
Lesson 2 - Socket Programming

Building a Simple Server

Summary

We are going to use the functions described in the first lesson to build a very simple server program.

The Server Code

Firstly we need to include the correct header files to use the Sockets library:

1 #include <stdio.h>

2 #include <winsock2.h>

3 #include <ws2tcpip.h>

4

5 #define HIGHVERSION 2

6 #define LOWVERSION 2

7 #define HOST "127.0.0.1"

8 #define PORT "4376"

9 #define FAMILY AF_UNSPEC

10 #define TYPE SOCK_STREAM

11 #define FLAGS AI_PASSIVE

12 #define PROTOCOL IPPROTO_TCP

13 #define BACKLOG 10

14 #define BUFFSIZE 100

15

16 WSAData wsaData;

17 struct addrinfo *addr;

Header files and definitions

The definitions will make more sense as we continue with the code. The two data structures will
store important details for the Sockets library and the server address.

Initialising the Sockets Library

The first we need to do when creating either a server or client program to initialise the Windows
Sockets library. The init() function below does this and stores the results in our WSAData struct
wsaData.

1 int init()

2 {

3 // call to startup

4 int error = WSAStartup(MAKEWORD(HIGHVERSION ,LOWVERSION), &wsaData);

5 if (error != 0)

6 {

7 fprintf(stderr , "WSAStartup failed with error: %d.\n", error);

8 return 1;

9 }

10

11 // check version values

1

12 if (LOBYTE(wsaData.wVersion) != LOWVERSION ||

13 HIBYTE(wsaData.wVersion) != HIGHVERSION)

14 {

15 printf("The version requested cannot be supported .\n");

16 printf("Version set is %d.%d\n", LOBYTE(wsaData.wVersion),

17 HIBYTE(wsaData.wVersion));

18 WSACleanup ();

19 return 1;

20 }

21 else

22 {

23 printf("The Winsock API has been successfully initialised .\n"

24 "You are using version %d.%d.\n\n",

25 HIBYTE(wsaData.wVersion),

26 LOBYTE(wsaData.wVersion));

27 return 0;

28 }

29 }

Initialising the Sockets library

On line 4, we make our call to WSAStartup(). We are using version 2.2 of the Windows Sockets
library here. Both HIGHVERSION and LOWVERSION are used to signify this. It may be that the platform
you are developing on does not have the version of the library that you have requested. On line 12
and 13 we test to make sure that the version that has been set in wsaData has been set correctly.

Addressing Information

Once the Sockets library has been initialised we need to sort out the addressing structs so a socket
can be created.

1 int addressing ()

2 {

3 int result;

4 struct addrinfo hints;

5 struct addrinfo *temp;

6

7 // initialise the hints struct

8 memset (&hints , 0, sizeof(hints));

9 hints.ai_family = FAMILY;

10 hints.ai_socktype = TYPE;

11 hints.ai_flags = FLAGS;

12 hints.ai_protocol = PROTOCOL;

13

14 result = getaddrinfo(HOST , PORT , &hints , &addr);

15

16 if (result != 0)

17 {

18 printf("getaddrinfo () failed with error: \n%d: %s\n", result ,

19 gai_strerror(WSAGetLastError ()));

20 WSACleanup ();

21 return 1;

22 }

23

24 // need to walk the linked list

25 printf("Addressing information :\n");

26

27 int i = 0;

28 for (temp = addr; temp != NULL; temp = temp ->ai_next)

29 {

2

30 printf("\nEntry %d:\n", ++i);

31 switch (temp ->ai_family)

32 {

33 case AF_INET:

34 printf("\t Address family: AF_INET\n");

35 break;

36 case AF_INET6:

37 printf("\t Address family: AF_INET6\n");

38 break;

39 }

40 switch (temp ->ai_protocol)

41 {

42 case IPPROTO_TCP:

43 printf("\t Protocol: TCP\n");

44 break;

45 case IPPROTO_UDP:

46 printf("\t Protocol: UDP\n");

47 break;

48 }

49 switch (temp ->ai_socktype)

50 {

51 case SOCK_STREAM:

52 printf("\t Socket type: Stream\n");

53 break;

54 case SOCK_DGRAM:

55 printf("\t Socket type: Datagram\n");

56 break;

57 }

58 }

59

60 return 0;

61 }

Creating the addressing information

We first declare the hints struct and initialise the fields we need. You must use memset() (or
ZeroMemory()) to clear the struct as it will be pointing to unknown memory locations initially. Our
call to getaddrinfo() on line 14 uses the structs and definitions we have already created. The host
name in this example is localhost as we want to run both client and server locally on the same machine.
If successful, the function will return zero. From line 28 onwards we simply walk the linked list and
print out the information contained.

Running our server

Using the above two functions we can start to initialise our server.

1 int main(void)

2 {

3 SOCKET s = NULL;

4

5 // initialise socket library

6 if (init ())

7 {

8 printf("Unable to initialise the Winsock library\n");

9 exit (1);

10 }

11

12 // intiailise addressing information

13 if (addressing () != 0)

14 {

3

15 printf("Uanble to initialise addressing information\n");

16 exit (1);

17 }

18

19 // create a socket for the server to listen on

20 if ((s = socket(addr ->ai_family , addr ->ai_socktype ,

21 addr ->ai_protocol)) == INVALID_SOCKET)

22 {

23 printf("Unable to create a socket\n");

24 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

25 gai_strerror(WSAGetLastError ()));

26 exit (1);

27 }

28 else

29 {

30 printf("\nSocket created successfully .\n");

31 }

32

33 // bind to the socket created above

34 if (bind(s, addr ->ai_addr , addr ->ai_addrlen) != 0)

35 {

36 printf("Unable to bind to socket\n");

37 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

38 gai_strerror(WSAGetLastError ()));

39 }

40 else

41 {

42 printf("Bound to socket .\n");

43 }

44

45 // finished with addrinfo struct now

46 freeaddrinfo(addr);

47

48 // listen on the socket

49 if (listen(s, BACKLOG) != 0)

50 {

51 printf("Unable to listen on socket\n");

52 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

53 ai_strerror(WSAGetLastError ()));

54 }

55 else

56 {

57 printf("Listening on the socket .\n");

58 }

59

60 // continually accept new connections

61 while (1)

62 {

63 printf("\nWaiting for connections ...\n");

64

65 SOCKET inc = NULL;

66 struct sockaddr_storage inc_addr;

67 socklen_t inc_size = sizeof (inc_addr);

68

69 // accept new connection from a client

70 if ((inc = accept(s, (struct sockaddr *) &inc_addr ,

71 &inc_size)) == INVALID_SOCKET)

72 {

4

73 printf("Unable to accept new connection\n");

74 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

75 gai_strerror(WSAGetLastError ()));

76 }

77 else

78 {

79 printf("Accepted a new connection ...\n");

80 }

81

82 // send message to the client

83 char* hw = "Hello Client";

84 send(inc , hw , strlen(hw), 0);

85

86 // receive message from client

87 int bytesreceived;

88 char buff[BUFFSIZE];

89

90 if ((bytesreceived = recv(inc , buff , BUFFSIZE -1, 0)) == -1)

91 {

92 printf("Error receiving\n");

93 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

94 gai_strerror(WSAGetLastError ()));

95 }

96 else

97 {

98 buff[bytesreceived] = ’\0’;

99 printf("Message received. Received %d bytes.

100 \nMessage is: %s\n", bytesreceived , buff);

101 }

102

103 closesocket(inc);

104 }

105

106 closesocket(s);

107 WSACleanup ();

108 }

Binding

Our listening socket will be s, declared on line 3. First we initialise the Sockets library (line 6) and
create our addressing information (line 13). Once this is done we then create our listening socket on
line 20 and 21. We use the information in the addrinfo struct we created by calling addressing().
We are using the first element in the linked here as there is only one element. You would typically
want to make sure that you are going to be creating the correct socket for the address family you need
here.

Once the socket is created, as the server, we need to bind to this. On line 34 we make the call
to bind using the socket and additional information in our addrinfo struct. We make the call to
freeaddrinfo() after this as we are finished with the struct and want to reclaim the memory.

Once bound, we want the server to listen for incoming connection requests. On line 49, we make
the call to listen() using our original socket. We are setting the backlog to ten here but you would
want to adjust this depending on the network requirements.

We then enter a loop on line 61 allowing the server to continually listen for new connection requests
coming in. Notice that we are making a new Socket on line 65. This is because the call to accept()

on line 70 returns a new Socket to handle the interaction between client and server. The call to
accept() takes a sockaddr storage struct which we cast to a sockaddr struct. This stores address
details about the client that made the connection request.

On line 84 we are sending a message to the client that made the connection request. We use the
new socket, inc and send the message ”Hello Client”. Following this we also want to receive the a
return message from the client. We declare a buffer on line 88 that will store the incoming message.

5

On line 90 we make a call to recv() to receive the message the client has sent. We need to pass the
name of the buffer and the socket in this function call.

We have the size of the buffer to 100 chars and so we can accept any message up to this length.
As we are only sending small messages we will never have a problem whereby the message that needs
to be received will be larger than the allocated buffer. If the message does happen to be larger than
the supplied buffer then an error will be returned and depending on the protocol used the message
will be lost (UDP) or will need to be received again with a large enough buffer (TCP). Once done we
close the new socket we created for the connection.

6

