UNIVERSITY OF
NEWCASTLE

Starting with CUDA

Quote:
With great power comes great responsibility.

Summary
How to install and setup CUDA in windows with Visual Studio 2010.

Tutorial Overview
Show you which files and how to configure Visual Studio to run CUDA simulations.

Basics
Before you even consider installing CUDA, ensure that you have Visual Studio 2010 installed, and you can
compile and run native C++ code without any problems.

As of this writing, CUDA Toolkit 4.0 is available [e.g. http://developer.nvidia.com/cuda-toolkit-40]

We'll setup and install CUDA 32bit.

Visual Studio 2008.

For Windows 7 64, install the 64bit drivers.
1. Install driver (e.g. devdriver_4.0_winvista-win7_64_270.81_general.exe)
2. Install CUDA Toolkit (e.g. cudatoolkit_4.0.17_win_32.msi)
3. Install CUDA Tools SDK (e.g. cudatools_4.0.17_win_32.msi)

Your installation should have been installed at:

“C:\Program Files (x86)\NVIDIA GPU Computing Toolkit”

HACK FIX

On occasion some people encounter a compile error:

1>------ Build started: Project: code7, Configuration: Debug Win32 ------
1>Error: The result "" of evaluating the value "$(CudaBuildTasksPath)" of the
"AssemblyFile" attribute in element <UsingTask> is not valid. C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\BuildCustomizations\CUDA 4.0.targets
========== Build: @ succeeded, 1 failed, © up-to-date, 0 skipped ==========

This is a bug with the Custom build files installed by CUDA, (for 32bit install on windows7) located at:
“C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\BuildCustomizations”

This is a bug in “CUDA 4.0.targets” file. To fix this, open “CUDA 4.0.props”, and copy the section defining
CudaBuildTaskPath, e.g.:

<PropertyGroup>
<CudaToolkitDir Condition=""$(CudaToolkitDir)' == "">$(CudaToolkitCustomDir)</CudaToolkitDir>
<CudaToolkitVersion>v4.0</CudaToolkitVersion>
<CudaToolkitFullVersion>4.00.0000.0000</CudaToolkitFullVersion>

<CudaBuildRulesPath>$(VCTargetsPath)BuildCustomizations\CUDA 4.0.xml</CudaBuildRulesPath>
<CudaBuildTasksPath>$(VCTargetsPath)BuildCustomizations\Nvda.Build.CudaTasks.v4.0.dll</CudaBuildTasksPath>
</PropertyGroup>

Then open your “CUDA 4.0.targets”, and paste the contents at the top, just before where it’s needed. e.g.:

http://developer.nvidia.com/cuda-toolkit-40

<PropertyGroup>
<CudaToolkitDir Condition=""$(CudaToolkitDir)' == "">$(CudaToolkitCustomDir)</CudaToolkitDir>
<CudaToolkitVersion>v4.0</CudaToolkitVersion>
<CudaToolkitFullVersion>4.00.0000.0000</CudaToolkitFullVersion>

<CudaBuildRulesPath>$(VCTargetsPath)BuildCustomizations\CUDA 4.0.xml</CudaBuildRulesPath>
<CudaBuildTasksPath>$(VCTargetsPath)BuildCustomizations\Nvda.Build.CudaTasks.v4.0.dll</CudaBuildTasksPath>
</PropertyGroup>

<UsingTask TaskName="Nvda.Build. CudaTasks.Countltems" AssemblyFile="$(CudaBuildTasksPath)" />

<UsingTask TaskName="Nvda.Build. CudaTasks.GenerateDeps" AssemblyFile="$(CudaBuildTasksPath)" />

<UsingTask TaskName="Nvda.Build.CudaTasks.LogMetadata" AssemblyFile="$(CudaBuildTasksPath)" />

<UsingTask TaskName="Nvda.Build.CudaTasks.ReadMetadataLinesFromItems" AssemblyFile="$(CudaBuildTasksPath)" />
<UsingTask TaskName="Nvda.Build.CudaTasks.SanitizePaths" AssemblyFile="$(CudaBuildTasksPath)" />

<UsingTask TaskName="Nvda.Build.CudaTasks.SetEnvironmentVariable" AssemblyFile="$(CudaBuildTasksPath)" />
<UsingTask TaskName="Nvda.Build.CudaTasks.SplitToltemMetadata" AssemblyFile="$§(CudaBuildTasksPath)" />

Visual Studio 2008

When you create a new project, be sure to set the build configuration to v90.

Select the project and open the properties (ALT-Enter). In the general tab set the Platform Toolset field to v90 (if you
are not able to do this then you probably don’t have VS 2008 installed, this is required by CUDA).

codeb Property Pages

. 9| = |

Configuration: | Active(Debug) ¥ | Platform: | Active(Win32) '] ’ Configuration Manager...]
> Common Properties F]
a Configuration Properties Output Directory S(SolutionDir)5(Configuration)',
General Intermediate Directory S(Configuration)\,
Uebugging Target Name S(ProjectMNarne)
VC++ Directories Target Extension exe
b CfCer Extensions to Delete on Clean *.cdf;*.cache ™. obj;™.ilk* resources; ™ tlb;*.tli; " tlh;* tmp; *.rsp;
b Linker Build Log File ${IntDir)\$(MSBuildProjectamel.log
> Mardet Tool FatomTooker____________) B
> XML Document Generator 5 I
(> Browse Information Configuration Type
[> Build Events
[» Custom Build Step Use of MFC -
b Code Analysis Use of ATL Not Using ATL
Character Set Use Unicode Character Set
Common Language Runtime Support Mo Commeaen Language Runtime Support
Whaole Program Qptimization Mo Whale Pregram Optimization
Platform Toolset
Specifies the toolset used for building the current configuration; If not set, the default toolset is used
¢ T | »
OK || Cancel || Apply |
DLL Error

System Error. The program can't start because cudart32_40_17.dll is missing from your computer. Try
reinstalling the program to fix this problem.

This is because you need to let your system know where the DLL’s for CUDA are located. You can do this
by adding the location of your dll’s to the “Environment Paths” in windows, e.g.

Depending on where you've installed CUDA and which version you installed (32bit/64bit):
“C:\Program Files (x86)\NVIDIA GPU Computing Toolkit\CUDA\v4.0\bin”
Alternatively you can append the working location of the DLL’s inside Visual Studio:

“Project->Properties>Configuration Properties->Debugging” : “Environment”
: “Merge Environment” -> True

Set Environment to:

PATH=%PATH%;C:\Program Files (x86)\NVIDIA GPU Computing Toolkit\CUDA\v4.

codesd Proy P

Configuration: | Active(Debug) v| Platform: [Active(Win32) ~| | configuration Manager... |

» Common Properties Debugger to launch:

a Configuration Properties ’Local Windows Debugger 'l

General

(ortugona Comnard_____ELRRRD -

VC++ Dhrectones
Command Arguments

> CIC++ " —

> CUDA C/C++ orking Directory (ProjectDir)
i Attach Nao

> Linker

» Manifest Tool Debugger T Auto

Environment PATH=%PATH%;C:\Program Files (x86)\NVIDIA GPU Computing Toolkit\CUDA\w4.

Merge Environment Yes

XML Decumnent Generat:
Browse Information

> Build Events 0L Debugging Mo
> Custom Build Step
> Code Analysis

Command

The debug command to execute,

[oK] [Cancel Apply

Paths and Includes

You'll need to tell your code where paths and directories are needed. Ideally you should set the paths in
Visual Studio.

Right click the project in the Solution Explorer -> Properties -> VC++ Directories -> Include Directories /
Library Directories.

Alternatively for windows you can specify the libs using the #pragma define:

#pragma comment (1ib, "cuda.lib")
#pragma comment (l1ib, "cudart.lib'")

For hacky and dirty, you can even specify your paths directly inside your code without adding the paths to
Visual Studio:

#define CUDA PATH "C:\\Program Files (x86)\\NVIDIA GPU Computing Toolkit\\CUDA\\v4.O0\\"

#pragma comment (1ib, CUDA PATH "1lib\\Win32\\cuda.lib")
#pragma comment (lib, CUDA PATH "1lib\\Win32\\cudart.lib")

#include "C:\\Program Files (x86)\\NVIDIA GPU Computing Toolkit\\CUDA\\v4.0\\include\\cuda.h"
#include "C:\\Program Files (x86)\\NVIDIA GPU Computing
Toolkit\\CUDA\\v4.0\\include\\cuda_ runtime.h"

g w N

“.cu” File
CUDA files need to be compiled using the Nvidia compiler. If you create a CUDA project and your
compiling and getting errors such as:

Your ‘.cu’ file isn’t being included in the build and hence the code can’t call various functions from it.

[fatal error LNK1120: x unresolved externals

The ‘.cu’ file is being included, but its being compiled using the Visual Studio C/C++ compiler which can’t
handle special CUDA C syntax and global defines.

error C2065: 'blockldx' : undeclared identifier
error C2059: syntax error : '<'
error C2065: 'blockDim' : undeclared identifier

To fix this, make sure you right click on the .cu file and change its build options to be compiled using CUDA:

hello.cu Property Pages

Solution Explorer > 4
=,
IS Configuration: [Active(Debug) = | Platform: |Active(Win32) ~| [Configuration Manager
-3 Solution ‘code8' 1 praject) J : -] g 9 ger...
4 [codes Excluded From Build No
» g Bitemal Dependencies > (T CUDA ot =
[Header Files - |
[Resource Files esource compiler i
. e Managed resource compiler
XML Data Generator Tool
[hello.cu i
i e Custom Build Tool
Does not participate in build
Open With... 2
esource
2, View Class Diagram Object E
£ Compile CurleF7 Library
Manifest Tool
Exclude From Project Compiled Mansged Resource
¥ Cut Ctrl+X
53 Copy Ctrl+C
X Remove Del
Rename P2
[Properties

Item Type
ftem type determines the build toel for the file

Simple Program

“main.cpp” file

// Inside .cu File, but we do a forward declaration here
void CudaMain () ;

void main ()

{

O J oUW

e
wWN O W

CudaMain () ;

“hello.cu”

#include <stdio.h> // So we can use 'printf(..)'

// Kernal Function on GPU
~ _global void foo()

{
}
// Cuda Entry Point
void CudaMain ()

{

printf ("CudaMain () \n") ;
foo<<<1l,1>>>();

ERRORS:

If you get link error messages similar to:

1> All outputs are up-to-date.

1>hello.cu.obj : error LNK2019: unresolved external symbol _cudaConfigureCall@32 referenced in
function "void __ cdecl CudaMain(void)" (?CudaMain@@YAXXZ)

1>hello.cu.obj : error LNK2019: unresolved external symbol __ cudaRegisterFunction@4@ referenced in
function "void _ cdecl

sti cudaRegisterAll_40_ tmpxft_000014c4_00000000_3_hello_cppl_ii_ Z3foov(void)"

(?_sti__ cudaRegisterAll_40_tmpxft_000014c4_00000000_3_hello_cppl_ii__ Z3foov@@YAXXZ)
1>hello.cu.obj : error LNK2019: unresolved external symbol __ cudaRegisterFatBinary@4 referenced in
function "void __ cdecl

sti cudaRegisterAll_40_ tmpxft_000014c4_00000000_3_hello_cppl_ii_ Z3foov(void)"

(?_sti__ cudaRegisterAll_40_tmpxft_000014c4_00000000_3_hello_cppl_ii__ Z3foov@@YAXXZ)
1>hello.cu.obj : error LNK2019: unresolved external symbol __ cudaUnregisterFatBinary@4 referenced
in function "void _ cdecl _ cudaUnregisterBinaryUtil(void)" (?__cudaUnregisterBinaryUtil@@YAXXZ)
1>hello.cu.obj : error LNK2019: unresolved external symbol _cudalLaunch@4 referenced in function
"enum cudaError __cdecl cudaLaunch<char>(char *)" (??$cudaLaunch@@@YA?AW4cudaError@@PAD@Z)
1>C:\code.exe : fatal error LNK1120: 5 unresolved externals

Then you've not included the CUDA libs in your build, e.g. to fix add:
#pragma comment(lib, "cuda.lib")
#pragma comment(lib, "cudart.lib")

-arch sm_11

If you use the newer CUDA functions, you’ll need to do into the project properties and enable it to build for
the latest CUDA api.

