
Lesson 0 - Introduction to Playstation 3 programming

Summary

A brief overview of the Playstation 3 development environment, and how to set up a PS3 project
solution to run on the PS3 Devkits.

New Concepts

Using the ProDG Target Manager, ELF and SELF files, APP HOME directory, PPU and SPU pro-
gramming

Introduction

Writing basic programs to run on the Playstation 3 is simple - it has fully ANSI C/C++ compliant
compilers, so the previous tutorials should just compile and run straight away. However, unlocking
the full potential of the Playstation 3 hardware requires efficiently using the 6 Synergistic Processing
Units, and that is a much more difficult task. The development environment is also slightly different
than you will be used to, despite being based on Visual Studio. These tutorials will show you how
to compile and run programs on the PS3 and how to use the SPUs for various tasks, before moving
on to programming the graphics hardware, reading input from the joypad, and finally how to output
sound.

Development Environment

Playstation 3 SDK

The Playstation 3 SDK consists of the headers and libraries you’ll use when programming, example
code, extensive documentation of the provided APIs, and Visual Studio integration. This integration
is provided by the SN Systems ProDG product suite, which has everything you need to compile, run,
and debug code created in Visual Studio on the Playstation 3. It also includes the software required
to interface with a PS3 Devkit, the ProDG Target Manager. For the Visual Studio integration to
work, you’ll need Visual Studio 2003, 2005, or 2008 ; 2010 is currently unsupported.

Playstation 3 Devkits

The Playstation 3 Development Kits we have are DECR-1400A models - the most up-to-date devkits
that Sony provide. Externally, they look pretty much the same as the original 60GB retail Playstation
3s, but with an additional LAN port on the back, used to send and receive development code and
debug data. Internally, they have 512MB of system RAM compared to the 256MB in retail units,
and have custom firmware, which among other things, provides access to terminal output and disables
BLURAY and DVD movie playback. They can load and play PS3 games just as a normal retail PS3
can, and otherwise act just like the PS3 consoles you are used to.

ProDG Target Manager

Connecting to, and controlling the Devkits is done using the ProDG Target Manager. The Target
Manager allows you to see terminal output, take screen grabs of the video output, and remote control
various aspects of the devkits. For example, it allows you to reset the devkit remotely - useful if it’s
in a different room (on a different floor!), and you’ve just ran some broken code on it.

1



API Documentation

Sony include extensive documentation for almost everything in their SDK. It can be searched through
by using the quick find e catalog, found in the SDK install folder (By default this folder will be
C:/usr/local/cell). Try it! use quick find e and search for ’Target Manager’ or ’SELF’, you’ll find lots
of references to the new things being introduced to you here. Throughout the rest of the tutorials,
you’ll find lots of references to Sony SDK API functions - although their basic usage will be explained
in each tutorial, you are encouraged to use the API documentation to learn more about what these
functions do and what parameters they need.

File formats

Although you will be using Visual Studio to develop PS3 applications, the underlying programs used
when compiling your code are different, and they don’t output the .exe and .lib files you might be
used to. Instead, whether you are writing PPU or SPU programs, you will be dealing with ’elf ’ files.
So what’s an elf file? Elf stands for Executable and Linkable Format, which as the name suggests,
is a format to represent executables and libraries - both static and dynamicly linked. It’s quite a
popular file format in UNIX, and is used by both Sony and Nintendo for their games consoles. More
specifically, we will be using Signed ELF (SELF) files. As part of the Digital Rights Management
scheme used on the Playstation 3, all executables must be digitally signed by Sony before they’ll run
on a PS3. The PS3 Devkits we will be using will also run ’fake signed’ code, which is generated behind
the scenes when compiling PS3 software with the PS3 SDK.

Running programs

Running PPU programs is easy - if you’ve set up your Target Manager correctly, you can run your
PPU program just as you would a Windows program. The ProDG Debugger will connect to the
devkit, reset it, and make it load in your compiled ELF file. From the target manager, you can see
the console output of your program, and take snapshots of what your program is sending to the ’video
out’ - handyif your devkit isn’t connected to a monitor and you want to check your graphics code is
working. Running SPU programs is less easy - you have to load your SPU program in from inside a
PPU program, and execute it from there. If you’ve ever loaded in a .dll file at runtime in one of your
programs, you can think of SPU programs as just being very special dll files that only run on SPUs.
We’ll cover how to load in these SPU files in the first proper tutorial, but for now we’ll look at where
to put SPU SELF files to get them loaded in.

APP HOME

When you run a program on the PS3 devkits, they need to know where to look for files - whether they
be game assets like textures and sound files, or the SPU programs that will run during your programs
execution. In a ’real’ game, this would be the Blu-ray drive and the hard drive, but when compiling
code to run on the devkits, it’s APP HOME - a special function of the Target Manager that points
to a folder on your computer. The devkit can then use this folder just as it would its Blu-ray or
hard drive. You can set the folder used as APP HOME in the Target Manager, or directly from in
Visual Studio. Doing it from Visual Studio is recommended, as then you can easily have a seperate
APP HOME per project.

2



Visual Studio Projects

Some tutorials will require you to create both a PPU and an SPU project. In these cases, I suggest
using the same name for both projects, suffixed with PPU or SPU as required. For example, in our
next tutorial, we will be creating a ’Hello World’ program that requires both PPU and SPU projects
- I name them HelloWorldPPU and HelloWorldSPU. Such nomenclature helps keep track of which
projects are related, and what type of processor they are being compiled for.

Easy to see that these projects are related...

Along the same lines, when naming .cpp files in such PPU/SPU combined projects, I append ppu
or spu as appropriate (main.ppu.cpp, main.spu.cpp etc). This helps keep track of what file is being
edited when dealing with multi-project solutions.

What’s going on here?

Ah! One is the PPU project, the other the SPU project

3



Appendices

Appendix A: Connecting to a PS3 Devkit

Step 1) Start the ProDG Target Manager, click ’File’, then click ’Add Target...’

Step 2) Choose a name for the devkit, and select ’Reference tool (DECR-1400J / DECR-1400A)
then click ’Next’

4



Step 3) Enter the IP address of the devkit you wish to add, and click ’Next’, then click ’Finish’

Step 4) The devkit should then appear under ’My Targets’ in the ProDG Target Manager, and
can be connected to by right clicking on the devkit, and selecting ’Connect’

5



Appendix B: Creating a PPU Project

Step 1) Open Visual Studio 2008, click ’File’, highlight ’New’, and click ’Project...’

Step 2) Click ’ProDG VSI.NET PS3 Projects’, click ’PS3 PPU Elf’, choose a name and location
for your new project, and click ’OK’. Simple!

6



Appendix C: Creating an SPU Project

Step 1) Open Visual Studio 2008, click ’File’, highlight ’New’, and click ’Project...’

Step 2) Click ’ProDG VSI.NET PS3 Projects’, click ’PS3 SPU Elf’, choose a name and location for
your new project, and click ’OK’

7



Note: These steps are optional, but are recommended if you don’t want to manually move around
the SPU .elf file every time you compile it.

Step 3) Right click on your Solution in the Solution Explorer, and select ’Properties’

Step 4) Click the ’Configuration’ drop down box and select ’All Configurations’. Under ’Configu-
ration Properties’ select ’Build Events’ and then ’Post-Build Event’. Click on ’Command Line’, and
add the following line underneath the ’make fself’ command.

copy ”$(ProjectDir)$(TargetName).self” ”../<PPU Project>/$(TargetName).self”

Replace the term <PPU Project> with the folder name of the PPU project you want to run the
SPU program from, then click OK.

8



Step 5) Set the project dependencies of the PPU project that uses your SPU code so that it
depends on the SPU project. This will make the SPU project automatically compile and copy the
updated SELF file when necessary.

9



Appendix D: Setting the APP HOME directory

If your program uses external assets such as sound files or textures, it must know where these files are
kept. To do this, we set a ’home directory’ to indicate where to find such resources.

Step 1) Right click on your Solution in the Solution Explorer, and select ’ProDG VSI Project Prop-
erties’

Step 2) Under ’Configuration Properties’, click ’Debug/Tuner’ and choose locations for the ’File
Serving Directory’ and the ’Home Directory’, then click OK. Generally I use ’$(ProjectDir)’, a macro
which will set the directories to wherever your project solution is saved to.

10


