Summary

How to take advantage of Visual Studio’s features.

Writing C++ 1n Visual Studio

Tutorial Overview
Visual Studio is more than a glorified syntax colour coder. It contains thousands of hidden tricks and
abilities to make your life easy. Having a better understanding of your tools can help you produce more
robust, cleaner code faster. Then when bugs and problems do arise for some reason, you should be able to
go straight to the problem and rectify it without breaking a sweat.

Environment Variables
Setting environment variables for Visual Studio so paths and defines can be used in Visual Studio.

*° Iz

Open
Manage

o7 Agent Ransack...
@ Scanforthreats...

Map network drive...

Create shortcut
Delete

Rename

Disconnect network drive...

Properties

UNIVERSITY OF
NEWCASTLE

Proverb:
Work smarter not harder

| o

rol Panel » System and Security » System

~ "‘f |I‘ Search Control.. P |

&
L
%

Control Panel Hom

Device Manager

Remote settings

System protectionv

&

Advanced system settings)

See also
Action Center
Windows Update

Performance Information and
Tools

View basic information about your computer

Windows edition

System Properties

.\

| Computer Name [Hardware | Advanced | System Protection | Remote |

“You must be logged on as an Administrator to make most of these changes
Performance

Visual effects, processor scheduling, memory usage, and vitual memary

User Profiles
Desktop settings related to your logon
Settings.

Startup and Recovery
System startup, system failure, and debugging information

=N

@. -

@on ment Variables

User variables for b0926364

Variable

Walue

C:\DL\dance_v4_091209\dance_v4_09...
SLISERPROFILE®:\AppData\Local Temp
%USERPROFILE%:\AppDataLocal\Temp

| 3DSMAX_2011x...
| CLASSPATH
ComSpec

New.. | [Edt. |[Delete
System variables
Variable Value =l
3DSMAX_2011_... C:'Program Files (x88)\autodesk)3ds M... I

C:'Program Files\Autodesk)3ds Max 2011}
.+C:\Program Files (x88)Vavares\ible. ..
C:\Windows\system32\cmd.exe =

\

[wew.. |[Edt. |[Dekte |

NG

You can add a ‘USER’ define, so you can write user specific code for shared projects. In the environment
variables add the variable “USER”, and set it to something specific, e.g. “MYCODE”.

In Visual Studio, add to the pre-processor for the project — “$(USER)”.

iy

Now you should be able to use your define in code.

#ifdef MYCODE
printf ("Code only to compile/run for me \n");

#endif2

Code Messages and Reminders
At various points during code development you can write comments in your code to remind you to come back
to them at a later date. Visual Studio can help you keep track of these by automatically adding them to a
list. Visual Studio has a Task-List window, and will automatically add comments starting with “//TODO” to
the list, so you know what still needs doing, or what others have left unfinished. Note that it’s case
sensitive, so “//todo” won’t work, also no spaces between the double slashes and the word TODO.

In Visual Studio 2010 you have to enable this in:
Tools -> Options -> Formatting -> Enumerate comment tasks (Set to true to enable)

To view the task list window:

View -> Other Windows -> Task List

//TODO

Add extra check code later

ea code - Microsoft Visual Studio (Administrator)

File

Edit = View Project Build Debug Team Data

i glr = E Code

O
(o

£l
1)

> M m sy (4 el &Gl

Comments

Solution Explorer

Team Explorer

Architecture Explorer

Bookmark Window

Call Hierarchy

Class View

Code Definition Window

Object Browser

Error List

Output

Resource View

Start Page

Toolbox

Find Results

Other Windows

Toolbars

Full Screen

Mavigate Backward

Mavigate Forward

Mext Task

Previous Task

Property Manager
rty Pages

=

TODO : will add later

& Task List

Tools

Architecture Test Analyze

Window Help

Chrl+ Alt+0 Debug ~| [win32 ~|| [# |HINSTANCE -l
Ctrl+Alt+ L bl
Ctrl+Y, Crl+M X .
main.cpp® X
Ctrl+Y, Ctrl+R
(Global Scope) - -
Chrl+E, Ctrl+W =
+
Ctrl+Alt+ K -
Ctrl+ Shift+C =l//-main.cpp E
Ctrl+Shift+V #include-<windows.h>
Ctrl+Alt+)
-lint-_ stdcall-WinMain(HINSTANCE, -HINSTANCE, -char®, -int)
Chrl+\, E =
Alt+2 G’TDDD- :-will-add-later)
Ctrl+Shift+E 3
Cirl+Alt+ X
»
* | EJ Command Wind Ctrl+Alt+A
3 ﬂ Web Browser Ctrl+Alt+R
Shift+Alt+Enter =3 Layer Explor,
Ctrl+- % Macro Expforer
Ctrl+Shift+- izl Sourcefontrol Explorer
EL uMifodel Explorer Ctrl+\, Ctrl+U
= cument Outline Ctrl+Alt+D
5 /History T
L]
% Pending Changes =
. wagow Alt+Enter]
"3 Server Explorer Crl+Alt+5
(ERE Ctrle, T File Line
F#Interactive Ctrl+Alt+F main.cpp g
= Performance Explorer
j Data Collection Control
5 Code Metrics Results

N

— T T R R i

‘ Tools | Brchitecture Test Analyze Window Help
% Attach to Process.. Ctrl+ Alt+P HINSTANCE - | S g =2 e BB - -

g""’J; Connect to Database...
E Connect to Server... ”
¥
qéﬁ Add SharePoint Connection... —
- - =
a
:-;5 Code Snippets Manager... Ctrl+ K, Ctrl+B = g
Choose Toolbox Iterns... “ I“:
Add-in Manager... =
=]
Macros 3 B
i 7l
[= M
=a Gdension Manager INSTANCE, - char®, - int) "
Create GUID
—r o -
Dotfuscator Software Services Optians L&J
Errer Lookup 4 Text Editor pr 7
ATL/MFC Trace Tool General Show Inactive Blocks True
ILDasm File Extension Disable Inactive Code Opacity ~ False
- All Languages Inactive Code Opacity Percent 65
Spy++ > Basic .
Visual Studio Cemmand Prompt b CF Indent Braces False
& = .) 4 C/C++ w . .
52 WCF Service Canfiguration Editor eneral Automatic Indentation On Tab False
4
ERaTE Tabs (Enumerate Comment Tasks True E)
Import and Export Settings... ». T T T Fre
= < .
R b F L 4 Enable Outlining True
Optlo:s‘..) . HTML Qutline Pragma Regions True
> IScript Qutline Staterment Blocks False
» PL/SQL Enumerate Comment Tasks
n Control > Plain Text Scan open source files for TODO, HACK, efc... and report them in the Task List
> SQLCE window.
i Transact-SOL S
:

TITaNT.CRE =

&, Find Symbol Results

You can also send messages to your output window during compile to give additional information by taking
advantage of the #pragma define, e.g:

#pragma message(“This is a reminder...hello...”)

This can give additional information, e.g. the order files are compiled, or maybe just updates on which
compile flags should be set etc, by placing the #pragma message inside different #defines you can give
different messages for release and debug builds.

You can also insert custom compile errors, for example if you try and build the code for different platforms
(PS3/PC/Win32) you can spit out compile error informing that this code isn’t supported, or needs certain
fixes.

#ifdef MYFASTMODE
#error ("Error : This code won't work in FastMode")
#endif3

Temp Files Cleanup

Visual Studio generates numerous temporary files in various directories for debugging and during the build
process. At various points you may want to a cleanup and remove all temp and compiled files before giving
the code to someone else, or zipping them up.

0 J oy Ul W

I N N R R e e e e S
OB WNE OWLJoUTd WN R O W

N =

A good method is to create a ‘.bat’ script, which when run recursively deletes any temporary files in that
directory. BE WARNED, bat files can be dangerous, deleted files cannot be recovered so be careful where
you put the script and which files you delete.

REM Remove Temp Visual Studio Files
REM R R R R R I I I I I I I b b b b b E b b b b b i

del /s * . aps
del /s * . clw
del /s *.ncb
del /s *.opt
del /s * . plg
del /s * . pdb
del /s * . vsp
del /s * sdf
del /s /A -H *_suo
del /Q Debug*.*
rmdir /Q Debug

del /Q Release*.*

rmdir /Q Release

FOR /F "tokens=*" IN ('DIR /B /AD /S *ipch') DO RMDIR /S /Q " "
FOR /F "tokens=*" IN ('DIR /B /AD /S *obj') DO RMDIR /S /Q " "
FOR /F "tokens=*" IN ('DIR /B /AD /S *bin') DO RMDIR /S /Q " "

Code 1. Cleanup.bat to remove temporary Visual Studio files.

Libs and Includes

If you’ve got multiple projects or your including libs from external sources (e.g. DirectX/OpenGL/Bullet),
then you’ll need to tell your Visual Studio project which libs you want to include and where their located.

You can reference your libs in code by adding #pragma defines which will inform Visual Studio to include
those libs.

// Include these libs in our build
#pragma comment (1ib, "kernel32.1ib")
#pragma comment (l1ib, "user32.1ib'")

Alternatively you can add them directly to the project through the IDE:
Right click the project in solution explorer -> Properties ->Linker -> Input -> Additional Dependencies, and
then add your libs directly.

As well as specifying which libs you want to include, you also have to tell the Visual Studio project where
their located. To add include directories and lib paths to your project:

Right click project in the Solution Explorer -> Properties -> VC++ Directories -> Include Directories /
Library Directories.

O W o ~Jo U W

[y

Sw N

o code - Microsoft Visual Studic (Administrator) -

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window H

5 20#06 & 3a5R :
Configuration: [Active(Debug) ~| Platform: [Active(Win32) ~| [Configuration Manager... |
Solution Explorer q
—————————————————— Common Properties 4
= g P
‘l & | =1 % Fl Cnnﬁguratiun Pmpzmes E ble Directony LY CloctallDink Sl Dir b METEY A0 Togle Sl
e "
- project] General r—-} Include Directories $(VClnstallDir)include:$(VCInstallDirjatimfc\include:S (Winde
1« 57 cod- Debuiggi
&2 —_— ip_ALL VC++ Directories Library Directories ${VCInstallDir)lib; S (VClInstal Dir)atimfctib;$ (WindowsSdkDir
[> A Source Directones SV CInstalDmatimtc sremic: s (Ve Installmatmc ereumtel
> Gz > > Linker Exclude Directories $(VClnstaliDirjinclude;S(VCInstallDirlatlmfc\include:3 (Windg
Project Only 5 > Manifest Toel
XML D 1t Generat
Calculate Code Metrics s B et
b
Profile Guided Optimization - > Build Events
ibs -
Build Customizations... b, "k > Custom Build Step
. = > Code Analysis
Add v b
| References...
B Class Wizard... Crl+Shift+X
&%, View Class Diagram
Set as StartUp Project
Debug »
2% Add Solution to Source Control...
& Cut Ctrl+X |
2 Paste Ctrl=V | Executable Directories
X Remove Del Path to use when searching for executable files while building a VC++ project. Corresponds te environment
@ vaishlePATH.
Rename]
Apply
Rescan Solution /
1 Open Folder in Windows Explorer
[Z Properties

You can set all the paths and directories in code, by placing the relative and absolute paths at the start, or
set them inside Visual Studio’s settings:

#define DX LIB PATH "C:\\Program Files (x86)\\Microsoft DirectX SDK (June 2010) \\Lib\\x86\\"
#pragma comment (1ib, DX LIB PATH "d3d10.1lib")

#pragma comment (lib,DX LIB PATH "d3dx10.lib")

#include <C:\\Program Files (x86)\\Microsoft DirectX SDK (June 2010)\\Include\\d3dx10.h>

// OR - If you've added the paths to visual studio
#pragma comment (lib,"d3d10.1ib")

#pragma comment (lib,"d3dx10.1ib")
#include <d3dx10.h>

Breakpoints in code

Having your code halt at lines when it has performed an invalid action is very useful. When I say halt, I
mean stop in Visual Studio as if you had set a breakpoint on that line. You can trigger Visual Studio to halt
on any line as if you'd set a breakpoint on that line by calling an interrupt 3 call. You can examine the code
in Visual Studio to determine what caused the problem, and optionally press f5 and have the code continue.

#define HALT _ asm { int 3 }

You can combine the breakpoint with checks to make your code more robust, e.g:

#define DBG ASSERT (exp) {if (! (exp)) {DBG HALT;}}

#define INVALID FLOAT 2139095040
#define DBG_CHECKFLOAT (f) \
{if (((* (unsigned int *) ((void *)&f)) & INVALID FLOAT) == INVALID FLOAT) {DBG_HALT;}}

For cross platform breakpoints (e.g. PS3/360/Win32)

#define asm volatile("trap") ; // Halts a program running on PPC32 or PPC64 (e.g. PS3).

0 J oUW N

NI T e e N e S SR S S T
N OW®DJIOUd WNRE O W

__asm {int 3} ; // Halts a program running on IA-32.
___debugbreak () ; // Halts Win32 (basically a wrapper for int 3)

Output Window (or DOS Prompt)

You should direct all your text debug information through a macro or single function, this enables you to
turn it off for speed. You can also redirect it to Visual Studio’s output window (the preferred way), a txt log
file, or even a DOS output window from a single location.

The function ‘OutputDebugString(..)’ let’s you send strings to the output window while your program is
running.

OutputDebugString (char*);

Taking advantage of vsprintf(..) you can create a debug print function that takes variable arguments, which
you pass along to your output/log file.

//Saving debug information to a log file
~ forceinline void dprintf (const char *fmt, ...)
{
va_list parms;
static char buf[2048]; // Dangerous - buffer overrun issues?

// Try to print in the allocated space.
va start (parms, fmt);

vsprintf (buf, fmt, parms);

va_end (parms) ;

// Dirty quick write the information out to a txt file
#1if 0O

FILE *fp = fopen ("output.txt", "a+"):;

fprintf (fp, "%s", Dbuf);

fclose (fp) ;

#endif

// Output to the visual studio window
OutputDebugString (buf);

}// End dprintf(..)

Memory Data

When using Visual Studio it will use the debug heap, which will initialize memory and variables to default
magic values.

Value | Usage
0xCDCDCDCD Allocated in heap, but not initialised.
0xCCCCCCCC Allocated on the stack, but not initialized.
0xDDDDDDDD Released heap memory.
0xFDFDFDFD “NoMansLand” fences are placed around heap allocations to help you

detect if you're walking off the edge of an array.

Watch Window

The watch window lets you see the value of any variable, but it also has a lot of hidden tricks to let you see
additional information.

N =

o Ul W N

Type “@err” in the watch window to display the value from GetLastError().

For array pointers, you can expand the list by adding “,n” to the variable in the watch window. Where n is
how many entry’s you want to see (e.g. “ptr, 20”).

Other watch flags:

“@esp” in the watch window, it display the stack pointer. You can even add to it, e.g. (esp + 10) to look at
values.

“@clk” displays the clock timer value.

“@eip” show the instruction pointer.

“@eax”, shows eax register value.

“@tib”, thread information block.

Data Breakpoints

Data breakpoints are a very powerful tool which is underused because of the difficult interface.
Typical use would be to break when address “*(long*)0xCD23AABD, length == 5”.

Visual Studio only supports four hardware breakpoints, if you add more than four, Visual Studio will just
disable older ones. The data breakpoints can be very useful if you suspect corruption, and you know which
part of memory is being damaged, you can set a data breakpoint to trigger if anything changes that memory
address, letting you track down the culprit.

DLL Breakpoints

Using Visual Studio you can set breakpoints on dll functions in the watch window. So when that dll
function is called anywhere it will trigger a breakpoint and let you examine who’s calling it.

When your program starts up, the output window should show you which dlls it has loaded. There are dll
explorer programs so you can open up any dll and it will list all the function names. Using the known dll
name and function call, you can use the following syntax to call it from the watch window in Visual Studio:

{,, dllname }FunctionName

Visual Studio will trigger a breakpoint when the dll function is called. (You can also use this method to
change variables in the loaded dll if you know the variable name).

Memory Leaks

The debug libs let you add extra header files to catch memory leaks. These debug libs will determine how
much memory is being used at some point and then when you trigger a stop point, it will let you know if any
memory is still being allocated and what their addresses are.

First, include the header at the start before anything.

#define CRTDBG MAP ALLOC
#include <stdlib.h>
#include <crtdbg.h>

Second, at your program entry point (e.g. main() or WinMain()), enable memory tracking.

// Enable memory leak detection
_CrtSetDbgFlag(CRTDBG ALLOC MEM DF | CRTDBG LEAK CHECK DF);
_CrtSetReportMode (CRT ERROR, CRTDBG MODE DEBUG) ;

// Any point in your code you can dump all the memory allocations
_CrtDumpMemoryLeaks () ; // dump memory leaks to the output window

If you use the ‘CrtDumpMemoryLeaks()’ you get a list of memory that is being allocated. Each allocation
has a corresponding number id so you can set a breakpoint when its allocated.

N =

For example, if you call CrtDumpMemoryLeaks(), you would get something like this:

Detected memory leaks!

Dumping objects ->

{76} normal block at 0x001F1290, 400 bytes long.

Data: < >CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD

In your code, you would set a breakpoint to trigger when the number {76} is hit by adding an extra line of
code:

_crtBreakAlloc = 76; // Break at the 76th memory allocation.

// Or
_CrtSetBreakAlloc(76); // Break at the 76th memory allocation.

Or alternatively you can link to the debug dll while it’s running in the watch window, and set the debugger
to break when the allocation number is hit:

{,,msver100d.d1l}_crtBreakAlloc = 76

Optimized Code

Once you run optimized code, Visual Studio will attempt to match the actual code with the corresponding
source code point. But due to optimisation methods this is not always the case and you may need to look at
the disassembly window for the truth.

Release vs Debug

When your program works in ‘Debug’ but not in ‘Release’, some common problems are:
e Memory corruption (Over/ Under-runs of memory).
o Enable the debug heap to help try and track it down.
Uninitialized variables
o Often set to some magic value in debug (e.g. 0).
o Unless /GZ switch is enabled.
e (Calling convention (e.g. GetProcAddress)
o Use /GZ in compiler
e Memory alignment
o Alignment in memory might need to be 16/32/128 bytes aligned (and just luckily is
working in debug).
e Local variables being overwritten.
o Variable with the same name being used multiple times inside a function.
o Local variables being passed on the stack.
e Optimiser
o Modifying the code causing it to break, thinks functions might not be getting used, or
variables order being changed for speed. (Very rare but happens).

Outside Debugger

If you find that your application doesn’t run when you run it standalone, this is can be because of numerous
problems.

e When you run your program under the debugger it uses the debug heap. To avoid this, you can run
the program standalone and then inside Visual Studio use ‘attach to process’ to debug your
program.

e PATH may be different. Call GetEnfiromentString(..) in your application to get the working paths
and check.

e Thread timing might be different.

e Using different dlls.

Hacking Code

On occasion while your code has stopped you might want to modify your assembly code while running. Such
as blank out a specific line of code (e.g. function call), or have the assembly jump somewhere else, such
commands would be:

0x90 NOP
“Comment-out” chunks of code by using the NOP instruction in the assembly window.

0x74, 0x75 JE, JNE
Modify if statement to redirect your code in another direction.

To view the assembly, stop your program at a breakpoint while running then goto:
Debug->Windows->Disassembly

To view any piece of memory, view the memory viewer:
Debug-> Windows-> Memory

Note, the program must be running and be stopped before you can view the disassembly and memory
windows.

Disassembly

Address: |WinMain(HINSTANCE_ *, HINSTANCE__*, char ™, int) ~ 0x003E10E7 '| &

og 92 90)65 b3 94 @0 80 28 c@ ...h....2A -
B8 83 c4 @4 89 45 €8 8b ...fA..E2.

89 45 8 68 90 @1 @0 @@ E&.Egh....

@2 80 08 83 c4 @4 89 45 22...fA..E

4d e4 89 4d f4 ba @1 @@ &.M3.Moe..

85 d2 74 17 c7 45 f@ dc ...0t.CEdD

@0 8b 45 o 6b 0 64 83Edkdd.

e8 di ff ff eb e@ c7 Edelpyieac
@8 83 c4 1c 3b Ei....fA.;
1]

cC

Address:

) A

SIS)

v Viewing Optio

oo om oo oo
b DO 0 5 5 oo
g oo oo

)

new char[1203];

4B3h

operator new (3EL3B4h)
esp,4

dword ptr [ebp-18h],eax
eax,dword ptr [ebp-18h]
dword ptr [mem],eax

ARSER I STEE

cc cc cc cc cc 3b ed @4 7@ 3e IIIII;..p>
@@ 75 82 T3 c3 9 al @6 @0 68 ,u,éﬁéi,,,
cc 75 @1 c3 55 8b ec 83 ec 8@ Iu.AU.ifi.
5@ 52 53 56 57 8b 45 @4 6a @@ PRSVW.E.7J.
5@ e8 97 @7 @@ 88 83 c4 @8 5T Pe—...fA._
S5e Sh 5a 58 8b e5 5d ¢3 cc cc ~[ZX.3]AI1
CC CC €C €C €€ €C cc cc cc 8b iiiiiiiii.
ff 55 8b ec 51 53 56 57 33 ff §U.1Q5WVI3¥
8b f2 8b d9 89 7d fc 39 3e Je ,6,D,}L’|9)~
48 eb 88 8d a4 24 60 @8 88 88 HE..HF....
9 8b 46 @4 Bb @c 38 81 7c 12 ..F..
fc cc cc cc cc 75 @f 8b 54 38 ©uiliiu..
N.<

int* abc =

new int[1@a];
198h

[7]

D OO 5 0
D H 5 5 5 o

operator new (3EL3B4h)
esp,4

dword ptr [ebp-1Ch],eax
ecx,dword ptr [ebp-1Ch]
dword ptr [abc],ecx

J/_CrtDumpMemoryleaks();

IR
e I R o R I B R R R B o R R R R R
G060 00000600 0000000 5D 00 0o e
Lo 4 Ld g DuoDd LD U DU Lo U0 U Ud g g LU L0 g DU L D LD DU

while (true) aas
E o edx, 1 @4 @3 dl 81 3c la cc cc cc cc ..N.<.IIIT
test eds, edx 2] 74 11 8b 4c 38 88 8b 55 @4 51 t,,LS,,I_J_,Q
ie WinMaintT6h (227 52 eB e3 @a @@ @@ 83 c4 @8 8b Red...fA..
- - 231 45 fc 4@ 83 c7 @c 89 45 fc 3b EU@fC..El;

= | n E123E @6 7c c2 5 Se Sb 8b e5 5d ¢3 . |A_~[.3]A

Figure 1. View disassembly and memory in real-time to modify/alter code.

Casting in Watch Window

The watch window lets you cast variables to anything, e.g. (char*)0x12345678, let’s you look at memory
address 0x12345678, because we cast it to char®, it will show the data as ascii.

Watch 1 1

J Mame Value Type

2 # (char*)0:00641290 | char*
@ *(int*)0:00641290 -842150451 int
@ F(float*)0x00641290 -4.3160208e+008 float

Append to PATH in Visual Studio

When running programs through Visual Studio for debugging, you may need to set environment variables
temporarily. One such example would be to modify the PATH environment variable so that it includes an
additional directory where dll’s are loaded (OpenGL, Glut..).

Goto:
Project>Properties>Configuration Properties>Debugging "Environment" and "Merge Environment”.

The syntax is NAME=VALUE and macros can be used (for example, $(OutDir)).

For example, to prepend “C:\Windows\Temp” to the PATH:

>

PATH=C: \WINDOWS\Temp; $PATHS%

Similarly, to append $(TargetDir)\DLLS to the PATH:

PATH=%PATHS; $ (TargetDir)

Recommended Reading

The tutorials only give you a starting point from which you can get a foot hold, so that you can get started
and begin to explore and understand the power...

Work in progress...

10

