
Memory Management

1 Introduction

There are two types of memory a programmer has access to, Heap and Stack. The management of
stack memory is handled by function calls before and after they execute, this means that after a
function exits the memory associated with it is lost. Stack memory includes variables declared in your
functions, global variables and even the parameters to your functions.

If we need an object to stay around after a function call, or if the data needs to dynamically change
size we may need to use heap memory. The heap is a linear piece of memory which can be used a
reused for any purpose the programmer sees fit, but this region needs to be organized so that the
chunks of data can be kept track of. This allows for the program to use the space efficiently reducing
fragmentation in memory.

Normally all of this process is hidden from the programmer through the use of new and delete.
Back in the ’C’ days memory was reserved by using the malloc function, and returned to the heap
using the free function. These functions however did not modify the data underneath, i.e. they do not
do any constructing or destructing. The new and delete operators will auto matically call constructors
and destructor for you.

2 Rewriting Malloc

If we wish to control memory allocation for ourselves we need to write our own malloc and free. We
may in fact use the original malloc to reserve space to manage ourselves. Then if we rewrite new and
delete our new allocator will integrate seamlessly into our code.

2.1 Operator Overloading

The operators ’new’ and ’delete’ can be overloaded just like most other operators. If we were to
re-implement the default new and delete it would look like:

1 void* operator new(size_t size) {

2 return malloc(size);

3 }

4

5 void operator delete(void* pointer) {

6 free(pointer);

7 }

Operating Overloading

We also need to override the array versions of these functions. The array versions do not need any
special treatment:

8 void* operator new [](size_t size) {

9 return malloc(size);

10 }

11

12 void operator delete [](void* pointer) {

13 free(pointer);

14 }

Operating Overloading

1

We can even add these as member functions of a class such that it will only apply to that class
and its subclasses. This can be usefull for allowing just your own classes to use the modified ’new’
and ’delete’.

Extra parameters can be added to new and delete. This can be used in a couple of ways, one
would be to manually choose which ’new’s go to which allocators like with the case for classes, but
with finner control. Another example is the following:

15 void* operator new(size_t size , void* location) {

16 return location;

17 }

Operating Overloading

With this version of new we can call the constructor on any location in memory we choose even on
the stack. And example invocations would be:

18 char *text = new char[sizeof(Dog)];

19 new((void*)text) Dog("Fido");

20

21 Cat cat("Fluffy");

22 new((void *)& cat) Cat("Bob");

Operating Overloading

In this example the cat fluffy has be replaced with the cat called bob, but in this example fluffy did
not have its deconstructor called on it. This could cause memory leaks if the Cat class keeps data on
the heap, this can be fixed by explicitly calling the destructor on the object fluffy:

23 Cat cat("Fluffy");

24 cat.~Cat ();

25 new((void *)& cat) Cat("Bob");

Operating Overloading

That last code example is valid but can easily be misunderstood, (so please do as I say, not as I do).
The delete operator can also be overloaded with extra parameters, but there is no way to call it

except for writing:

26 operator delete(pointer , extra_parameter);

Operating Overloading

even though it cannot be called easily it needs to be implemented for when a class throws an exception
inside its constructor. In this case it will automatically call the corresponding delete operator.

2.2 Bin Algorithm

The bin algorithm splits large regions of memory ’bins’ into equally sized chunks which can be used
by the program. Its a simple algorithm but is useful for applications which regularly use the same
sized chunks again and again.

2.3 The Code

We will now look at the code for an allocator. First we will some constants which will make it easier
to tweak the algorithm later.

1 #include <stdlib.h>

2 #include <iostream >

3

4 #define MEMORY_SIZE (10*1024*1024)

5 #define BIN_SIZE (1024)

6 #define NUM_BINS (128)

7 #define BIN_SIZE_INC (16)

Allocator.cpp

2

To encapsulate all the code for the allocator we will define it as a class. Our new malloc and free
will be implemented as methods of this class. Also defining the new operator as a member will allow
us to control the allocators own allocation of memory. This will rule out any circular dependence and
therefore the allocator can be created before it is use. Another advantage of using a class is that we
can use inheritance and polymorphism like any other class (this example is too small to take advantage
of this).

8 class BinAlloc {

9 public:

10 void* malloc(size_t size);

11 void free(void* location);

12

13 static BinAlloc* const allocator;

14 void* operator new(size_t size) {

15 return :: malloc(MEMORY_SIZE);

16 }

Allocator.cpp

In order to stop multiple instances of this class being made the constructors of this class are made
private and a single static const pointer is made for the single instance. The copy constructor and
assignment operator are also ways in which the class could be copied so they are also hidden. This is
called the singleton pattern.

17 private:

18 BinAlloc (): max (0) {

19 for (int i = 0; i < NUM_BINS; i++)

20 bins[i] = NULL;

21 }

22 BinAlloc(const BinAlloc& other) {}

23 BinAlloc operator =(const BinAlloc& other) {

24 return *this;

25 }

Allocator.cpp

The following methods are convenience methods for calculating useful information. For example
the next compatible size for a memory allocation, or the start of memory for the n’th chunk etc. there
is also a ’make chunk’ method that will be used to split up new chunks of memory for use by the
allocator. The variables bins is an array of pointers to the beginning of ’free lists’ which store the
memory address of free chunks (using one memory location to store the location of the next, NULL
indicating the end of the list). There is also the variable max which indicates which chunk of memory
can be split up next.

26 void* chunk(int num);

27 int chunk_index(void* loc);

28 int bin_for_size(size_t size);

29 size_t size_for_bin(int bin);

30 int bin_for_location(void* location);

31 void make_chunk(size_t size);

32

33 int max;

34 void* bins[NUM_BINS];

35 };

Allocator.cpp

Now we overide the global new and delete operators to use the allocator class.

3

36 BinAlloc* const BinAlloc :: allocator = new BinAlloc ();

37

38 void* operator new(size_t size) {

39 return BinAlloc ::allocator ->malloc(size);

40 }

41

42 void* operator new [](size_t size) {

43 return BinAlloc ::allocator ->malloc(size);

44 }

45

46 void operator delete(void* location) {

47 BinAlloc ::allocator ->free(location);

48 }

49

50 void operator delete [](void* location) {

51 BinAlloc ::allocator ->free(location);

52 }

Allocator.cpp

Next are the convenience methods. In particular in the ’bin for size’ method we subtract one from
the size so that the integer arithmetic will round down for perfect multiples of 16. This way chunks
that exactly fit won’t be placed in the next size up. The rest of the methods can be thought of as
rearranging the equation:

chunk = num ∗BINSIZE + sizeof(BinAlloc) + (char∗)this (1)

53 void* BinAlloc :: chunk(int num) {

54 return num*BIN_SIZE + sizeof(BinAlloc) + (char*)this;

55 }

56

57 int BinAlloc :: chunk_index(void* location) {

58 return (int)((char*) location - sizeof(BinAlloc)

59 - (char*)this)/ BIN_SIZE;

60 }

61

62 int BinAlloc :: bin_for_size(size_t size) {

63 return (size - 1)/ BIN_SIZE_INC;

64 }

65

66 size_t BinAlloc :: size_for_bin(int bin) {

67 return (bin + 1)* BIN_SIZE_INC;

68 }

69

70 int BinAlloc :: bin_for_location(void* location) {

71 int index = chunk_index(location);

72 void* chunk_start = chunk(index);

73 return *(int*) chunk_start;

74 }

Allocator.cpp

The main body of the algorithm is in the next three methods. ’make chunk’ splits then next chunk
of memory into blocks of memory at the next bin increment, it then calls free on these chunks to add
them to the bin. We do not allocate the very first piece of memory from these chunks and reserve it
to store a size value. ’malloc’ will check whether there is anything in the appropriate bin and create
a new chunk if the bin is empty. Then it will pop an element off the front of the list. ’free’ works by
pushing items on the list, but it needs to fin the corresponding bin. This is where the ’bin for location’
method is useful. Rounding down to the beginning of the bin we can read the size value we wrote
when creating the bin.

4

75 void BinAlloc :: make_chunk(size_t size) {

76 if ((max + 2)* BIN_SIZE + sizeof(BinAlloc) > MEMORY_SIZE) return;

77 int bin = bin_for_size(size);

78 size_t actual_size = size_for_bin(bin);

79

80 char* chunk_ptr = (char*) chunk(max ++);

81 *(int*) chunk_ptr = bin;

82 chunk_ptr += actual_size;

83

84 while (chunk_ptr + actual_size <= chunk(max)) {

85 free(chunk_ptr);

86 chunk_ptr += actual_size;

87 }

88 }

89

90 void* BinAlloc :: malloc(size_t size) {

91 int bin = bin_for_size(size);

92 if (bins[bin] == NULL)

93 make_chunk(size);

94 if (bins[bin] == NULL) return NULL;

95 void* result = bins[bin];

96 bins[bin] = *(void **) result;

97 return result;

98 }

99

100 void BinAlloc ::free(void* location) {

101 int bin = bin_for_location(location);

102 *(void **) location = bins[bin];

103 bins[bin] = location;

104 }

Allocator.cpp

Now all thats left to do is to test whether it works. You may notice something interesting about
the address of the variables a, b and c. Also this allocator is not complete, it will not allocate chunks
of arbitrary size, and once a region of memory stores a certain size it is fixed only being able to store
data at that size.

105 using namespace std;

106

107 void main() {

108

109 int* a = new int (3);

110 int* b = new int (4);

111 int* c = new int (5);

112

113 int* arr = new int [20];

114 for (int i = 0; i < 20; i++)

115 arr[i] = i*i;

116

117 cout << "a = " << a << ", *a = " << *a << endl;

118 cout << "b = " << b << ", *b = " << *b << endl;

119 cout << "c = " << c << ", *c = " << *c << endl;

120 cout << "arr = " << arr << ", arr [9] = " << arr [9] << endl;

121

122 delete [] arr;

Allocator.cpp

5

123 arr = new int [20];

124 for (int i = 0; i < 20; i++)

125 arr[i] = 1 << i;

126

127 cout << "arr = " << arr << ", arr [9] = " << arr [9] << endl;

128

129 delete a;

130 delete b;

131 delete c;

132

133 system("Pause");

134 }

Allocator.cpp

6

