Tutorial 5: Scissors and Stencils

Summary

There may be occasions when we want to only render to parts of the screen, masking off the rest of the
current colour buffer from any changes. In OpenGL there’s two ways of doing so, Scissor Regions, and
the Stencil Buffer. This tutorial will explain how to use both of them in your OpenGL applications.

New Concepts

Scissor Regions, Scissor Testing, Stencil Buffer, Stencil Testing

Scissor Regions

Of the two methods used to mask of sections of the back buffer when rendering, the simpler of the
two is the scissor region. A scissor region is a rectangular section of the buffer, within which rendering
takes place normally - any attempt to render outside of a scissor region is ignored - discarded. A
scissor region locks all of the buffers against writing - so it is impossible to write to the colour and
depth buffers outside of an active scissor region.

Like other OpenGL states, testing against a scissor region when rendering is enabled with glEn-
able, using the GL_SCISSOR_TEST symbolic constant. There can be only one scissor region
active at a time, and the area this scissor region covers is set by the glScissor OpenGL function.
This takes 4 parameters - the z and y axis start positions of the scissor region, and the z and y axis
size of the region. Like glViewport, these parameters are in screen space, and so are measured in
pixels. It’s worth noting that scissor testing also influences glClear - it’ll only clear what’s inside the
scissor region, if scissor testing is enabled.

Stencil Buffer

A more advanced method of masking off sections of the screen is to use the stencil buffer. This is a
screen-sized buffer, just like the depth, front, and back buffers. Unlike the scissor regions, which limits
rendering to a single rectangular section of screen, the stencil buffer can be rendered into just as you
would a colour buffer; and then tested against when drawing geometry, just like the depth buffer you
were introduced to last tutorial. For example, you could draw a circle to the stencil buffer, so only
fragments within that circle are rendered - handy for a sniper’s scope! Or perhaps draw your HUD
before drawing your game world, then mask it off to save rendering fragments that will never be seen.

How many bits are set aside for each pixel in a stencil buffer is variable, although you can usu-
ally guarantee 8 bits per pixel on modern graphics hardware. The value written to a stencil buffer
during rendering is programmable - writes can increment, decrement, overwrite, or perform a boolean
operator on an existing stencil value. As with the depth buffer, we can decide to either allow or
discard a fragment drawn into a pixel containing a stencil value. You could draw multiple objects
into a stencil buffer, each of which increments the existing value in the stencil buffer - and then only
allow further drawing into the colour buffer on pixels that have a stencil buffer value greater than 8,
or exactly 4, if you really wanted to!

Testing and writing to the stencil buffer can be enabled using the GL_STENCIL_TEST symbolic
constant, and controlled using two OpenGL functions - glStencilFunc and glStencilOp. glSten-
cilFunc controls how the stencil buffer is tested against, and has three parameters, func, ref, and
mask. Stencil testing works the same as the depth testing introduced earlier in the tutorial series -
you can check if the existing value is greater than, less than, or equal to a value, among others, set
with the func parameter. The value used by depth testing was the eye-space z coordinate, but stencil
testing uses the value provided by the ref parameter. Both the reference parameter, and the existing
parameter, are ANDed with the value of the mask parameter to make the comparison. This allows
us to use a single stencil buffer for many concurrent tests. Here are some examples of using the stencil
func:

glStencilFunc(GL_ALWAYS, 1, 0) - If we enable the stencil buffer, and use this stencil func-
tion to determine what goes into the stencil buffer, the stencil test will always pass (due to the
GL_ALWAYS operation).

glStencilFunc(GL_GREATER, 1, ~0) - In this case, both the ref value (1 in this case) and the
existing value in the stencil buffer will be ANDed together with the mask value ~0, which performs
a bitwise NOT operation. This will invert the value 0 to be all 1s - meaning the mask will leave the
values unaffected (ANDing something with all 1s results in the original value). As the stencil function
is GL_.GREATER, the stencil will only allow values greater than the existing value to pass - so in this
case, if the stencil buffer had 0 in it, this stencil func would pass (1 is greater than 0!), otherwise the
stencil func will fail, and no drawing will take place.

glStencilFunc(GL_EQUAL, 255, 8) - If the value in the stencil buffer was 1, this test would
fail as we're testing for equality - the reference value of 255 ANDed with 8 (only the 4th bit of the
mask is enabled) is 8, while the buffer value of 1 ANDed with 8 is 0. 0 and 8 are obviously not equal,
so the currently processed fragment is discarded. If however, the existing stencil buffer value did have
the 4th bit set, then the stencil test would pass.

What happens when a stencil test either passes or fails is determined by the glStencilOp function.
This function takes 3 parameters, which control what happens when a stencil test fails, when a stencil
test passes but then the fragment fails the depth test, and when both the stencil and depth test pass
(or the stencil test passes and depth testing is disabled), respectively. We can then either keep, reset,
increment, or replace the current stencil buffer value. This allows you to test against the stencil buffer
without actually updating its contents, if you so wish. More examples!

glStencilOp(GL_ZERO, GL_KEEP, GL_KEEP) - If the stencil test fails, this will set the
stencil buffer at that test location to zero. If the stencil test passes, even if the depth test fails, then
the stencil buffer is left alone.

glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE) - In this example, if the stencil test
fails, or passes when the depth test fails, nothing happens. If however both the stencil and depth test
pass, the value in the stencil buffer is replaced by the current ref value of the stencil func.

glStencilOp(GL_KEEP, GL_REPLACE, GL_KEEP) - Here, if the stencil test passes, but
the depth test fails, the value in the stencil buffer will be replaced. This can be used to determine
where one object intersects with another, as the parts of object A that intersect object B will fail the
depth test.

© 00 ~NO O WN -

NN, PP RPR PP PR R
= O O 00 NOOLdbd WND B~ O

D O WN -

Example program

The example program for this tutorial will do two things - use scissor testing to limit the rendering of
a triangle to a rectangular region in the middle of the screen, and use stencil test to limit the rendering
to a chessboard pattern across the screen, via an alpha-mapped texture, to show how geometry drawn
into the stencil buffer can affect subsequent rendering. We’ll be reusing a vertex shader from earlier in
the tutorial series, but writing a new fragment shader - so add a new text file called StencilFragment.glsl
to your Shaders folder, and add a Renderer class, and a Tutorial5.cpp file to the Tutorial5 project.

Renderer header file

In our Renderer class header file, we have two new public functions - ToggleScissor and ToggleStencil,
which control a couple of protected member variables, usingScissor and usingStencil. We also declare
two Meshes.

#pragma once
#include "./nclgl/0GLRenderer.h"

class Renderer : public OGLRenderer {
public:

Renderer (Window &parent);

virtual “Renderer(void);

virtual void RenderScene ();

void ToggleScissor ();
void ToggleStencil();

protected:
Mesh* triangle;
Mesh* quad;

bool usingScissor;
bool usingStencil;

};

renderer.h

Renderer Class file

We start our Renderer class with our constructor, as usual. We use it to initialise our two meshes,
load in our shader, and load in the two textures we’ll be using for this tutorial. Note that the shader
uses the TexturedVertex.glsl vertex shader we wrote back in Tutorial 3, and the StencilFragment.glsl
file we’ll be writing shortly. Everything we create we must of course delete, so our destructor
deletes our two meshes, which will in turn delete our textures.

#include "Renderer.h"

Renderer::Renderer (Window &parent) : OGLRenderer (parent) {
triangle = Mesh::GenerateTriangle ();
quad = Mesh::GenerateQuad () ;

© 00 N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37

38
39
40
41
42
43
44
45
46

currentShader = new Shader (SHADERDIR"TexturedVertex.glsl",
SHADERDIR"StencilFragment.glsl");
if (! currentShader ->LinkProgram ()) {
return;
}
triangle->SetTexture (SOIL_load_OGL_texture (TEXTUREDIR"brick.tga",
SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, 0));
quad->SetTexture (SOIL_load_0OGL_texture (TEXTUREDIR"chessboard.tga",
SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, 0));
if (!triangle->GetTexture() || !quad->GetTexture()) {
return;
}
usingScissor = false;
usingStencil = false;
init = true;
X
Renderer::~“Renderer (void) {
delete triangle;
delete quad;
X

renderer.cpp

Now we’ll get the boring toggle functions out of the way. Like with previous tutorials, they use
the NOT boolean operator to flip our bools around, but this time we don’t directly enable or disable
the relevant OpenGL state - why will be explained shortly!

void Renderer::ToggleScissor () {
usingScissor = !usingScissor;

X

void Renderer::ToggleStencil () {
usingStencil = !usingStencil;

X

renderer.cpp

The RenderScene function is a little bit more complicated this time around. As usual, we clear
the buffers - this time, with the GL_.STENCIL_BUFFER _BIT symbolic constant OR’d in, which
will clear the stencil buffer to a value of all 1s. Then, if scissor testing has been selected, we glEnable
the scissor test, and use glScissor to restrict further scene rendering to a rectangle roughly in the
middle of the screen - remember, glScissor works directly in screen coordinates, so we’ve used the
screen width and height OGLRenderer member variables to define the region. Also, we wait until
after glClear is called - remember, glScissor affects glClear! That’s why we don’t directly enable
or disable the scissor test in our toggle function.

void Renderer::RenderScene () {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT
| GL_STENCIL_BUFFER_BIT);

if (usingScissor) {
glEnable (GL_SCISSOR_TEST);
glScissor ((float)width / 2.5f, (float)height / 2.5f,
(float)width / 5.0f, (float)height / 5.0f);

a7
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

renderer.cpp

Then, we bind our shader, and update its matrices, as usual. As in the texturing tutorial, we also
bind our shader’s diffuseTex texture sampler to texture unit 0.

glUseProgram (currentShader ->GetProgram ()) ;
UpdateShaderMatrices () ;

glUniformli(glGetUniformLocation (currentShader ->GetProgram(),
"diffuseTex"), 0);

renderer.cpp

Here’s the interesting bit! If we have stencil testing enabled, we're going to draw a screen-sized
quad over the screen, that has a chessboard texture applied to it. The black chessboard tiles will
write the value 2 to the stencil buffer, which we will then set up to only allow subsequent draws to
pass if the stencil buffer at that fragment is equal to. But, we don’t actually want the quad to render
to the screen, only to the stencil buffer, so we use a function you may not have come across before:
glColorMask. This function lets you switch off colour writing per channel - there’s 4 parameters, 1
each for red, green, blue, and alpha, and we set them all to false. Even though this will disable all
anything being written to the active buffer, all geometry will still pass through the rendering pipeline,
so it’ll still effect the stencil buffer.

So, we enable the stencil buffer, turn off colour writes, use the stencil functions to always write a
value of 2 into the stencil buffer, and then draw our chessboard textured quad over the screen. We
then turn colour writes back on, and set the stencil buffer to only allow fragments to pass on sections
of the stencil buffer with a value of 2; we also don’t want anything else changing the stencil buffer, so
we use glStencilOp to keep the stencil buffer as it is no matter what it contains.

if (usingStencil) A{
glEnable (GL_STENCIL_TEST);

glColorMask (GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glStencilFunc (GL_ALWAYS, 2, ~0);
glStencilOp (GL_REPLACE, GL_REPLACE, GL_REPLACE);

quad ->Draw () ;
glColorMask (GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

glStencilFunc (GL_EQUAL, 2, ~0);
glStencilOp (GL_KEEP, GL_KEEP, GL_KEEP);

renderer.cpp

Finally, draw the triangle. We also glDisable scissor and stencil testing, ready for the next frame’s
rendering.

triangle ->Draw ();
glUseProgram (0) ;

glDisable (GL_SCISSOR_TEST) ;
glDisable (GL_STENCIL_TEST);

SwapBuffers () ;

renderer.cpp

O 00 ~NO O WN -~

NNNMNMNMNNMNMNMNMNNMNNR,r P RPRPRPR PR, PR R P
0N N WNREL, OWOWNOOd WNR~ O

© 00 N O Ord WN -

=
= O

Main file

Nice and simple, all we change from our very first main file is a couple of keyboard checks to toggle
scissor and stencil testing.

#include "./nclgl/window.h"
#include "Renderer.h"
#pragma comment (lib, "nclgl.lib")
int main() {
Window w("Index Buffers!", 800,600,false);
if ('w.HasInitialised ()) {
return -1;
}
Renderer renderer (w);
if (!renderer .HasInitialised ()) {
return -1;
}
while (w.UpdateWindow () &&
!Window::GetKeyboard () ->KeyDown (KEYBOARD_ESCAPE)) {
if (Window::GetKeyboard () ->KeyTriggered (KEYBOARD_1)) {
renderer . ToggleScissor ();
}
if (Window::GetKeyboard () ->KeyTriggered (KEYBOARD_2)) {
renderer .ToggleStencil () ;
3
renderer . RenderScene () ;
}
return O;
3

main.cpp

Fragment Shader

You may have been wondering how the chessboard texture will selectively write to the stencil buffer.
Well, the texture’s white tiles have an alpha value of 0 - something we can check for in the fragment
shader! You may have already written something like this last tutorial, but if not, here’s how to
discard a fragment based on its alpha, so that neither the depth or the stencil buffer are updated.
We do a simple if statement to check if the incoming alpha value is 0.0, and if so use the GLSL
keyword discard. Note how we don’t ever actually enable alpha blending in OpenGL - being able to
sample an alpha value from a texture is entirely separate to the alpha blending process.

#version 150 core
uniform sampler2D diffuseTex;
in Vertex {
vec2 texCoord;
} IN;

out vec4 fragColour;

void main(void) {

12
13
14
15
16
17
18

vec4 value = texture(diffuseTex, IN.texCoord).rgba;
if (value.a == 0.0) {
discard;
}
fragColour = value;
}

StencilFragment.glsl

Running the Program

If everything works correctly, you’ll see a textured triangle on screen when running this program - not
very interesting! Pressing the I key will enable scissor testing, and restrict the drawing of the triangle
to a small box in the middle of the screen. Pressing the 2 key will enable stencil testing, resulting in a
a chessboard-like restriction of drawing. This is due to the chessboard texture we use on the quad that
we draw over the screen if stencil testing is enabled - the 'white’ board pieces have an alpha of 0.0, so
only the ’black’ board pieces write to the stencil buffer. As we disable colour writes, the colour buffer
isn’t written to by our chessboard quad, but the stencil buffer is updated - which we then test against
when drawing the triangle. Stencil buffers and scissor tests aren’t mutually exclusive - we can enable
both if we want! If you still don’t quite get how the stencil buffer is working, try commenting out
line 55 and running it again, it should make it a bit clearer how the chessboard texture is selectively
disabling colour writes to sections of the screen.

The left image is combined with the centre image stenciled regions, making the right hand image

Tutorial Summary

After completing this simple tutorial, you should have a pretty good idea of how to use both stencil
buffers and scissor regions in your game rendering. There’s not much more to say on scissor regions,
but stencil buffers can be a bit more complicated - it’s possible to add multiple stenciled regions
together in a stencil buffer, using the mask variable of glStencilFunc; but for now you should have
enough knowledge of stencil buffers to do some interesting effects in your games. In the next few
tutorials, we’re going to start extending the Mesh class we made back in Tutorial 1, to support a more
efficient method of rendering called an index buffer. It’ll also show you how to create terrain using a
heightmap - finally, no more simple quads and triangles! We’ll also look at how to organise your game
objects using something called a scene graph.

Further Work

1) The program is currently set up to stencil the black chessboard pieces - what changes would have
to be made to stencil off the white chessboard pieces instead?

2) Like the colour buffer and its glClearColor function, it is possible to set the clear value of the
stencil buffer. Investigate the glClearStencil function.

3) It’s possible to yet further control the writing to the stencil buffer, by turning off writes to in-
dividual bits. Investigate the glStencilMask OpenGL function.

