
Tutorial 4: Depth and Transparency

Summary

In this tutorial, you are going to learn about how OpenGL determines which objects are in front of
others in a scene - it’s not as easy at it seems! Alpha blending is also introduced, which allows objects
in our OpenGL scene have a varying amount of transparency.

New Concepts

Alpha, alpha blending, depth-buffer, z-fighting, depth testing

Introduction

As the scenes you attempt to create using OpenGL get more complex, you’ll probably want some
objects to appear in front of others. You’ll also probably want some objects to be partially transparent,
such as windows, or water. To do these things, you’ll need to learn about handling the depth of a
pixel on screen, and also handling its alpha value. Occasionally, the interaction between these values
causes problems, so you’ll also need to learn a few tricks to get the scene behaving as you want.

Depth Buffer

When drawing a 3D scene, objects may overlap on screen. Take for example, an enemy hiding behind
a crate in front of you in a 1st person shooter. If the crate is drawn after the enemy, everything looks
fine - the crate will obscure the enemy. But what about if the crate is drawn first? The back buffer
you’re drawing into only contains colour values, so there is nothing to determine whether the crate
is in front or behind of the existing pixels, so the enemy will just be drawn over the top - now our
enemy appears to be hiding in front of the crate!

Now, we could solve this by simply sorting the scene objects by their distance from the camera,
the so called Painter’s Algorithm, and this might work well in a lot of instances. But consider this:
what about the scenario where object A overlaps object B and is overlapped by object C, but object
B overlaps part of object C. What is the correct order to draw these objects? No matter which order
you draw the objects in, part of one object will be incorrectly drawn in front of another.

1

There’s no correct ordering for these objects, they all partially overlap each other

This can be solved by using a depth buffer, which unlike colour buffers, stores a value derived from
the NDC space z-axis value of every pixel in the back buffer - that’s why the depth bufer is sometimes
called a z-buffer. As the the middle of NDC space to the edge has a range of 1.0, the depth buffer
stores values between 0.0 and 1.0, with 0.0 being as close to the viewpoint, and 1.0 being as far away
as possible while still being within the far z distance of the projection matrix.

With a depth buffer available, OpenGL can perform a depth test when trying to draw to the back
buffer - by working out the eye-space z coordinate of the currently drawn screen fragment, it can be
determined whether the fragment is in front of, or behind, any existing pixel data in the back buffer.
If this value is less than what is currently in the depth buffer, then the fragment must be in front
of whatever object was drawn to the back buffer earlier, so the new fragment passes the depth-test,
and is drawn to the back and depth buffers. If it’s more than the existing depth buffer value, it fails
the depth test, and is discarded. Modern graphics hardware can sometimes perform this depth test
before running the active fragment shader, so depth-testing can have a performance benefit, too. The
direction of the depth test is generally configurable - you may want only fragments that are further
away pass the depth test, for example.

The value stored in the depth buffer is interpolated from the z-axis values of the vertices being
rendered. It’s also important to note that this is the z value calculated after the perspective divide by
the w component of the homogeneous coordinate. A side effect of this is that the values written to the
depth buffer are not linear. Due to this nonlinearity, there is a varying amount of precision available
in the depth buffer, depending on distance. The further away a fragment is, the less precision there
is to store its depth. There are also only a finite number of bits available to store the depth buffer
values, usually either 16 or 24 bits - with modern graphics hardware often supporting up to 32 bits.
These two factors can cause an issue known as z-fighting. Due to the limited precision imposed by
the number of depth bits used, it can occasionally happen that two surfaces that are very close to
each other in distance end up with the ’same’ rounded-off depth value. If the camera or surfaces move
slightly, the rounding changes slightly, and the two surfaces seem to flicker, as their depth values are
constantly rounded to be slightly lower than the other.

2

Transparency

In the the previous tutorials, you were introduced to colours that had four components - red, green,
blue, and alpha. This alpha component represents how opaque the colour is - running from 0 (fully
see-through) to 255 (fully opaque). Like with the colour interpolation you saw in tutorial 1, alpha
is interpolated on a per-fragment basis, too. When coloured geometry is drawn to the back buffer,
the alpha value of the currently processed fragment is used to determine what the final outputted
fragment colour will be. If it’s 255 (or 1.0 when using floating point values), then the outputted
fragment colour is easy - it’s whatever colour was output by the fragment shader, as the colour is fully
opaque. If it’s less than 255 (but greater than 0!) then the result will be blended with the current
fragment colour to determine the final colour that will be written to the back buffer. This blending
process is automatic (you don’t have to perform it manually in a fragment shader), and also includes
some controllable parameters. The equation used to determine the final blended colour is as follows:

Final Colour = (Source Colour · Source Factor) + (Destination Colour · Destination Factor)

The source and destination colours are the current fragment output, and the current buffer value
for that fragment position, respectively. The source and destination factors are controllable values
- they could be 1, 0, the source or destination alpha value, or one of a number of API dependent
variations.

Transparency and depth issues

Unfortunately, although the depth buffer allows opaque objects to be drawn in arbitrary order cor-
rectly, it has issues with transparent objects. The first issue, is that alpha blended fragments, even if
they have an alpha value of 0, result in a write to the depth-buffer. So even a completely zero-alpha
object was rendered to the screen, it would affect the depth-buffer, with potentially adverse affects.
Writing to the depth buffer could be temporarily disabled to avoid this, but then a partially-alpha
blended object could be overdrawn by an object further away, due to the lack of depth information.

The way blending is calculated also raises issues. Let’s go back to our hiding enemy example. Instead
of hiding behind a crate, imagine the enemy in our 1st person shooter has decided to hide behind a
stained-glass window, which in rendering terms we imagine is just a quad with a stained glass tex-
ture on it, complete with alpha values to make the glass transparent. If the window is drawn after
the enemy, everything is fine - both the alpha blending and the depth buffer work as intended, and
our enemy is visible behind the stained glass window. If we draw them in the opposite order, what
happens? If the depth buffer is enabled, our enemy disappears - every fragment the enemy is made up
of has a depth greater than the stained-glass window, and so is discarded. If it’s disabled, the enemy
gets drawn in front of the window, and the stained-glass effect is broken - the stained glass colours
will have been blended against the scene as it was before the enemy was drawn, resulting in incorrect
colours.

When using transparency in graphics rendering, render order matters! A popular solution to this
problem is to keep track of which objects are transparent, and have two render loops. The first loop
draws all of the opaque objects, and then the second loop draws the transparent objects - sorted from
back to front so that blending works correctly. This isn’t perfect, as intersecting transparent objects
won’t have correctly blended colours, but the only other solution would be to sort each transparent
triangle by distance - and even then, any intersecting triangles may have to be cut up further to get a
completely error-free final render. You’ll see an example of how to sort potentially transparent objects
in a later tutorial.

3

Example program

To demonstrate what has been discussed in this tutorial, we’re going to write a short example program
that uses both depth and transparency. It’ll be simple, but should give you some practical experience
with dealing with transparent objects, and the issues that can arise when using the depth buffer.
There’s no new shaders this time, we’re going to use the ones we made in Tutorial 2 - neither depth
testing or alpha blending require any extra work in the shader! We’re also going to write a new Mesh
class function, one that will create a quad - we’ll be using it again in later tutorials!

Mesh header file

We need one new public function, a static function that will return a fully formed quad Mesh.

1 ...

2 public:

3 static Mesh* GenerateQuad ();

4 ...

mesh.h

Mesh Class file

The function itself is similar to GenerateTriangle in tutorial 1. Note that this time we’re using triangle
strips as the primitive type.

1 Mesh* Mesh:: GenerateQuad () {

2 Mesh* m = new Mesh ();

3 m->numVertices = 4;

4 m->type = GL_TRIANGLE_STRIP;

5

6 m->vertices = new Vector3[m->numVertices];

7 m->textureCoords = new Vector2[m->numVertices];

8 m->colours = new Vector4[m->numVertices];

9

10 m->vertices [0] = Vector3 (-1.0f,-1.0f, 0.0f);

11 m->vertices [1] = Vector3 (-1.0f, 1.0f, 0.0f);

12 m->vertices [2] = Vector3(1.0f,-1.0f, 0.0f);

13 m->vertices [3] = Vector3(1.0f, 1.0f, 0.0f);

14

15 m->textureCoords [0] = Vector2 (0.0f, 1.0f);

16 m->textureCoords [1] = Vector2 (0.0f, 0.0f);

17 m->textureCoords [2] = Vector2 (1.0f, 1.0f);

18 m->textureCoords [3] = Vector2 (1.0f, 0.0f);

19

20 for(int i = 0; i < 4; ++i) {

21 m->colours[i] = Vector4 (1.0f, 1.0f,1.0f,1.0f);

22 }

23

24 m->BufferData ();

25 return m;

26 }

mesh.cpp

4

Renderer header file

Our Renderer class header file is pretty mundane - new things in this tutorial are 4 new public
functions, to control the depth and transparency state. We have two textures and Meshes, and two
vectors to keep the world-space position of two objects. After that, we have our matrices, and some
variables to store the state of our depth and transparency.

1 #pragma once

2

3 #include "./ nclgl/OGLRenderer.h"

4

5 class Renderer : public OGLRenderer {

6 public:

7 Renderer(Window &parent);

8 virtual ~Renderer(void);

9

10 virtual void RenderScene ();

11

12 void ToggleObject ();

13 void ToggleDepth ();

14 void ToggleAlphaBlend ();

15 void ToggleBlendMode ();

16 void MoveObject(float by);

17

18 protected:

19 GLuint textures [2];

20 Mesh* meshes [2];

21 Vector3 positions [2];

22

23 Matrix4 textureMatrix;

24 Matrix4 modelMatrix;

25 Matrix4 projMatrix;

26 Matrix4 viewMatrix;

27

28 bool modifyObject;

29 bool usingDepth;

30 bool usingAlpha;

31 int blendMode;

32 };

renderer.h

5

Renderer Class file

The constructor for our Renderer class this tutorial is pretty straight forward. We instantiate two
Meshes (one triangle and one quad), two textures, and two positions. Then we create our shader
executable as normal - we’re using the shaders we created in the texturing tutorial again, so the
shader initialisation is identical to Tutorial 2! We must also set default values for the various toggle
variables, and create a projection matrix, in this case the same perspective matrix we used in tutorial 2.

1 #include "Renderer.h"

2 Renderer :: Renderer(Window &parent) : OGLRenderer(parent) {

3 meshes [0] = Mesh:: GenerateQuad ();

4 meshes [1] = Mesh:: GenerateTriangle ();

5

6 meshes[0]-> SetTexture(SOIL_load_OGL_texture(

7 TEXTUREDIR"brick.tga",

8 SOIL_LOAD_AUTO ,SOIL_CREATE_NEW_ID , 0));

9

10 meshes[1]-> SetTexture(SOIL_load_OGL_texture(

11 TEXTUREDIR"stainedglass.tga",

12 SOIL_LOAD_AUTO ,SOIL_CREATE_NEW_ID , 0));

13

14 if(! textures [0] || !textures [1]) {

15 return;

16 }

17

18 positions [0] = Vector3 (0,0,-5); //5 units away from the viewpoint

19 positions [1] = Vector3 (0,0,-5);

20

21 currentShader = new Shader(SHADERDIR"TexturedVertex.glsl",

22 SHADERDIR"TexturedFragment.glsl");

23

24 if(! currentShader ->LinkProgram ()) {

25 return;

26 }

27 usingDepth = false;

28 usingAlpha = false;

29 blendMode = 0;

30 modifyObject = true;

31

32 projMatrix = Matrix4 :: Perspective (1.0f ,100.0f,

33 (float)width/(float)height ,45.0f);

34

35 init = true;

36 }

renderer.cpp

The destructor for our Renderer just deletes everything we created in the constructor, as
usual. Remember, the Mesh class destructors will handle the deletion of the textures!

37 Renderer ::~ Renderer(void) {

38 delete meshes [0];

39 delete meshes [1];

40 }

renderer.cpp

6

Our RenderScene function in this tutorial is pretty similar to previous tutorials - the new features
introduced in this Tutorial are switched on and off elsewhere - remember OpenGL is a state machine,
so it doesn’t matter where functionality is set. We set our shader and its matrices, and bind our
shader’s texture sampler to texture unit 0. Then, we draw each mesh in turn, at its position, using
the appropriate texture, before clearing up and swapping our buffers. Note how now our glClear
function has two values ORed together. As we now have a depth buffer as well as a colour buffer, we
must clear that every frame too, using the GL DEPTH BUFFER BIT symbolic constant. This
will set every value in the depth buffer to a value of 1.0 - the very furthest edge of our Normalised
Device Coordinate space.

41 void Renderer :: RenderScene () {

42 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

43 glUseProgram(currentShader ->GetProgram ());

44

45 glUniformMatrix4fv(glGetUniformLocation(currentShader ->GetProgram (),

46 "textureMatrix") ,1,false , (float *)& textureMatrix);

47 glUniformMatrix4fv(glGetUniformLocation(currentShader ->GetProgram (),

48 "viewMatrix") ,1,false , (float *)& viewMatrix);

49 glUniformMatrix4fv(glGetUniformLocation(currentShader ->GetProgram (),

50 "projMatrix") ,1,false , (float *)& projMatrix);

51

52 glUniform1i(glGetUniformLocation(currentShader ->GetProgram (),

53 "diffuseTex"), 0);

54 glActiveTexture(GL_TEXTURE0);

55 for(unsigned int i = 0; i < 2; ++i) {

56 glUniformMatrix4fv(glGetUniformLocation(

57 currentShader ->GetProgram (), "modelMatrix") ,1,false ,

58 (float *)& Matrix4 :: Translation(positions[i]));

59 glBindTexture(GL_TEXTURE_2D , textures[i]);

60 meshes[i]->Draw ();

61 }

62 glUseProgram (0);

63 SwapBuffers ();

64 }

renderer.cpp

To swap between the two objects in the scene, we have a very simple ToggleObject function, and
to move the currently selected object, we have a MoveObject function. We use the NOT boolean
operator to flip a bool, which we cast to an int to use as an index into our positions array, and modify
the relevent position by a float value sent from our main loop.

65 void Renderer :: ToggleObject () {

66 modifyObject = !modifyObject;

67 }

68 void Renderer :: MoveObject(float by) {

69 positions [(int)modifyObject].z += by;

70 }

renderer.cpp

ToggleDepth and ToggleAlphaBlend should be fairly explanatory, and work in a similar manner to
the toggle functions in the last tutorial - we use the NOT boolean operator to flip our bool values,
then use the ternary operator to swap between glEnable and glDisable for the OpenGL function-
ality we wish to toggle. ToggleBlendMode works pretty much the same way - except instead of a
boolean operator, we use the modulo operator to cycle through 4 example types of alpha blending.
The glBlendFunc OpenGL function sets the source and destination blending factors to be used to
blend transparent fragments, as you saw earlier in the tutorial.

7

71 void Renderer :: ToggleDepth () {

72 usingDepth = !usingDepth;

73 usingDepth ? glEnable(GL_DEPTH_TEST) : glDisable(GL_DEPTH_TEST);

74 }

75

76 void Renderer :: ToggleAlphaBlend () {

77 usingAlpha = !usingAlpha;

78 usingAlpha ? glEnable(GL_BLEND) : glDisable(GL_BLEND);

79 }

80

81 void Renderer :: ToggleBlendMode () {

82 blendMode = (blendMode +1)%4;

83

84 switch(blendMode){

85 case (0): glBlendFunc(GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA); break;

86 case (1): glBlendFunc(GL_SRC_COLOR , GL_ONE_MINUS_SRC_COLOR); break;

87 case (2): glBlendFunc(GL_ONE , GL_ZERO); break;

88 case (3): glBlendFunc(GL_SRC_ALPHA ,GL_ONE); break;

89 };

90 }

renderer.cpp

Main file

There’s nothing too surprising in the Main file! Just some keyboard checks to toggle our depth and
alpha functionality, and to move our triangles backwards and forwards.

1 #pragma comment(lib , "nclgl.lib")

2 #include "./ nclgl/window.h"

3 #include "Renderer.h"

4

5 int main() {

6 Window w("Transparency and Depth!", 800 , 600, false);

7 if(!w.HasInitialised ()) {

8 return -1;

9 }

10 Renderer renderer(w);

11 if(! renderer.HasInitialised ()) {

12 return -1;

13 }

14

15 while(w.UpdateWindow () &&

16 !Window :: GetKeyboard()->KeyDown(KEYBOARD_ESCAPE)){

17 if(Window :: GetKeyboard()->KeyTriggered(KEYBOARD_1)) {

18 renderer.ToggleEntity ();

19 }

20 if(Window :: GetKeyboard()->KeyTriggered(KEYBOARD_2)) {

21 renderer.ToggleDepth ();

22 }

23 if(Window :: GetKeyboard()->KeyTriggered(KEYBOARD_3)) {

24 renderer.ToggleAlphaBlend ();

25 }

26 if(Window :: GetKeyboard()->KeyTriggered(KEYBOARD_4)) {

27 renderer.ToggleBlendMode ();

28 }

8

29

30 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_UP)) {

31 renderer.MoveObject (1.0f);

32 }

33 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_DOWN)) {

34 renderer.MoveObject (-1.0f);

35 }

36

37 renderer.RenderScene ();

38 }

39 return 0;

40 }

Tutorial4.cpp

Running the Program

Upon successful compilation and running of this program, you should be able to use the up and down
arrow keys to move the meshes back and forth, and toggle transparency and depth buffer usage.
When running the program, by default you’ll be controlling the triangle. Note that no matter how
long you press the up arrow for, it never seems to move behind the quad. That’s because there’s no
depth testing going on by default, so the object rendererd second, in this case the triangle, will always
be drawn on top of whatever had already been drawn. Now try pressing the 2 key - if you moved
the triangle far away enough, it’ll dissapear! 2 enables depth testing, so no matter which order our
triangles are drawn in, the closer object will always appear to be in front of the further away one.
If you press the back key long enough, the triangle will pop back into view, as it’ll eventually be in
front of the quad. Now, with the triangle in front of the quad, press 3, to enable alpha blending. You
should see something like the picture at the start of this tutorial. The coloured glass segments of the
triangle texture have an alpha value of 128, so they are partially transparent. You can then toggle
between different alpha blending factors using the 4 key.

Tutorial Summary

You should be able to understand how alpha blending works, and the different functions that can be
applied to transparency. You should also have a basic understanding of the depth buffer, how to enable
it, what it contains, and what pitfalls you might encounter when using depth alongside transparency.
Later in this tutorial series we’ll build upon this and take a look at some scene management, in order to
better manage these depth problems, and render the scenes we create more efficiently. Next tutorial,
though, we’re going to take a look at another type of buffer, the Stencil Buffer.

Further Work

1) Testing against the depth buffer and writing to it can be controlled seperately. Investigate the
glDepthMask function.

2) When depth testing, the default behavior is to pass fragment that are less than, or equal to,
the current depth value. Investigate how the glDepthFunc function can change this behaviour.

3) Previous versions of OpenGL had an alpha testing feature, that would discard a fragment en-
tirely if it had an alpha value less than a certain value - handy for skipping depth-writes for fragments
with an alpha of 0! Unfortunately, this has been removed from the OpenGL 3 core profile. How
could this functionality be replicated in a fragment shader? Hint: you can use if statements in GLSL
fragment shaders, and there is a fragment shader function called discard...

9

