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The importance of MLTCs -25/<-ADMISSION
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* Increasing prevalence in all communities
 Associated with poor outcomes and increased healthcare use/costs
 Global challenge
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The clinical challenge of MLTC care 22" ADMISSION
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Multimorbidity: clinical assessment and management
NICE guideline [NG56] Published: 21 September 2016

« Multiple OPD attendances in different departments

« Siloed decision making in healthcare “ologies” with potential for harm
« No secondary care ownership of holistic patient care

 Individual patient cost

« Indirect costs - repeated journeys



What could “good” look like? ~23<” ADMISSION
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Predictive

Joined up approach to:

« Predict risk on an individual basis

A s S : « Pre-empt each condition before
4 P enotyping Pre-emptive onset

Medicine R « Personalise treatments based on
nrormartics

approach combination of MLTC present and
- Personalised likely response by that individual.
Anavies « Make use of synergistic therapy

combinations
» « Co-build care pathways which
Participatory reflect MLTCs and reduce number
of health contacts

Genomics

New social contract
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Current challenges in MLTC research /- #PMssioN

Recording of some LTCs is poor in medical coding.

Not all long-term conditions are equal in terms of impact - but most
studies offer a “count”.

The severity of the LTC is important, yet poorly recorded.

LTC tend to occur at different points in time - but many studies are
cross-sectional.

 Available data does not often reflect the full community - “data
poverty” and risk of bias.
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The complex nature of MLTC and impact:::-ADMissioN

 Impact of MLTCs likely to depend
on:

« Which combination of MLTC
« Severity of one or all
« Symptom burden

« The complexity of health care
needs

Increasing complexity of care needs

Increasing severity of comorbidities
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Health Data Research Hub

G’/\
0

 Ethically and CAG approved, secure research database and analytical environment.

« Link patient data at an individual level across community and hospital health care
providers.

| | Unique
« Disease and organ agnostic - complete health records. data health

- Data is near real time, frequently refreshed. platforms

« Build bespoke datasets including synthetic. 20 years 1.2 million

 Build bespoke Trusted Research Environments. Longitudinal data ' records

* Provide data access under license to NHS, academic, commercial, 153 UK care hospitals linked

. across these records and
pO'ICy, 3rd sector. all searchable through HDR

UK’s Innovation Gateway

* Provide transparent pUb“C oversight th rough Refreshed in near-real-time for
. ¢ 3 = . h
our Data Trust Committee. T



Patient and public involvement o
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RESEARCH ARTICLE Open Access

Perceptions of anonymised data use and ®
awareness of the NHS data opt-out

Research Involvement
and Engagement

Ghach for
updartes

amongst patients, carers and healthcare

staff
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W Yes
B No
I Unsure

« Co-developed protocol.
« Local and national data opt out.
« “Data Trust Committee” review all data

access requests.

« Weigh up public benefit versus risk.

« DTC decision is binding.

« Supported >90 data requests since Sept
2020.
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- Map data across coding systems

Data availability
(ICD to SNOMED CT).

@ « Real world health data and

Attendance Reason Operations/ ProcedureMedications / Allergies  Vital Signs Synthetl(:.

« >20 years longitudinal data.
@ « Open applications for data access.
Laboratory Tests  Imaging Reports  Complications / Diagnosis severity  * All data access under license.
~+ Data staged in TRE, reducing data

+  egress.
o o o B

O

Patient Transfers Final Outcome Outpatient Care
Synthetic data -
including images



Building a clearer picture of a diagnosis™ /- ADMISSION

Linked records from HDRUK Phenotype Library
primary and secondary

care

ooo

e E L The HDR UK Phenotype Library is a

TI: a /\'\/A\ comprehensive, open access resource providing
the research community with information, tools
and phenotyping algorithms for UK electronic

health records.

—+ ey Q
Medicines which fit
with Dx — j

Time and date -I ,090 2,1 23

stamped interactions phenotypes codelists

Supplemental data

to assess trends

.

/‘

Investigations which fit

with Dx Severity data
Free text results

through natural
language processing
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BM) Open How far back do we need to look to
capture diagnoses in electronic health
records? A retrospective observational
study of hospital electronic health
record data
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Percentage of all patients with top 10 grouped conditions per
lookback period

—— All Diabetes

~———Angina

——— Anxiety

~ Asthma

—— Atrial fibrillation

e COPD

~——— Depression

Heart failure

Hypertension

Myocardial infarction

4 5 6 7 8 9
Lookback period (years)

10
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Building opportunities through NHSE SDEs ~APMSSON
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 Funded in 2022
East West Kent, Medway
dela'ncjs Midlalm:ﬁis . &ﬁg?sex r i PI’OCESSES based On
ENVIRONMENT ENVIRONMENT ENVIRONMENT PIONEER

nap— Thames Valley o Ethics and CAG approval
ENVIRONMENT SECURE DATA ENVIRONMENT to link data from >830
health and care providers

ENVIRONMENT

Saaiia North East and East of
North Cumbria England  Even better
ENVIRONMENT SECURE DATA SECURE DATA

ENVIRONMENT

representation of patient
Connected . Great pOPUIation

Yorkshire Western
SECURE DATA SECURE DATA
ENVIRONMENT ENVIRONMENT



Federated analytics

« Data remains with Data
Controller.

* Analysts do not “see” raw data.
 Analytical codes moves to TRE.
« Outputs are moved out of TRE.

* Requires
« Data Controller to manage all data
cleansing.
 Interoperability.

« Clear metadata to enable building of
code.

Testing federated analytics across secure data environments using differing
statistical approaches on cross-disciplinary data

S. Gallier, A. Topham, J. Hodson, D. McNulty, T. Giles, S. Cox, J. Chaganty, L. Cooper, S. Perks, P. Quinlan,
E. Sapey
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a) Pooled Learning
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b) Online Learning
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Next steps in health data science: /7"

Big data meets little data

 Failure rate for early phase translational studies is high.
- Often translational studies include small numbers - how can data
science help?

- Adding translational data to health data to increase opportunities
for learning to improve stratified and then personalized medicine
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What's next? Potential mechanisms for MLTC
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Hughes et al. Eur Respir Rev 2020;29:190102
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Thank you

Questions?

Newcastle &8 UNIVERSITYOF University Manchester
%Umversﬂ:y 9 BIRMINGHAM d of Dundee e s

University
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