
Lesson 3 - Socket Programming

Building a Simple Client

Summary

We are going to use the functions described in the first lesson to build a very simple client program
to message our server program we created in the second tutorial.

The Client Code

The code for creating our client is very similar to that of the server. We still need to initialise the
sockets library and creating our addressing information in the same way as the server. However, when
creating our addressing structs we do not need to bind to the socket so we do not need to pass the
AI PASSIVE flag to the hints struct.

1 int main(void)

2 {

3 SOCKET s = NULL;

4

5 // initialise socket library

6 if (init ())

7 {

8 printf("Unable to initialise the Winsock library\n");

9 exit (1);

10 }

11

12 // intiailise addressing information

13 if (addressing () != 0)

14 {

15 printf("Uanble to initialise addressing information\n");

16 exit (1);

17 }

18

19 // create a socket for the server to listen on

20 if ((s = socket(addr ->ai_family , addr ->ai_socktype ,

21 addr ->ai_protocol)) == INVALID_SOCKET)

22 {

23 printf("Unable to create a socket\n");

24 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

25 gai_strerror(WSAGetLastError ()));

26 exit (1);

27 }

28 else

29 {

30 printf("\nSocket created successfully .\n");

31 }

32

33 // connect to the server

34 if (connect(s, addr ->ai_addr , addr ->ai_addrlen) != 0)

35 {

1

36 printf("Unable to connect to server\n");

37 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

38 gai_strerror(WSAGetLastError ()));

39 //exit (1);

40 }

41 else

42 {

43 printf("\nConnected to the server .\n");

44 }

45

46 // finished with addrinfo struct now

47 freeaddrinfo(addr);

48

49 // accept message from server and close

50 int bytesreceived;

51 char buff[BUFFSIZE];

52

53 if ((bytesreceived = recv(s, buff , BUFFSIZE -1, 0)) == -1)

54 {

55 printf("Error receiving\n");

56 printf("Failed with error: %d\n%s\n", WSAGetLastError (),

57 gai_strerror(WSAGetLastError ()));

58 }

59 else

60 {

61 buff[bytesreceived] = ’\0’;

62 printf("Message received. Received %d bytes.\ nMessage is: %s",

63 bytesreceived , buff);

64 }

65

66 char* hw = "Hello Server";

67 send(s, hw , strlen(hw), 0);

68

69 closesocket(s);

70 WSACleanup ();

71

72 while (1);

73 //exit (0);

74 }

Client program

Where the server calls bind() on the socket that will accept incomming connections, a client
program must instead connect() to that socket. Once connected, the client can send and receive
messages to and from the server.

2

