© 00 ~NO O WN -

Lesson 1 - Introduction to SPU programming

Summary

This lesson will teach you the basics of running code on one of the PlayStation 3’s Synergistic Pro-
cessing Units by getting an SPU to send the phrase "Hello World’ to the terminal output.

New Concepts
Loading SPU code, SPU initialisation, creating SPU and PPU threads, Event Queues

Hello World SPU Code

Create two Visual Studio projects: a PPU project called HelloWorldPPU, and an SPU project
called HelloWorldSPU, according to the steps outlined in tutorial 0. Add a new source file to
HelloWorldSPU, and add the following code to it.

#include <spu_printf.h>

int main(void)

{
for(int i = 0; i < 100; ++i) {
spu_printf ("SPU: Hello world!\n");
+
return O;
+

helloworld.spu.cpp

Looks pretty easy, yes? The code should be pretty familiar to you, if you’ve ever used the printf
function to display output. Remember that when SPU programming, you do not have access to
std::cout, you have to use the equivalent C function, so remember to include its header file. Addi-
tionally, the spu_printf function doesn’t work quite how you might initially think it does; rather than
sending text to the terminal output as you would expect, it sends an event to one of the SPU’s ports,
containing a pointer to our output text. Think of events as being triggered messages containing data.

SPU ports are conceptually similar to the ports used for communication over a network so we can
send data to a any port we like, but if there’s nothing listening to that port, nothing will happen!
So that our events do something, we must set up an event queue in a PPU program to receive and
process messages sent from an SPU. To make this tutorial a little more useful, we are going to put
the code to handle the event queue in its own thread on the PPU, so that our program doesn’t stall
while sitting waiting for the SPU to send a message. Suddenly getting an SPU to say 'Hello World’
doesn’t sound so easy, does it!




O 00 ~NO O WN =

10
11
12
13
14
15
16

Hello World PPU Code

Overview

In our PPU code, we are going to do the following;:

1) Initialise the SPU

2) Load the SPU code we compiled in the previous section

3) Create an SPU thread to run our SPU "hello world” code

4) Link an event queue to our SPU thread to receive its output

5) Create a PPU thread to handle the output passed to the event queue
)

6) Wait for our SPU thread to finish, and then clean up and exit

Although you will have create threads before, doing so when the SPU is involved is a slightly
different process. Also, message queues are likely to be new to you, so don’t worry if you haven’t heard
of them before. It is worth noting that there are some functions in the Sony SDK for simplifying the
process of outputting SPU printf statements, by automating and hiding the PPU thread and Event
Queue creation steps. While this is nice, it is more beneficial to you to know how to create PPU
threads as early as possible, so in this tutorial we will be doing everything manually.

Includes and definitions

Add a new source file called HelloWorld.ppu.cpp to your PPU project. The remaining code for
this tutorial will all be PPU code, and will be added to this source file. The first code we’ll add to
this source file is some #include definitions and some macros.

#include <stdio.h> //We want to be able to printf

#include <stdlib.h> //And be able to call the exit function
#include <spu_printf.h> //And access to the SPU printf functions
#include <sys/spu_initialize.h> //And initialise SPUs

#include <sys/spu_utility.h> //And load in SPU images
#include <sys/paths.h> //And know about SYS_APP_HOME
#include <sys/ppu_thread.h> //And make PPU threads

#include <sys/spu_thread.h> //And make SPU threads

#include <sys/event.h> //And process events

helloworld.ppu.cpp

These are the headers we need to load and use SPU threads. You’ll be seeing these a lot in these
tutorials! You should be pretty used to the #include preprocessor directive by now, so let’s move
on. After the include directives, add the following code:

#define PPU_STACK_SIZE 4096
#define PPU_PRIORITY 200
#define SPU_PRINTF_PORT 0x1
#define MAX_PHYSICAL_SPU 1

#define MAX_RAW_SPU 0

#define SPU_SELF "/HelloWorldSPU.self"

#define SPU_PROG (SYS_APP_HOME SPU_SELF)

helloworld.ppu.cpp

These are the macros used in the PPU code. T’ll explain each macro as it is used in the code.
Firstly take a look at the SPU_PROG macro. Note how it is made up of two macros, the SPU_SELF
macro defined on the line above it, and the SYS_APP_HOME macro. This macro is defined in the
paths.h header file included on line 6, and is itself set to the value set in the ProDG VSI Project
properties you were introduced to in Lesson 0. SPU_SELF should be set to the name of your SPU
project if you're following this tutorial to the letter HelloWorldSPU.self will be correct, but double
check! With the macros over with, it’s time to look at our static variables and function declarations.




17
18
19
20
21

22
23
24
25
26
27
28
29
30

static sys_event_queue_t print_queue;
void ppu_thread_entry(uint64_t arg);

SYS_PROCESS_PARAM (1001, 0x10000)

helloworld.ppu.cpp

sys_event_queue_t is a structure used by the PS3 API. It’ll be described later, but for now just
know that the output of our SPU program will be accessed through this struct. ppu_thread_entry
is a function declaration this function will be passed on to the PPU thread we are about to create,
and will handle the output of incoming SPU-side printf commands. Finally, we have the preprocessor
directive SYS_PROCESS_PARAM(1001, 0x10000). This is used by the PS3 compiler to set the
priority and the stack size of the compiled program. These are the default values provided by Sony,
and will set your programs priority to 1001, and the stack size to 64kb. You should know about the
program stack by now, and how to read hex values, so lets move on to the main function of our "hello
world’ program!

Main Function

The main function will contain the code required to perform each of the steps outlined in the overview
section, starting with loading in the SPU program we created earlier.

Local variables

We begin the main function much as we would with any C++ program, and then define some local
variables.

int main(void) {
sys_ppu_thread_t thread;
sys_spu_thread_t thread_spu;
sys_spu_thread_group_t thread_group;
sys_event_queue_attribute_t queue_attr;

int return_val;

printf ("PPU: Hello world!\n");

helloworld.ppu.cpp

You probably won’t have seen these variable types before, but their names should give you a pretty
good idea what they do. sys_ppu_thread_t and sys_spu_thread_t are structs to represent a PPU
thread and SPU thread, respectively, while sys_spu_thread_group_t is a pointer to an SPU thread
group these will be explained shortly. sys_event_queue_t is the event queue mentioned earlier, while
sys_event_queue_attribute_t holds the attributes attached to the queue. On line 28, we define an
integer, return_val. As the name suggests, this variable is used to store the value returned by various
Sony API functions used throughout our main function. On line 29, we use printf to print out Hello
world!, just to show how simple it is to print when not doing it through the SPU. Note that The
phrase has been prefixed with ”PPU: 7, this is just to make it absolutely clear when examining the
terminal output which processor outputted which print statement.

Initialising the SPU

To initialise our SPU we have our first Sony API function, sys_spu_initialize. This function basically
"switches on’ the number of SPUs we require. Its first input variable determines the number of normal
SPUs to enable, while the second determines the number of 'raw’ SPUs. The difference between
normal and raw SPUs is beyond the scope of this tutorial, so simply note the use of the macros we
defined earlier, to enable 1 normal SPU and 0 'raw’ SPUs.




31
32
33
34
35

36
37
38
39
40
41

42
43
44
45
46
47
48
49
50

See how we place the function’s return value into return_val, and then use an if statement in
conjunction with the SDK macro 'CELL_OK’ to determine what to do if a function ’fails’, which for
the purposes of this tutorial is to output an error message and then exit.

return_val = sys_spu_initialize (MAX_PHYSICAL_SPU, MAX_RAW_SPU);
if (return_val !'= CELL_O0K) {

printf ("PPU: Couldn’t initialise SPUs!\n");

exit (return_val);

helloworld.ppu.cpp

Loading the SPU code

On line 36 we create a variable of type sys_spu_image_t. This is simply a struct that will hold
pointers and management information related to our SPU image once we have loaded it into memory.
Loading the SELF file is done on line 37, by passing a reference to our new struct to the SDK function
'sys_spu_image_open’, in addition to using our SPU_PROG macro, which defines the path and
file name of the SELF file to load. As with our SPU initialisation code, we can check return_val
to determine the success of our SELF image loading. Assuming the image open function has been
correct, the SELF image that was created by our SPU project will now have been loaded into memory
and pointed to by the spu_img variable, where it can be passed on to an SPU for execution.

sys_spu_image_t spu_img;

return_val = sys_spu_image_open (&spu_img, SPU_PROG);

if (return_val != CELL_0K) {
printf ("PPU: sys_spu_image_open failed %x\n", return_val);
exit (return_val);

helloworld.ppu.cpp

Creating an SPU Thread Group

Before we can run any threads on the SPU, we must create a 'thread group’. These allow related
SPU threads to be collected together for ease of management and context switching. For example you
might have a thread group for rendering threads, and a thread group for Al threads, and use them to
switch what your SPUs are processing as required. For the purposes of this tutorial we only need one
thread group, so let’s have a look at how to create one.

sys_spu_thread_group_attribute_t group_attr;
group_attr.type = SYS_SPU_THREAD_GROUP_TYPE_NORMAL;

return_val = sys_spu_thread_group_create (&thread_group,
MAX_PHYSICAL_SPU, 100, &group_attr);
if (return_val != CELL_0K) {
printf ("PPU: Thread group creation failed: %i\n", return_val);
exit (return_val);

helloworld.ppu.cpp

You should be pretty familiar with this pattern by now - we call a Sony SDK function, then check
its success. sys_spu_thread_group_create requires 4 parameters - a reference to the thread group to
create, the number of SPUs in the group, a priority number, and a reference to an attribute structure.
We create this structure on line 42, while our thread group structure we created way back on line 25.




51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

We define the number of SPUs to use in a macro back on line 13, while the priority is set to 100
- the default value suggested by Sony. Raising this priority will give thread groups more processing
time when using multiple thread groups, but as we are only using one group, it isn’t important.

Creating the SPU Thread

Now that the thread group is created, we can initialise an SPU thread to run in it. Unlike normal
threads which accept a function pointer, SPU thread initialisation requires references to our SPU code
and thread group.

sys_spu_thread_attribute_t thread_attr;
sys_spu_thread_argument_t thread_args;
return_val = sys_spu_thread_initialize(&thread_spu, thread_group,

0, &spu_img, &thread_attr, &thread_args);

if (return_val != CELL_0K) {
printf ("PPU: sys_spu_thread_initialize failed!");
switch(return_val) {
case (ESRCH): printf("Invalid Thread Group ID\n") ;break;
case (EINVAL): printf ("spu_num out of range\n") ;break;
case (EBUSY): printf("Already initialised / used\n");break;

case (ENOMEM): printf ("Memory allocation failed\n") ;break;
case (EFAULT): printf("Invalid address access\n") ;break;
default:printf ("Error! %i\n", return_val ;break;

3

exit (return_val);

helloworld.ppu.cpp

We're using the same pattern here again, this time with an additional switch statement - this
is to demonstrate how to check against the value returned by an SDK function. To initialise an
SPU thread, we use the sys_spu_thread_initialize SDK function, passing it a reference to the
sys_spu_thread_t we defined on line 23, a reference to the SPU thread group we have just initialised,
a reference to the SPU code we loaded earlier, and references to a couple of new variables we declare
on lines 51 and 52, of types sys_spu_thread_attribute_t and sys_spu_thread_argument_t. The
sys_spu_thread_attribute_t structure allows setting of attributes such as a name for a particular
thread, while sys_spu_thread_argument_t sets the arguments that will be passed to the main func-
tion of the SPU code we send to the SPU. The second parameter is the number of the SPU in the
thread group to assign the thread to. You might have a number of SPUs in a thread group, all re-
quiring initialising with different code, so this parameter sets which SPU gets initialised. Just as with
arrays, the index numbering begins at 0, so as we are initialising the first SPU in the thread group,
we use 0 as the parameter.

You might have been wondering what return_val is set to if it isn’t set to CELL_OK. This will
depend on the function called, so look up ’sys_spu_thread_initialize’ in the SDK documentation.
You'll find that it returns one of 6 values, either CELL_OK or 5 error values. We can check and
output information relating to each error an SDK function can return by using a switch statement.
Programming the PS3 can be tricky, so being able to output relevant debugging information such as
error codes is a useful tool, and you should use it when possible. The switch statement defined on
line 59 is to provide an example of this specific error outputting.

Creating and connecting the Event Queue

With the SPU thread created, we can move on to creating an Event Queue to handle its output.
Every time the SPU thread calls spu_printf, an event is added to the Event Queue attached to the
thread. This queue can then be polled in a PPU thread, and its data handled. The following code
will create an Event Queue, and connect it to the SPU thread.




69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

sys_event_queue_attribute_initialize (queue_attr) ;
return_val = sys_event_queue_create (&print_queue, &queue_attr,
SYS_EVENT_PORT_LOCAL, 127);
if (return_val != CELL_0K) {
printf ("PPU: sys_event_queue_create failed %i\n", return_val);

exit (return_val);

}

return_val=sys_spu_thread_connect_event (thread_spu, print_queue,
SYS_SPU_THREAD_EVENT_USER,
SPU_PRINTF_PORT) ;

if (return_val!=CELL_0K) {
printf ("PPU: Event Queue connect failed: %i\n", return_val);
exit (return_val);

helloworld.ppu.cpp

As with SPU thread initialisation, we require an attributes structure for our Event Queue, which in
this case must additionally be initialised with default data by the
sys_event_queue_attribute_initialize function. We then use the sys_event_queue_create SDK
function to create our queue, passing references to the sys_event_queue_t we defined on line 17,
and the sys_event_queue_attribute_t we defined on line 26, and initialised on line 69. Arguments
3 and 4 of the sys_event_queue_create require further explanation. Argument 3 is a unique ’key’
value used to identify the queue, which for the purposes of this tutorial is set to the SDK defined
key 'SYS_EVENT_PORT_LOCAL’. This key sets the queue to be visible to only the process that
created it. The last argument defines the maximum size of the event queue, and must be a value
between 1 and 127. The larger the maximum queue size, the more memory it will take up, but as
we don’t have to worry about that for our simple program, we can safely set it to the maximum allowed.

After checking the SDK function has executed correctly, we can connect the Event Queue to our SPU
thread, allowing its printf statements to be sent to the Event Queue. We do this on line 78, with the
SDK function sys_spu_thread_connect_event. We pass to it our SPU thread and print queue, as
well as two special values: SYS_SPU_THREAD_EVENT_USER and SPU_PRINTF_PORT.
SYS_SPU_THREAD_EVENT_USER marks the event as a type that can be be sent arbitrarily
in the SPU code, as opposed to an automatically generated event such as a DMA completion event
notice. The last argument assigns a port number to the Event Queue. spu_printf sends events to
port 1 (N.B see page 33 of the Lv2 Users Manual for a reference to this) so we set the argument to
SPU_PRINTF_PORT, the macro we defined on line 12, which is set to a value of 1.

Creating the PPU thread

With the Event Queue initialised and attached, we can create the PPU thread that will handle the
incoming spu_printf events. We do this using the sys_ppu_thread_create SDK function. This
function requires 6 arguments to be passed to it, which requires some explanation. The first argument
is a reference to a sys_ppu_thread_t , so we pass it out 'thread’ variable we defined on line 23. The
second argument is a pointer to the function we wish to run in the thread, so we pass it the function
declaration we made on line 19. The third argument defines a variable to send as an argument to
the function we will be using in our thread. As we don’t require sending anything of any interest
to our function, we can just leave it at 0. The next two arguments are a priority and stack size
for the thread, so we use the PPU_PRIORITY and PPU_STACK_SIZE macros we defined on lines
10 and 11, which are set to Sony’s default values of 200 and 4096, respectively. The fifth argument
sets the flags used when creating the PPU thread. We want our thread to be joinable, so we use
the value SYS_ PPU_THREAD _CREATE_JOINABLE. The final argument is a name for the
thread, which is used within the debugger to aid in the identification of threads, so we can pass any
string to this argument, although it should be something unique if you want to be able to do any
useful debugging!




86
87
88
89
90
91
92
93
94

95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113

return_val = sys_ppu_thread_create (&thread, ppu_thread_entry, O,
PPU_PRIORITY, PPU_STACK_SIZE,
SYS_PPU_THREAD_CREATE_JOINABLE,

(char*) "spu_printf_server");

if (returm_val != CELL_O0K) {
printf ("PPU:PPU thread creation failed: %i\n", return_val);
exit (return_val);

helloworld.ppu.cpp

Starting the SPU thread group

Now we have our PPU thread sitting waiting for incoming messages, we can start up our SPU group
and start sending some "Hello World’ messages! On line 95, we use the sys_spu_thread_group_start
SDK function, passing our thread group as an argument. As its name suggests, this function will start
all of the threads in an SPU thread group.

return_val = sys_spu_thread_group_start(thread_group);

if (return_val != CELL_0K) {
printf ("PPU:sys_spu_thread_group_start failed %i\n", return_val)
exit (return_val);

helloworld.ppu.cpp

Cleaning up

Our SPU thread will now happily spit out ”Hello World”, and our PPU will process it and output it
to the terminal. Once the SPU thread has completed, we should destroy our unneeded resources so
we can exit cleanly.

sys_spu_thread_group_join(thread_group, 0, 0);
sys_spu_thread_group_destroy (thread_group) ;

sys_event_queue_destroy (print_queue ,SYS_EVENT_QUEUE_DESTROY_FORCE) ;
return_val = sys_spu_image_close (&spu_img);
if (return_val != CELL_O0K) {

printf ("PPU: sys_spu_image_close failed %x\n", return_val);
exit (return_val);

}

printf ("PPU: Exiting...\n");

return O;

helloworld.ppu.cpp

The sys_spu_thread_group_join function on line 101 joins our SPU thread group, and can
also optionally store the exit cause and status in the second and third arguments. We aren’t too
concerned with how and why our SPU thread exited, so we don’t use this feature, setting both
output pointers to 0. Once our SPU thread has joined, we can destroy the thread group using the
sys_spu_thread_group_destroy SDK function on line 102. With the SPU thread group destroyed,
we can destroy the Event Queue, using the sys_event_queue_destroy SDK function on line 103.
This will also cause our PPU thread to exit, as it no longer has an Event Queue to check. All that
remains is to free up the memory used by our SPU code, which we do using the sys_spu_image_close
function on line 105, before returning a value of 0.




114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

You might initially be tempted to think that closing the image should be done straight after loading
it and sending it to a SPU, but the sys_spu_image_t structure contains management information
required by the SPUs that run the image code, so it cannot be safely destroyed until all SPU threads
using the code have finished their execution.

The PPU thread code

The final piece in our SPU Hello World puzzle is our PPU thread function. This function waits for
incoming events from the Event Queue attached to our SPU thread, and outputs them as text strings.

void ppu_thread_entry(uint64_t arg) {
int return_val;
sys_event_t event;
sys_spu_thread_t spu;
for(;;) {
return_val = sys_event_queue_receive (print_queue, &event,
SYS_NO_TIMEQUT) ;
if (return_val != CELL_0K) {
if (return_val == ECANCELED) {
printf ("PPU thread: Event Queue destroyed! Exiting...\n");
}
elseq
printf ("PPU thread: Event Queue receive failed: %i\n",
return_val);
}
break;
}
spu = event.datal;
int sret = spu_thread_printf (spu, (std::uint32_t)event.data3);
return_val = sys_spu_thread_write_spu_mb(spu, sret);
if (return_val != CELL_0K) {
printf ("PPU thread: SPU mailbox failed: %i\n", return_val);
break;
}
}
sys_ppu_thread_exit (0);
3

helloworld.ppu.cpp

Like the main function, thread functions can have an argument passed to it, although in this exam-
ple we don’t use one. We define 3 local variables, an integer to store our SDK function return values
(you should be well used to this concept by now!) and two SDK structs a variable of type sys_event_t,
and a variable of type sys_spu_thread_t. We will use the sys_event_t variable as a reference to store
our incoming event data, and the sys_spu_thread_t variable to act as a reference to the SPU thread
that sent the message. On line 119 we enter into an infinite loop, which will process events for as long
as events are successfully received. On line 120 we call the SDK function sys_event_queue_receive,
which takes an Event Queue, a reference to a sys_event_t structure, and a microsecond counter struc-
ture as arguments. This counter defines how long the sys_event_queue_receive function should
wait for an incoming event before failing. For our purposes, we want the function to wait forever,
so we pass to it the special value SYS_NO_TIMEOUT, which as its name implies, will make the
function sit and wait for an incoming event before returning.




As with other SDK functions, sys_event_queue_receive will return CELL_OK if successful. We
should check the return value, and break out of our infinite loop if it fails, so that the thread exiting
function on line 143 can be called. Note how on line 123 we check for a value of ECANCELED a
look through the SDK documentation should tell you that this value is outputted if the event queue
being checked is destroyed, which we do on line 103. By checking for this occurrence, we can output
relevant information. In this example, Event Queue destruction is desired behaviour, so we shouldn’t
output an error string in the event of an ECANCELED return value. With our error cases handled,
we can move on to what to do if we successfully receive an event - output it!

We update our sys_spu_thread_t variable on line 133 to contain a reference to the SPU thread
that sent the event. We then call an SDK function, spu_thread_printf, to handle the actual termi-
nal output of our incoming SPU printf Event. Sadly this function is undocumented, but it takes two
arguments, the reference to the SPU thread that sent the event, and a pointer to some data, in this
case the string to output. Notice how we cast this value from a 64 bit unsigned integer to a 32 bit
unsigned integer. This is a peculiarity to the PlayStation 3 - It has a 64 bit address space, but SPU
local store memory addresses are always expressed in 32 bits. This means that in general, PPU-side
functions use 64 bit memory addresses, while SPU-side functions use 32 bit memory addresses. The
addressing scheme means that both can be safely casted to the other (remember, the PS3 only has
512Mb of RAM in total including graphics memory, which can be safely expressed in 32 bits). We
must also tell the SPU that its spu_printf function has successfully completed, which we do using
the (again, sadly undocumented) function sys_spu_thread_write_spu_mb. The actual mechanism
used for SPU communication in this function is the SPU 'mailbox’ feature, which will be explained
in a later tutorial. For now, it is enough to understand that you can send small packets of data to
an SPU, and that is what this function does. Note how we pass it the SPU reference we assigned on
line 133, and the return value of our call to spu_thread_printf. As usual, we check return_val for
errors, and break out of our infinite loop if an error has occurred.

When the infinite loop is broken out of, either by an error or as the outcome of destroying our
Event Queue, the sys_ppu_thread_exit function on line 143 will be called. This function takes one
argument, which is simply an integer, that works in the same manner as the return value in a main
function, informing the caller of the reason for exiting. For something as simple as a Hello World
program, we don’t really care why the thread has exited, so we just use the value 0.

Summary

That took a lot of work, didn’t it? 144 lines of code, just to receive 'hello world’ from one of the PS3’s
SPU processors! However, in this tutorial you have learnt pretty much everything you need to know to
get started with programming on the Playstation 3. You’ve learnt how to create threads for execution
on both the PPU and SPU, how SPUs are grouped together, how to write and compile SPU code as
well as execute it, and even done a little bit of SPU-PPU communication! In a roundabout way, this
has demonstrated an important concept of Playstation 3 programming - Synergistic Processing Units
are not really designed to be general purpose. They don’t excel at the type of I/O processing that
printf statements require - they are much better at receiving a chunk of data, doing some processing
on it, and spitting it back out again. In the next tutorial, we’ll take a look at doing just that.

Further Work

1) Try getting two SPUs both outputting printf statements. How many PPU threads do we need?
How many Event Queues do we need?

2) All this program does is receive printf statements from the SPU. Do we really need a separate
PPU thread just to do that? Do we need all that error checking? Have a go at trying to make a
smaller PPU program that successfully processes all of the SPU program’s printf statements.

3) PPU thread functions can have an argument passed to them. How could we make use of this
argument? Can we avoid having to create any static variables?



