 FutureID project (http://futureid.eu) under
GA n° 318424. We are grateful for the initial discussions with
Jens Groth and Jan Camenisch. This work has benefited from the
reviews and insightful comments of the anonymous reviewers of
EUROCRYPT 2014, the IEEE Security and Privacy Symposium
2014, ACM CCS 2014 and ACM CCSW 2014.

79

10. REFERENCES

[1] BELLARE, M., AND NEVEN, G. Transitive signatures based
on factoring and rsa. In Advances in Cryptology —
ASIACRYPT 2002. Springer, 2002, pp. 397-414.
BLEIKERTZ, S., AND GROSS, T. A Virtualization Assurance
Language for Isolation and Deployment. In /EEE
International Symposium on Policies for Distributed Systems
and Networks (POLICY’11) (Jun 2011), IEEE.

BLEIKERTZ, S., GROSS, T., AND MODERSHEIM, S.
Automated Verification of Virtualized Infrastructures. In
ACM Cloud Computing Security Workshop (CCSW’11) (Oct
2011), ACM.

BLEIKERTZ, S., GROSS, T., SCHUNTER, M., AND
ERIKSSON, K. Automated Information Flow Analysis of
Virtualized Infrastructures. In 16th European Symposium on
Research in Computer Security (ESORICS’11) (Sep 2011),
Springer.

BLUM, M. How to prove a theorem so no one else can claim
it. In Proceedings of the International Congress of
Mathematicians (1986), vol. 1, p. 2.

Boupor, F. Efficient proofs that a committed number lies in
an interval. In Advances in Cryptology — EUROCRYPT
2000 (2000), B. Preneel, Ed., vol. 1807 of Lecture Notes in
Computer Science, Springer Verlag, pp. 431-444.

BRANDS, S. Rapid demonstration of linear relations
connected by boolean operators. In Advances in Cryptology
— EUROCRYPT ’97 (1997), W. Fumy, Ed., vol. 1233 of
Lecture Notes in Computer Science, Springer Verlag,

pp. 318-333.

BRICKELL, E., CAMENISCH, J., AND CHEN, L. Direct
anonymous attestation. In Proc. 11th ACM Conference on
Computer and Communications Security (2004), acm press,
pp- 225-234.

(2]

71 of 84

Final Report
(TOPOCERT)

on Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

[9] CAMENISCH, J., CHAABOUNI, R., AND SHELAT, A.
Efficient protocols for set membership and range proofs. In
Advances in Cryptology-ASIACRYPT 2008 (2008), Springer,
pp. 234-252.

[10] CAMENISCH, J., AND GRoOsSs, T. Efficient attributes for
anonymous credentials. ACM Transactions on Information
and System Security (TISSEC) 15,1 (2012), 4.

[11] CAMENISCH, J., AND LYSYANSKAYA, A. A signature
scheme with efficient protocols. In Security in
Communication Networks SCN 2002 (2003), vol. 2576 of
LNCS, Springer Verlag, pp. 268-289.

[12] CAMENISCH, J., AND MICHELS, M. Proving in
zero-knowledge that a number n is the product of two safe
primes. In Advances in Cryptology — EUROCRYPT ’99
(1999), J. Stern, Ed., vol. 1592 of Lecture Notes in Computer
Science, Springer Verlag, pp. 107-122.

[13] CAMENISCH, J., AND STADLER, M. Efficient group
signature schemes for large groups. In Advances in
Cryptology — CRYPTO ’97 (1997), B. Kaliski, Ed.,
vol. 1296 of Lecture Notes in Computer Science, Springer
Verlag, pp. 410-424.

[14] CHAN, A., FRANKEL, Y., AND TSIOUNIS, Y. Easy come —
easy go divisible cash. In Advances in Cryptology —
EUROCRYPT 98 (1998), K. Nyberg, Ed., vol. 1403 of
Lecture Notes in Computer Science, Springer Verlag,
pp. 561-575.

[15] CHAUM, D., AND PEDERSEN, T. P. Wallet databases with
observers. In Advances in Cryptology — CRYPTO ’92
(1993), E. E. Brickell, Ed., vol. 740 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 89-105.

[16] CRAMER, R., DAMGARD, I., AND SCHOENMAKERS, B.
Proofs of partial knowledge and simplified design of witness
hiding protocols. In Advances in Cryptology — CRYPTO ’94
(1994), Y. G. Desmedt, Ed., vol. 839 of LNCS, Springer
Verlag, pp. 174-187.

[17] CSA. The Notorious Nine: Cloud Computing Top Threats in
2013. Tech. rep., Cloud Security Alliance (CSA), Feb. 2013.

[18] DAMGARD, I., AND FUJISAKI, E. An integer commitment
scheme based on groups with hidden order. In Advances in
Cryptology — ASIACRYPT 2002 (2002), vol. 2501 of
Lecture Notes in Computer Science, Springer.

[19] ENISA. Cloud computing: Benefits, risks and
recommendations for information security, rev. b. Tech. rep.,
European Network and Information Security Agency
(ENISA), Dec. 2012.

[20] FIAT, A., AND SHAMIR, A. How to prove yourself:
Practical solutions to identification and signature problems.
In Advances in Cryptology — CRYPTO ’86 (1987), A. M.
Odlyzko, Ed., vol. 263 of Lecture Notes in Computer
Science, Springer Verlag, pp. 186—194.

[21] FunsAkl, E., AND OKAMOTO, T. Statistical zero
knowledge protocols to prove modular polynomial relations.
In Advances in Cryptology — CRYPTO ’97 (1997),

B. Kaliski, Ed., vol. 1294 of Lecture Notes in Computer
Science, Springer Verlag, pp. 16-30.

[22] GOLDREICH, O., MICALI, S., AND WIGDERSON, A.
Proofs that yield nothing but their validity or all languages in
np have zero-knowledge proof systems. Journal of the ACM
(JACM) 38, 3 (1991), 690-728.

[23] GOLDWASSER, S., MICALI, S., AND RIVEST, R. A digital
signature scheme secure against adaptive chosen-message

80

[24]

(25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

attacks. SIAM Journal on Computing 17,2 (Apr. 1988),
281-308.

GOODRICH, M. T., PAPAMANTHOU, C., NGUYEN, D.,
TAMASSIA, R., LOPES, C. V., OHRIMENKO, O., AND
TRIANDOPOULOS, N. Efficient verification of web-content
searching through authenticated web crawlers. Proceedings
of the VLDB Endowment 5, 10 (2012), 920-931.
GOODRICH, M. T., TAMASSIA, R., AND
TRIANDOPOULOS, N. Efficient authenticated data structures
for graph connectivity and geometric search problems.
Algorithmica 60, 3 (2011), 505-552.

GRoss, T. Certification and efficient proofs of committed
topology graphs. Cryptology ePrint Archive Report
2014/255,IACR, 2014. http://eprint.iacr.org/.
IBM. Specification of the Identity Mixer cryptographic
library, v. 2.3.40. Specification, IBM Research, Jan. 2013.
http://prime.inf.tu-dresden.de/idemix/.
JOHNSON, R., MOLNAR, D., SONG, D., AND WAGNER, D.
Homomorphic signature schemes. In Topics in
Cryptology—CT-RSA 2002. Springer, 2002, pp. 244-262.
MICALL, S., AND RIVEST, R. L. Transitive signature
schemes. In Topics in Cryptology-CT-RSA 2002. Springer,
2002, pp. 236-243.

PARNO, B., HOWELL, J., GENTRY, C., AND RAYKOVA, M.
Pinocchio: Nearly practical verifiable computation. In 2073
IEEE Symposium on Security and Privacy (SP) (2013),
IEEE, pp. 238-252.

PEDERSEN, T. P. Non-interactive and information-theoretic
secure verifiable secret sharing. In Advances in Cryptology —
CRYPTO 91 (1992), J. Feigenbaum, Ed., vol. 576 of Lecture
Notes in Computer Science, Springer Verlag, pp. 129-140.
PENG, K., BoYD, C., AND DAWSON, E. Batch
zero-knowledge proof and verification and its applications.
ACM Transactions on Information and System Security
(TISSEC) 10, 2 (2007), 6.

RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method
for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21, 2 (Feb.
1978), 120-126.

SCHIFFMAN, J., SUN, Y., VIJAYAKUMAR, H., AND
JAEGER, T. Cloud verifier: Verifiable auditing service for
iaas clouds. In Services (SERVICES), 2013 IEEE Ninth
World Congress on (June 2013), pp. 239-246.

SCHNORR, C. P. Efficient signature generation for smart
cards. Journal of Cryptology 4, 3 (1991), 239-252.

SHOUP, V. A Computational Introduction to Number Theory
and Algebra (Second Edition). Cambridge University Press,
2008. Online http://www.shoup.net/ntb/.

XIAO, H., FORD, B., AND FEIGENBAUM, J. Structural
cloud audits that protect private information. In Proceedings
of the 2013 ACM Workshop on Cloud Computing Security
Workshop (New York, NY, USA, 2013), CCSW ’13, ACM,
pp. 101-112.

ZHAL E., WOLINSKY, D. I., X1A0, H., L1U, H., SU, X.,
AND FORD, B. Auditing the structural reliability of the
clouds. Tech. rep., YALEU/DCS/TR-1479, Department of
Computer Science, Yale University, 2013., 2013.

ZHANG, Y., PAPAMANTHOU, C., AND KATZ, J.
ALITHEIA: Towards practical verifiable graph processing.
In 215t ACM Conference on Computer and Communications
Security (ACM CCS’14) (Nov. 2014), ACM Press.

72 of 84

Final Report on
(TOPOCERT)

Privacy

and Anonymization

\ !![{((
Techniques W
prisma cloud

Geo-Location Separation of Virtualized Systems

Thomas Grof3
School of Computing Science, Newcastle University, UK

Abstract

Background. Providers of virtualized infrastruc-
tures seek to offer added dependability by geo-
spatially distributed deployments. For instance, a
provider could offer to host the resources of a ten-
ant in k-out-of-n European countries.

Aim. To prove in zero-knowledge that a deploy-
ment represented as a graph is distributed over a k-
out-of-n subset of a set of candidate location labels.

Expected Results. We derive a predicate for a
graph signature scheme that can efficiently prove
separation over geo-locations.

Expected Impact. Cloud providers can thereby
convince tenants that the geo-location SLAs they
have claimed are fulfilled, without disclosure of the
actual deployment plan.

1 Preliminaries

The preliminaries are taken verbatim from Gro8 in-
troduction of graph signatures [13].

1.1 Assumptions

Special RSA Modulus A special RSA modulus has
the form N = pg, where p = 2p'+1 and g =

24’ + 1 are safe primes, the corresponding group is
called special RSA group. Strong RSA Assumption
[1,12,15]: Given an RSA modulus N and a random
element g € Zy, it is hard to compute & € Zj}; and
integer e > 1 such that #° = g mod N. The modulus
N is of a special form pg, where p = 2p’ + 1 and
q = 2q’ + 1 are safe primes. Quadratic Residues
The set QRy is the set of Quadratic Residues of a
special RSA group with modulus N.

1.2 Integer Commitments

Damgard and Fujisaki [10] showed for the Pedersen
commitment scheme [14] that if it operates in a spe-
cial RSA group and the committer is not privy to the
factorization of the modulus, then the commitment
scheme can be used to commit to integers of arbi-
trary size. The commitment scheme is information-
theoretically hiding and computationally binding.
The security parameter is £. The public parameters
are a group G with special RSA modulus N, and
generators (go, .. .,gm) of the cyclic subgroup QRy.
In order to commit to the values (Vi,...,V;) € (Z*),
pick a random R € {0, 1} and set C = g8 [T'_, g/'.

1.3 Known Discrete-Logarithm-Based,
Zero-Knowledge Proofs

In the common parameters model, we use sev-
eral previously known results for proving state-
ments about discrete logarithms, such as (1) proof

73 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma closud
of knowledge of a discrete logarithm modulo a The message space is the set {(my,...,mp_1) :m; €

prime [16] or a composite [10, 12], (2) proof of
knowledge of equality of representation modulo
two (possibly different) composite [7] moduli, (3)
proof that a commitment opens to the product of two
other committed values [3,7], (4) proof that a com-
mitted value lies in a given integer interval [2, 7],
and also (5) proof of the disjunction or conjunc-
tion of any two of the previous [9]. These proto-
cols modulo a composite are secure under the strong
RSA assumption and modulo a prime under the dis-
crete logarithm assumption.

Proofs as described above can be expressed in the
notation introduced by Camenisch and Stadler [8].
For instance,

PK{(OC,,BJS) :y:gahﬁ/\i:gai’ls/\(ug (XSV)}

denotes a “zero-knowledge Proof of Knowledge of
integers o, B, and 8 such that y = g*hP and 5 =
8%h® holds, where u < a < v,” where y,g.h,¥,3,
and are elements of some groups G = (g) = (h)
and G = (§) = (h). The convention is that Greek
letters denote quantities of which knowledge is be-
ing proven, while all other values are known to the
verifier. We apply the Fiat-Shamir heuristic [11]
to turn such proofs of knowledge into signatures
on some message m; denoted as, e.g., SPK{(«) :
y = g%}(m). Given a protocol in this notation, it is
straightforward to derive an actual protocol imple-
menting the proof.

1.4 Camenisch-Lysyanskaya
tures

Signa-

Let us introduce Camenisch-Lysyanskaya (CL) sig-
natures in a Strong RSA setting [6].

Let ¢ 4, L., {y, £, and L be system parame-
ters; ¢, is a security parameter, ¢, the message
length, ¢, the length of the Strong RSA problem
instance prime exponent, ¢y the size of the spe-
cial RSA modulus. The scheme operates with a
Uy-bit special RSA modulus. Choose, uniformly
at random, Ry,...,R;—1,5,Z € QRy. The public
key pk(l) is (N,Ro,...,R1—1,S,Z), the private key
sk(l) the factorization of the special RSA modulus.

+{0,1}7}.

Signing hidden messages. Oninputmy,...,m;_;
, choose a random prime number e of length ¢, >
¢ 4 +2, and a random number v of length ¢, = ¢y +
l_y +¥,. To sign hidden messages, user U commits
to values V in an integer commitment C and proves
knowledge of the representation of the commitment.
The issuer | verifies the structure of C and signs the
commitment:

1/e
A= z mod N
=\ o oty .
CR"...R/™|'S"
The user completes the signature as follows: ¢ =
(e,A,v) = (e,A,(VV+R)).

To verify that the tuple (e,A,v) is a signature on
message (mo,...,m_1), check that the following
statements hold: Z = A°Rj°...R;"|'S" (mod N),
m; € £{0,1}"#, and 2% > e > 2‘~! holds.

Theorem 1. [6] The signature scheme is secure
against adaptive chosen message attacks under the
strong RSA assumption.

Proving Knowledge of a Signature. The prover
randomizes A: Given a signature (A,e,v), the tu-
ple (A’ := AS" mod N,e,v := v+er) is also a
valid signature as well. Now, provided that A €
(S) and that r is chosen uniformly at random from
{0,1}¥*2 the value A’ is distributed statistically
close to uniform over Zjy;. Thus, the user could com-
pute a fresh A’ each time, reveal it, and then run the
protocol

PK{(S,V/,‘UO,...,,ULfl):
Z=4R - RI“TASY (mod N) A
we+{0,1}7 A geRlel 41,2 1]}
CL-

1.5 Set Membership from

Signatures

Set membership proofs can be constructed from
CL-Signatures following a method proposed by Ca-
menisch, Chaabouni and shelat [4]. For a set . =

74 of 84

\ !l[{((

Jjull L
prisma cloud

Final Report on Privacy and Anonymization Techniques
(TOPOCERT)
{my,...,m;,...,m}, the issuer signs all set mem- not exist, if gcd(E,F) > 1.

bers m; in CL-Signatures 0; = (A,e,v) and pub-
lishes the set of message-signature pairs {(m;, ;) }
integerly. To prove set membership of a value
committed in C, the prover shows knowledge of
the blinded signature o; corresponding to the mes-
sage m; and equality of exponents with C. We ex-
plain this technique in detail in the extended version
of this paper and denote a set membership proof
U[C] € #, which reads u encoded in commitment
C is member of set ..

1.6 Camenisch-Grofi Encoding

The Camenisch-Grol (CG) Encoding [5] estab-
lishes structure on the CL message space by encod-
ing multiple binary and finite-set values into a sin-
gle message, and we will use a similar paradigm to
encode graphs efficiently. We explain the key prin-
ciples briefly and give more details in the extended
version of this paper.

The core principle of the CG-Encoding is to rep-
resent binary and finite-set attribute values as prime
numbers. It uses divisibility and coprimality to
show whether an attribute value is present in or ab-
sent from a credential. The attribute values certified
in a credential, say e;, e;, and e;, are represented in a
single message of the CL-Signature, by signing the
product of their prime representative E = ¢;-¢; - ¢;
in an Integer attribute. The association between the
value and the prime number of the encoding is cer-
tified by the credential issuer.
Divisibility/AND-Proof. To prove that a disclosed
prime representative ¢; is present in E, we prove that
e; divides the committed product E, we show that
we know a secret p’ that completes the product:

PK{(W.,p): D=+(g")* " (mod N)}.

Coprimality/NOT-Proof. We show that one or mul-
tiple prime representatives are not present in a cre-
dential, we show coprimality. To prove that two val-
ues E and F are coprime, i.e., gcd(E,F) = 1, we
prove there exist integers a and b such that Bézout’s
Identity equals 1, where a and b for this equation do

PK{(p,p,a,B,p"): D=+g'hP (mod N)
A g=+D%G")P (mod N)}.

OR-Proof To show that a credential contains an at-
tribute e that is contained in an OR-list, we show
there exists an integer a such that ae = Hf’ e if e
is not in the list, then there is no such integer a as
e does not divide the product. We use the notation
a C E for an OR-proof that & contains one or more
values of E.

2 Setup

We have three parties:

1. Auditor/Issuer I,

2. Provider/Prover P, and

3. Tenant/Verifier V.

In addition to the setup defined for graph signa-
tures [13], Issuer | certifies a list of vertex labels for
locations % ;. together with a set of prime repre-
sentatives = & ;, disjoint from the set of vertex iden-
tifiers.

Without loss of generality, we assume that % ;.
and = ¢ ; contain 193 labels and their representa-
tives, one for each country of the United Nations.
For instance, the issuer could allocate the first 193
prime numbers between 2 and 1171 for that pur-
pose. Hence, the locations can be encoded with a
bit-length of 11 bits.

3 Certification

In the certification phase of the virtualized infras-
tructure, Issuer | not only determines the topology
of the infrastructure. The issuer also securely de-
termines the geo-location of the physical hosts and
(network and storage) devices of the system and,
thereby, establishes a label from the set %%y ; and
a corresponding prime representative from & & 5 for
each vertex representing a physical host or device.
It is out of the score of this report to define how the

geo-location of the devices is determined securely.

75 of 84

\ !![{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud
We define the label allocation function f» as fol- proof of knowledge:

lows: For each vertex in the topology graph repre-
senting a physical resource, the issuer certifies the
product of its vertex identifier and its geo-location
label from .2y ;. For each vertex in the topology
graph representing a virtual resource, the issuer cer-
tifies the the product of its vertex identifier and the
geo-location of the physical entity hosting it.

As a consequence, each vertex in graph will be
labeled with a geo-location from % ;, either de-
termined for the physical device or inherited from
it.

4 Proof of Possession

4.1 Proof of Representation

The proof of separation created by the Prover P
starts from a regular proof of possession, where it
is not necessary for the core proof to establish an
edge decomposition.

PK{(ﬂia“(i,j)aeaV/>P7Pi) :
- Wi pHay) | gre gV
2= FRey Ragjy o ATS
C; = £RMiSPi (mod N)

(mod N) A

4.2 Proof of Vertex Composition

Second, the prover computes a proof of correct ver-
tex composition, which shows that that each mes-
sage m; is composed of exactly one vertex iden-
tifier e; € Z4 and exaxtly one label representative

ey € Eg}L.

PK{(givﬁh,}/ivpi/):
C;=+R&SP (mod N) A
C; = £C%SP (mod N).

Note that when the issuer | is trusted to only certify
correct graphs then there is no need to prove further
properties of the decomposition. It is possible, how-
ever, to complement this proof to show that the label
and vertex representatives are coming from particu-
lar subsets. This can be achieved with an extended

PK{(&,pi, % P;) :
C;=+R%SP (mod N) A
Ci = +C%SP (mod N) A
YCICEyrrL A &[ClE€Ey}.

4.3 Tools for the Proofs of Separation

The proof of separation if based on a proof of co-
primality. Essentially, by proving that vertex rep-
resentations are coprime we show that they do not
share a common location label. As a result, two
vertex representations shown to be coprime will
be considered separate with respect to their geo-
location.

As a principle, all proofs of co-primality and
by extension geo-location separation are based on
proving that Bézout’s Identity equals 1 over the
vertex commitments. In a simplified case we can
assume without loss of generality that the geo-
location labels are the only labels present. Then it
is sufficient to reason over the messages m; and m;.
Recall, that m; and m; are coprime, if and only if
there exist integers a and b such that

1 = am;+bm;.

As a proof over commitments C; and C; holding
representations of m; and m;, we have:

PK{(Vi,j: & j,Bij.pij) :
R= in""iji’j SPHJ (mod N)

This proof offers the first method for a proof of geo-
location separation based on pair-wise difference. It
comes at a cost of three modular exponentiations
per vertex pair in question.

5 Proof of k-out-of-n Separation

We base an advanced construction of k-out-of-n
separation on existing proof predicates for graph
signatures, based on Grof3” construction for topol-
ogy proofs [?]. In particular, we use a construction

76 of 84

Final Report on
(TOPOCERT)

Privacy

and Anonymization

\ !l[{((
Techniques W
prisma cloud

to represent a set of vertices as a cumulative prod-
uct, represented by the proof predicate set(¥,V).
We also use a construction to establish a partition
over k vertex subsets, represented by the proof pred-
icate partition(¥,Vi,...,Vi).

5.1 Without Constraints on the Label
Set

Here we can assume that n is the size of the entire
location label set, Zy ..

To show that the resources are separated over k
different geo-locations, the prover proceeds as fol-
lows.

1. Designate a partition of k subsets, which sep-
arated by geo-location. (This entails that all
resources with the same geo-location are as-
signed to the same subset)

2. Compute a commitment on a cumulative prod-
uct for each subset, as its representation.

3. Compute a set composition proof for each sub-
set.

4. Compute a proof of pair-wise disjointness for
the partition’s subsets.

5.2 With Constraints on the Label Set

If n < |.%y 1| and the proof is made with respect to
a location label subset L C .Z ;, then the prover
needs to convince the verifier in addition to the par-
tition described above that the labels are from the
right subset. This is facilitated with subset proofs as
outlined in the introduction of graph signatures [13].

6 Computational Complexity Consid-
erations

While earlier work in this space [?,13] offered com-
plexity considerations based on modular exponenti-
ations as unit of computation, these analyses ignore
that the exponentiations will largely only be with
small exponents (less than 32 bits).

Consequently, we are bound to get a more precise
evaluation of the computational complexity by con-
sidering the number of multiplications. The num-
ber of multiplications depends on the size of mes-

sage exponents, which also determines the size of
the randomness chosen for the X-proofs.

6.1 Bitlength of Message Exponents

The size of the message exponents for vertices de-
pends on the bitlength of the largest prime represen-
tatives for labels and vertices:

\m|2 = |max(E$~L)|2 + \max(Em |2

Hence, the size is dependent on the number of the
dictionary of location labels and the maximal graph
size. From the Prime Number Theorem [?], we
know that the n-th prime is approximated by nlnn.
Thereby, holds

max(Eg) ~ |-Ly | In | Ly 1]and

max(Zy) ~ (|Ly [+ 7]) In (1 Ly L]+ 7).

As a result, the maximal bitlength of a message
exponent is given by

Im|y = logy(|Ly o] In |Ly 1)
+logy ((1ZLy LI+ Y1) In (| Ly Ll + 7).

Example 1 (Geo-Location Separation by Country).
Let us assume that we have |.Ly 1| = 193 with the
location labels encoding all countries of the United
Nations (with the first 193 prime numbers). Then,
Imax(Eg 1)l <11

Consider a graph signature setup prepared to
handle graphs with 50.000 vertices.

max(Ey) ~ 50.193 In 50.193 = 540.989.
As a result we have
[Imax(Ey)|, = log,(540.989) < 20.
Overall, a graph signature scheme for graphs with

up to 50.000 vertices and 193 countries can operate
on message exponents with a bitlength of 31 bits.

77 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma closud
6.2 Complexity in Multi-Base Expo- References

nentiations

For the computational complexity analysis, we con-
sider two parameters n= |¥l, number of vertices,
and m= |&, the number of edges. For simplicity,
we assume that the graph signature encodes a graph
with representations for all vertices.

6.3 Complexity in Multiplications

In addition to the parameters n = |#'| and m = |&|,
the number of multiplications depends on the num-
ber of certified location labels {1, = |-Zy |-

We note that the Camenisch-Lysyanskaya sig-
nature scheme specifies minimal sizes for the ex-
ponents of e and v and that the Integer Commit-
ment Scheme will depend on a minimal size of
randomness r, values that depend on the setup of
the CL-signature scheme implied by the modulus
bitlength. The following constraints hold by the
Identity Mixer Specification 2.3.43:

4, = |N|, =2048

Ly = 256.

le="Lp+2=597

by =L+l + 0 = 2724, where {5 is a security
parameter (default ¢z = 80).

In addition, the Identity Mixer library version
2.3.43 specifies the bitlength of the randomness of
Damgard-Fujisaki commitments as

b, =|r|a =logy|n/4].

For modular exponentiations, the computational
complexity of the binary square-and-multiply algo-
rithm uses O(k) n-bit multiplications, where & is the
bitlength of the exponent.

Example 2 (50.000 Vertices and 193 Location La-
bels). In this example, we consider a fully con-
nected graph, such that m = @ We have ly =
31, g =40, L, = {, —2 =2046. All other pa-
rameters are chosen as in the Identity Mixer Spec-
ification version 2.3.43. The proof of possession
costs 2724 + 597 +2046 - 100.000 + 31 - 150.000 +
40-1.249.975.000 = 50.208.253.321. The vertex
composition costs 2046 - 150.000 4 31 - 150.000 =
311.550.000.

[1] BARIC, N., AND PFITZMANN, B. Collision-
free accumulators and fail-stop signature
schemes without trees. In Advances in Cryp-
tology — EUROCRYPT 97 (1997), W. Fumy,
Ed., vol. 1233 of Lecture Notes in Computer
Science, Springer Verlag, pp. 480—494.

[2

—

Boupor, F. Efficient proofs that a commit-
ted number lies in an interval. In Advances
in Cryptology — EUROCRYPT 2000 (2000),
B. Preneel, Ed., vol. 1807 of Lecture Notes in
Computer Science, Springer Verlag, pp. 431-
444,

3

—_—

BRANDS, S. Rapid demonstration of linear
relations connected by boolean operators. In
Advances in Cryptology — EUROCRYPT ’97
(1997), W. Fumy, Ed., vol. 1233 of Lecture
Notes in Computer Science, Springer Verlag,
pp. 318-333.

[4

—_—

CAMENISCH, J., CHAABOUNI, R., AND
SHELAT, A. Efficient protocols for set
membership and range proofs. In Advances
in Cryptology-ASIACRYPT 2008 (2008),
Springer, pp. 234-252.

[5] CAMENISCH, J., AND GROSS, T. Efficient
attributes for anonymous credentials. ACM

Transactions on Information and System Se-
curity (TISSEC) 15, 1 (2012), 4.

[6

—_

CAMENISCH, J., AND LYSYANSKAYA, A.
A signature scheme with efficient protocols.
In Security in Communication Networks SCN
2002 (2003), vol. 2576 of LNCS, Springer Ver-
lag, pp. 268-289.

[7

—

CAMENISCH, J., AND MICHELS, M. Proving
in zero-knowledge that a number # is the prod-
uct of two safe primes. In Advances in Cryp-
tology — EUROCRYPT ’99 (1999), J. Stern,
Ed., vol. 1592 of Lecture Notes in Computer
Science, Springer Verlag, pp. 107-122.

[8

—

CAMENISCH, J., AND STADLER, M. Ef-
ficient group signature schemes for large

78 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques L (1%
(TOPOCERT) prisma clesud

Table 1: Efficiency of proofs of predicates in multi-base exponentiations (MultiExps) dependent on the
number of vertices n and of edges m. k is the number of partitions considered for the separation. We
consider it to hold that k < ¢ < n and O(k¢) = O(n).

Predicate Commitments MultiExps ModExps

(0] # o
Possession n 2n+1 O(n) 3n+m+2 O(n+ m)
Vertex Composition n 3n O(n) 6n O(n)
Geo-location separation k(£+1) B +2k(6+1) O(K*)=0(n) 3k*+4k(t+1)+2 O(k*) =0(n)

Table 2: Efficiency of proofs of predicates in multiplications dependent on the number of vertices n and of
edges m. k is the number of partitions considered for the separation. We consider it to hold that k < ¢ < n
and O(k() = O(n). We have parameters of £, > €, > b, > £, > by, > lp > ly. by =logy (|- Ly 1| In | Ly 1))+

logz ((1-Zy Ll +7]) In (1L 1|+ 7)) and L = 2log, ((|-Ly LI+ V|) In (| Ly L]+ 7))
Predicate Commitments Multiplications
#
Possession n by + L +2nl, + 3nly +mlg
Vertex Composition n 3nl, + 3nlby

Geo-location separation k(¢+1) (04 1) (b + L) + 2Kk Ly + K24, 42

groups. In Advances in Cryptology — [12] Fulisaki, E., AND OKAMOTO, T. Statisti-
CRYPTO 97 (1997), B. Kaliski, Ed., cal zero knowledge protocols to prove modu-
vol. 1296 of Lecture Notes in Computer Sci- lar polynomial relations. In Advances in Cryp-
ence, Springer Verlag, pp. 410-424. tology — CRYPTO ’97 (1997), B. Kaliski, Ed.,
vol. 1294 of Lecture Notes in Computer Sci-

[9] CRAMER, R., DAMGARD, 1., AND SCHOEN- ence, Springer Verlag, pp. 16-30.

MAKERS, B. Proofs of partial knowledge and
simplified design of witness hiding protocols. [13]
In Advances in Cryptology — CRYPTO ’94 committed graphs and NP-statements. In /9th
(1994)’ Y. G. Desmedt, Ed., vol. 839 of LNCS, International Conference on Financial Cryp-
Springer Verlag, pp. 174-187. tography and Data Security (FC 2015) (2015),
pp- 293-314.

GRrosS, T. Signatures and efficient proofs on

[10] DAMGARD, I., AND FUJISAKI, E. An inte-
ger commitment scheme based on groups with

hidden order. http://eprint.iacr.org/ [14] PEDERSEN, T. P. Non-interactive and

2001, 2001. information-theoretic secure verifiable secret
sharing. In Advances in Cryptology -
[11] FIAT, A., AND SHAMIR, A. How to prove CRYPTO 91 (1992), J. Feigenbaum, Ed.,
yourself: Practical solutions to identification vol. 576 of Lecture Notes in Computer Sci-

and signature problems. In Advances in ence, Springer Verlag, pp. 129-140.

Cryptology — CRYPTO 86 (1987), A. M.

Odlyzko, Ed., vol. 263 of Lecture Notes in [15] RIVEST, R. L., SHAMIR, A., AND ADLE-
Computer Science, Springer Verlag, pp. 186— MAN, L. A method for obtaining digital signa-
194. tures and public-key cryptosystems. Commiu-

79 of 84

5 !!({((
Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

nications of the ACM 21, 2 (Feb. 1978), 120—
126.

[16] SCHNORR, C. P. Efficient signature genera-
tion for smart cards. Journal of Cryptology 4,
3 (1991), 239-252.

80 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud
List of Acronyms

BFT Byzantine Fault Tolerance

CCTV Closed-Circuit Television

CL-GS Group Signature Scheme with Controllable Linkability

CSS Computational Secret Sharing

DSA Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm
EUF-CMA Existential Unforgeability under adaptively Chosen Message Attacks

FPE
JCA
JCE
JCPF
JSON
LA
OPE
PSS

Format Preserving Encryption
Java Cryptography Architecture
Java Cryptography Extensions
Java Crypto Provider Framework
JavaScript Object Notation
Linking Authority

Order Preserving Encryption
Proactive Secret Sharing

RSA-FDH RSA Full Domain Hash
RSA-PSS RSA Probabilistic Signature Scheme

RSS
t-SDH
VDP
XML

Redactable Signature Scheme
t Strong Diffie Hellman
Verifiable Data Processing
eXtensible Markup Language

List of Figures

—_

© oo N O Ot ks W N

PRISMACLOUD architecture 7
Library components of the TOPOCERT tool. 16
Abstract components of the TOPOCERT tool. 16

Sequence diagram of the issuing process between auditor and provider roles. 21

Sequence diagram of the proof process between provider and tenant. . . . 21
Sequence diagram of the proof process between provider and tenant. 22
Parameters Class Diagram 27
Key pairs Class Diagram L 0oL 28
Recipient and Signer Class Diagram 29

81 of 84

5 !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma clesud

List of Tables

1 Parameters of the graph signature scheme gs_params and encoding setup
enc_params. Parameters for the underlying Camenisch-Lysyanskaya signa-
ture scheme are largely adapted from the Identity Mixer Specification [[BM13].
In the implementation, this table is referred to as table:params. 31

82 of 84

\ !l[{((

Final Report on Privacy and Anonymization Techniques W
(TOPOCERT) prisma closud
References

[BG11] Soren Bleikertz and Thomas Gro. A Virtualization Assurance Language

[BGSE11]

[BVG14]

[BVGM15]

[CCGS10]

[CGOS]

[CG12]

[CL02]

[CS97]

[Grol4]

[Grol5]

for Isolation and Deployment. In IEEE International Symposium on Poli-
cies for Distributed Systems and Networks (POLICY’11), pages 33-40. IEEE,
Jun 2011.

Soren Bleikertz, Thomas Grofl, Matthias Schunter, and Konrad Eriksson.
Automated Information Flow Analysis of Virtualized Infrastructures. In
16th European Symposium on Research in Computer Security (ESORICS’11).
Springer, Sep 2011.

Soren Bleikertz, Carsten Vogel, and Thomas Grofi. Cloud Radar: near real-
time detection of security failures in dynamic virtualized infrastructures. In
Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC’14), pages 26-35. ACM, 2014.

Soren Bleikertz, Carsten Vogel, Thomas Grofl, and Sebastian M&dersheim.
Proactive security analysis of changes in virtualized infrastructures. In Pro-
ceedings of the 31th Annual Computer Security Applications Conference (AC-
SAC’15), 2015.

Jan Camenisch, Nathalie Casati, Thomas Grof3, and Victor Shoup. Credential
authenticated identification and key exchange. In Advances in Cryptology—
CRYPTO 2010, pages 255-276. Springer, August 2010.

Jan Camenisch and Thomas Grof3. Efficient attributes for anonymous creden-
tials. In Proceedings of the 15th ACM conference on Computer and communi-
cations security (CCS 2008), pages 345-356. ACM Press, 2008.

Jan Camenisch and Thomas Grofi. Efficient attributes for anonymous cre-
dentials. ACM Transactions on Information and System Security (TISSEC),
15(1):4:1-4:30, 2012.

Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient
Protocols. In SCN, LNCS. Springer, 2002.

Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for
Large Groups. In Advances in Cryptology — CRYPTO 1997, pages 410-424,
1997.

Thomas Grof3. Efficient certification and zero-knowledge proofs of knowledge
on infrastructure topology graphs. In Proceedings of the 6th edition of the
ACM Workshop on Cloud Computing Security (CCSW 2014), pages 69-80.
ACM, 2014.

Thomas Grof. Signatures and efficient proofs on committed graphs and NP-
statements. In 19th International Conference on Financial Cryptography and
Data Security (FC 2015), pages 293-314, 2015.

83 of 84

N

Final Report on Privacy and Anonymization Techniques W

(TOPOCERT) prisma clesud

[Grol7] Thomas Grof. Geo-location separation of virtualized systems. Technical Re-
port CS-TR, Newcastle University, 2017.

[IBM13] IBM. Specification of the Identity Mixer cryptographic library, v. 2.3.40. Spec-
ification, IBM Research, January 2013. http://prime.inf.tu-dresden.de/
idemix/.

[ISO06] ISO. International Standard ISO 3166-1, Codes for the representation of
names of countries and their subdivisions—Part 1: Country codes, ISO 3166-1
apha-2. International Organization on Standardization, Geneva, 2006.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC press, 2014.

[KR09] Maciej Koutny and Brian Randell. Structured occurrence nets: A formalism
for aiding system failure prevention and analysis techniques. Fundamenta
Informaticae, 97(1-2):41-91, 2009.

[LR88| Michael Luby and Charles Rackoff. How to construct pseudorandom permuta-
tions from pseudorandom functions. SIAM Journal on Computing, 17(2):373—
386, 1988.

[MFFT08] Luc Moreau, Juliana Freire, Joe Futrelle, Robert E McGrath, Jim Myers, and
Patrick Paulson. The open provenance model: An overview. In International
Provenance and Annotation Workshop, pages 323-326. Springer, 2008.

[Nef01] C Andrew Neft. A verifiable secret shuffle and its application to e-voting. In

Proceedings of the 8th ACM conference on Computer and Communications
Security, pages 116-125. ACM, 2001.

84 of 84

http://prime.inf.tu-dresden.de/idemix/
http://prime.inf.tu-dresden.de/idemix/

	Executive Summary
	Introduction
	Scope of the document
	Relation to other project work
	Structure of the document

	The TOPOCERT Tool
	Overview
	Scope Definition
	Tool Architecture
	Services Based on TOPOCERT
	Software Implementation

	Terms and Definitions
	Roles
	Auditor
	Signer
	Provider
	Recipient
	Prover
	Tenant
	Verifier
	Graph
	Vertex
	Edge
	Label
	Realization Model
	Message
	Topology Certification
	Topology Certificate
	Graph Signature
	Zero-Knowledge Proof of Knowledge
	Signature Proof of Knowledge
	Commitment Scheme
	Public Key
	Private Key
	Issuing
	Graph Signature Scheme
	Anonymous Credential Scheme
	Policy Predicate
	Vertex/Label Identifier
	Prime Representative
	Prime Encoding
	Camenisch-Groß Encoding
	Geo-Location
	Proof of Representation
	Proof of Possession
	Proof of Vertex/Edge Composition
	Proof of Separation
	Proof of Isolation
	Proof of Connectivity
	Partition
	Disjointness

	Component Model of the TOPOCERT Tool
	Design Paradigms
	Auditor
	Provider

	Tenant
	TOPOCERT Tool
	Auditor
	Provider
	Tenant
	Abstract Description
	Static Architecture and Design of the TOPOCERT Tool
	Dynamic Architecture and Design of the TOPOCERT Tool

	Graph Signature Library
	Signer S
	Recipient R
	Prover P
	Verifier V
	Proof Context
	Abstract Description
	Static Architecture and Design of the Library

	Recommendations

	Geo-Separation
	Overview
	Our Contribution
	State-of-the-Art

	Preliminaries and Building Blocks
	Our Framework

	The TOPOCERT Tool in the Application Context
	The e-Goverment Pilot
	Research on Additional Applications
	Geo-location
	Future Work

	Conclusion
	Appendix
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

