Recent advances in the genetics & biology of lymphoma

Chris Bacon
Northern Institute for Cancer Research
Newcastle University
&
Newcastle Upon Tyne Hospitals
NHS Foundation Trust
Lymphoma

- Age standardised incidence: \(\approx 16,500/100,000/y \)
- \(\approx 11,000 \) new cases in UK each year
- Increasing incidence (of diagnosis?)

• DLBCL \(\approx 40\% \) all lymphomas
Diffuse large B cell lymphoma (DLBCL)

WHO 2008

- T cell/histiocyte rich LBCL
- Primary DLBCL of CNS
- Primary cutaneous DLBCL, leg type
- EBV positive DLBCL of the elderly
- Primary mediastinal LBCL
- Intravascular LBCL
- DLBCL associated with chronic inflammation
- Lymphomatoid granulomatosis
- ALK-positive LBCL
- Plasmablastic lymphoma
- LBCL arising in HHV8-associated MCD
- Primary effusion lymphoma

Diffuse large B cell lymphoma, not otherwise specified

- Median age – 60s
- 40% extranodal
- 50% advanced disease
- Rx: R-CHOP or similar
- 40% cure rate
Germinal centre reaction

- Bcl6
- Blimp1
- Pax5
- XBP1
- GC B cell
- Plasma cell
Germinal centre reaction

Checkpoints (apoptosis arrest)

AID
CSR
DNA breaks
SHM
ATM
p53
p21

Bcl6

Blimp1

Pax5

XBP1

GC B cell

Plasma cell
Germinal centre reaction

Key proteins and processes:
- BCR
- CD40L
- NF-κB
- IRF4
- Bcl6
- Blimp1
- Pax5
- XBP1
- GC B cell
- Plasma cell

Processes:
- Somatic hypermutation
- Clonal expansion
- Selection
- Class switching
- Mutations that increase antigen affinity
- Mutations that reduce antigen affinity
- Differentiation
(One way to define) two types of DLBCL

(Wright et al 2003)

Rx: R-CHOP

(Germinal-center B-cell-like)
(Activated B-cell-like)

(Lenzo et al 2008)

CD10
BCL6
LMO2
A-MYB
JAW1

Ongoing
IGH VDJ mutation

(Loisso et al 2000)

IRF4
Cyclin D2
Flip
CD44
IGHM
FOX1
PRKCB1

IGH VDJ mutated
Distinct genomic abnormalities in ABC vs GCB

ABC
- **BCL2-R**: 24%
- **BCL6 mut**: 44%
- **TP53 mut**: 24%
- **TP53 del**: 24%

GCB
- **BCL2-R**: 34%
- **BCL6 mut**: 10%
- **TP53 mut**: 74%
- **TP53 del**: 30%

CGB
- Mir-17-92 amp
- REL amp
- PTEN loss
- MDM2 gain/amp
- ING1 loss

ABC
- Trisomy 3 / 3p gain
- NFKBIZ amp
- 18q gain/amp: BCL2, MALT1, NFAT2
- CDKN2A/B, INK4A/ARF loss
- SPIB gain/amp

(Lenz et al 2008)

(Iqbal et al 2004; Iqbal et al 2007; Young et al 2007)
NF-κB dependence of ABC-DLBCL

A

GCB DLBCL

ABC DLBCL

Cyclin D2
IRF-4
IRF-5
c-FLIP
BCL-2
CCR7
IkB alpha

(Davis et al 2002)

(Davis et al 2002)

Inhibition of MALT1 protease activity is selectively toxic for activated B cell–like diffuse large B cell lymphoma cells

Uta Ferch, Bernhard Kloor, Andreas Gewies, Vera Pfänder, Michael Düwel, Christian Peschel, Daniel Krappmann, and Jürgen Ruland

Gene symbol (synonym)

<table>
<thead>
<tr>
<th>Gene symbol (synonym)</th>
<th>Number of mutated/tested cases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABC-DLBCL</td>
</tr>
<tr>
<td>TNFAIP3 (A20)</td>
<td>9/37 (24.3)</td>
</tr>
<tr>
<td>CARD11</td>
<td>4/37 (10.8)</td>
</tr>
<tr>
<td>TNFRSF11A (RANK)</td>
<td>3/37 (8.1)</td>
</tr>
<tr>
<td>TRAF5</td>
<td>2/37 (5.4)</td>
</tr>
<tr>
<td>TRAF2</td>
<td>1/37 (2.7)</td>
</tr>
<tr>
<td>MAP3K7 (TAK1)</td>
<td>2/37 (5.4)</td>
</tr>
<tr>
<td>All genes</td>
<td>19/37 (51.3)</td>
</tr>
</tbody>
</table>

(Compagno et al 2009)
Defective plasma cell differentiation in ABC-DLBCL

Normal GC B cell differentiation

NF-κB → IRF4 → Bcl6 → Blimp1 → Plasma cell

DLBCL with BCL6 mutation / translocation

NF-κB → Proliferation

DDR checkpoint → IRF4

Bcl6 → Blimp1 → Plasma cell

(Saito et al 2007; Wang et al 2002; Pasqualucci et al 2003)
Defective plasma cell differentiation in ABC-DLBCL

Normal GC B cell differentiation

- NF-κB
- IRF4
- Bcl6
- Blimp1
- Plasma cell

DLBCL with PRDM1 (Blimp1) mutation/deletion

- NF-κB
- IRF4
- Bcl6?
- Plasma cell

(Pasqualucci et al 2006; Tam et al 2006; Mandelbaum et al ASH 2009)
• Almost all ABC DLBCL express IgM (ie. no class switch, Ig maintained on surface)

• CSR only on non-productive allele

• Large deletions in switch μ region on productive allele

• Increased AID-mediated non-VDJ region somatic hypermutation compared to GCB DLBCL

• Increased translocations involving switch regions compared to GCB DLBCL

Aberrant CSR regulation / switch μ deletions

Repeated futile attempts at CSR

Increased somatic hypermutation / translocations (collateral damage)

Lymphomagenesis
Chronic active BCR signalling in ABC-DLBCL

SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma

Lin teng Chen, 1 Stefano Monti, 2 Przemysław Juszczynski, 1 John Daley, 1 Wen Chen, 1 Thomas E. Witzg, 3 Thomas M. Habermann, 2 Jeffery L. Kuzio, 4 and Margaret A. Shipp 5

1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; 2 Broad Institute, Cambridge, MA; 3 Mayo Clinic, Rochester, MN; and 4 Department of Pathology, Brigham and Women's Hospital, Boston, MA

(Davis et al 2010)
Genetically-guided therapy for DLBCL

Differential effect of bortezomib + chemo in ABC vs GCB DLBCL

(Dunleavy et al. 2009)
Sporadic Burkitt lymphoma
Children & young adults > older adults
Often extranodal – ileocaecal, kidneys, breasts
70% advanced stage rapidly progressive disease
Treated with intensive chemotherapy
80-90% cure rate

WHO 2000
All cases MYC-R (IGH > IGK > IGL)
All cases Bcl2 negative

A problem:
Diagnostic reproducibility ≈ 60%
Biological and clinical overlap with DLBCL
GEP of aggressive mature B cell lymphomas

- Burkitt lymphoma (BL) N=36
- Molecular BL (mBL) N=44
- Aggressive B-NHL Unclassifiable N=18
- DLBCL N=165
- Non-mBL N=128
- Intermediate N=48

(Hummel et al 2006)
(Dave et al 2006)
Characteristics of molecular subgroups

<table>
<thead>
<tr>
<th></th>
<th>mBL</th>
<th>Non-mBL</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >60</td>
<td>9%</td>
<td>69%</td>
<td>55%</td>
</tr>
<tr>
<td>Cell of origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GCB</td>
<td>91%</td>
<td>35%</td>
<td>71%</td>
</tr>
<tr>
<td>• ABC</td>
<td>9%</td>
<td>39%</td>
<td>17%</td>
</tr>
<tr>
<td>• Unclassified</td>
<td>9%</td>
<td>26%</td>
<td>13%</td>
</tr>
<tr>
<td>Bcl2 expression</td>
<td>21%</td>
<td>84%</td>
<td>83%</td>
</tr>
<tr>
<td>High proliferation (>95%)</td>
<td>66%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>MYC translocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IG-MYC</td>
<td>88%</td>
<td>4%</td>
<td>33%</td>
</tr>
<tr>
<td>• non IG-MYC</td>
<td>2%</td>
<td>3%</td>
<td>21%</td>
</tr>
<tr>
<td>• no translocation</td>
<td>9%</td>
<td>93%</td>
<td>46%</td>
</tr>
<tr>
<td>IGH-BCL2</td>
<td>2%</td>
<td>11%</td>
<td>21%</td>
</tr>
<tr>
<td>BCL6 translocation</td>
<td></td>
<td>24%</td>
<td>15%</td>
</tr>
<tr>
<td>Genomic complexity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Low</td>
<td>79%</td>
<td>29%</td>
<td>31%</td>
</tr>
<tr>
<td>• High</td>
<td>21%</td>
<td>71%</td>
<td>69%</td>
</tr>
<tr>
<td>Genetic group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MYC-simple</td>
<td>76%</td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>• MYC-complex</td>
<td>13%</td>
<td>7%</td>
<td>40%</td>
</tr>
<tr>
<td>• MYC-negative</td>
<td>11%</td>
<td>93%</td>
<td>47%</td>
</tr>
</tbody>
</table>

(Hummel et al 2006)
Genomic complexity in MYC translocated cases

(Boerma et al 2009)
Clinical Implications

mBL: 84% ALL-like Rx
Others: 72% CHOP-like Rx

? Confounding effect of age / lower stage of mBL / MYC-simple disease

(Hummel et al 2006)
Clinical Implications

BL defined by:
- Ki67 approaching 100%
- GCB immunophenotype
- Bcl2 negative
- p53 +ve / p21 –ve
- MYC rearrangement
- No BCL2 / BCL6 rearr

Many had DLBCL morphology

Rx: CODOX-M / IVAC

Survival of patients with a histological diagnosis of DLBCL, reclassified as Burkitt lymphoma following gene expression profiling

(Dave et al 2006)
MYC – BCL2 “Double hit” lymphomas

Presentation
- **Adults** (50% >60y)
- **De novo or transformed follicular lymphoma**
- **Adverse clinical features:** Poor performance status, high IPI, advanced stage, high LDH extranodal disease, BM / PB involvement

Genetics (Johnson et al 2009)
- **IG-MYC:** 56% (IGH > IGK > IGL) (50% t(8;14) = complex [t(8;14)t(14;18)]
- **Non IG-MYC:** 50% t(8;9)(q24;p13) / (5’ to PAX5); also 1p36, 3p25, 3q27, 4p13, 4p13, 5q13, 12p11, 13q31
 - Almost all have a complex karyotype, incl ≥ 3 translocations
 - Hummel: DH = non-mBL or intermediate

Histology
- **DLBCL** (35%) or **BCLU / BLL** (65%)
- Most have GCB immunoprofile
- Most have high Ki67 proliferation fraction
- Almost all express Bcl2 strongly

Outcome
- Very poor survival, median OS <12 months
- If do respond, relapse rapidly

(Niitsu et al 2009)
MYC – BCL2 “Double hit” lymphomas

78 year old man with a rapidly enlarging neck mass
MYC – BCL2 “Double hit” lymphomas

Cytogeneticist: Gavin Cuthbert

Sequential FISH
(-performed due to low level positivity for IGH/BCL2 and MYC - ~30% abnormal)

IGH/BCL2 (dual fusion)

MYC (break apart)

Further interphase FISH
IGH-MYC fusion negative
IGK split
Abnormal **BCL6** signal (FFR)
MYC – BCL2 “Double hit” lymphomas

73 year old woman with lymphadenopathy, PB lymphocytosis & bone marrow infiltration

G-banded karyotype from bone marrow preparations showing 47,XX,add(8)(q24),?t(14;18)(q32;q21),-16,+mar1,+mar2

C.P. - dob. 1933
MYC – BCL2 “Double hit” lymphomas

Cytogeneticist: Gavin Cuthbert

IGH/BCL2 dual fusion
- Fusion: der(14)
- Fusion: der(18)

MYC/BCL6 dual fusion
- Fusions: marker
- Fusion: der(3)
- Fusion: der(8)

C.P. - dob. 1933
MYC – BCL2 “Double hit” lymphomas

Whole chromosome painting

- marker
- wcp3
- wcp8
- der(3)
- der(8)

Composite image of key abnormal chromosomes

- Partial G-banded karyotype featuring images from 2 metaphases
- MYC/BCL6 dual colour FISH
- wcp3 and wcp8

revised karyotype: 47,XX,t(3;8)(q27;q24.1),t(14;18)(q32;q21),+rea(8)t(3;8),?del(16)(q1?)

C.P. - dob.1933
WHO 2008: BCLU-IDB

<table>
<thead>
<tr>
<th></th>
<th>Burkitt lymphoma</th>
<th>BCLU-IDB</th>
<th>DLBCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>Small / medium-size cells</td>
<td>Small / medium or mixture</td>
<td>Large cells</td>
</tr>
<tr>
<td>Immunophenotype</td>
<td>GCB CD10+ Bcl6+ Bcl2-/weak</td>
<td>Mostly as BL Bcl2 strong in DH ?non-GCB if DH</td>
<td>GCB Non-GCB</td>
</tr>
<tr>
<td>Proliferation fraction</td>
<td>>90% homogeneous</td>
<td>Often as BL May be as DLBCL</td>
<td>Commonly <90% heterogeneous</td>
</tr>
<tr>
<td>MYC rearrangement</td>
<td>Yes (5% lack MYC-R)</td>
<td>Common</td>
<td>Rare</td>
</tr>
<tr>
<td>MYC translocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IG-MYC</td>
<td>Yes</td>
<td>Sometimes</td>
<td>Rare</td>
</tr>
<tr>
<td>• non IG-MYC</td>
<td>No</td>
<td>Sometimes</td>
<td>Rare</td>
</tr>
<tr>
<td>BCL2 or BCL6 rearranged but not MYC</td>
<td>No</td>
<td>Rare</td>
<td>Sometimes</td>
</tr>
<tr>
<td>Genetic group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MYC-simple</td>
<td>Yes</td>
<td>Rare</td>
<td>Rare (?never)</td>
</tr>
<tr>
<td>• MYC-complex</td>
<td>Rare</td>
<td>Common</td>
<td>Rare</td>
</tr>
<tr>
<td>Double hit</td>
<td>No</td>
<td>Sometimes</td>
<td>Rare</td>
</tr>
</tbody>
</table>
DLBCL with MYC translocations

- 5-10% DLBCL have MYC rearrangement in absence of BCL2 / BCL6 rearrangements
- No defining high risk clinical features
- No consistent histological features
 - 50-75% GCB GEP profile / immunophenotype
 - Only a trend to high proliferation fraction
- Independent prognostic factor for PFS & OS in CHOP / R-CHOP treated DLBCL

(Klapper et al 2008)
(Savage et al 2009)
A personal view & questions

1. Burkitt lymphoma
2. Non-\textit{MYC} DLBCL
3. \textit{MYC} complex – intermediate
4. \textit{MYC} complex – DLBCL
5. Non-\textit{MYC} intermediate

- How should 3-5 be treated?
- How should we capture genomic complexity, not just \textit{BCL2/6} translocations?
- How should we identify 5?
- Should all aggressive B cell lymphomas have \textit{MYC} +/- other FISH or karyotyping?
- How must we design diagnostic systems to capture the clinically relevant genetic information that is headying our way?
Acknowledgements

Not my work!

Cytogenetics, Northern Genetics Service
Nick Bown
Gavin Cuthbert
Chris Lowe

Cellular Pathology, NUTH
Katrina Wood
Geetha Menon
Brian Angus