Tutorial 15: Deferred Rendering

Summary

In this tutorial series, you've seen how to create real time lighting effects, and maybe even had a go at
creating a few pointlights in a single scene. But how about 10s of lights? Or even 100s? Traditional
lighting techniques using shaders are not well suited to handling mass numbers of lights in a single
scene, and certainly cannot perform them in a single pass, due to register limitations. This tutorial
will show how a large number number of lights can light a scene at once, all of them using the complex
lighting calculations you have been introduced, via a modern rendering technique known as deferred
rendering.

New Concepts

Deferred rendering, light volumes, G-Buffers, world space recalculation

Deferred Rendering

As the number of objects and lights in a scene increases, the problems with performing lighting
using a fragment shader similar to the one presented earlier in this tutorial series becomes apparent.
As every vertex runs through the pipeline and gets turned into fragments, each fragment gets ran
through the lighting equations. But depending on how the scene is rendered, this fragment might not
actually be seen on screen, making the calculations performed on it a waste of processing. That’s
not too bad if there’s only one light, but as more and more are added to the scene, this waste of
processing time builds up. Objects not within reach of the light may still end up with fragments ran
through the lighting shader, wasting yet more time. Ideally, lighting calculations would be performed
in image space - i.e only ran on those fragments that have ended up as pixels in the final back buffer.
Fortunately, there is a way to make real-time lighting a form of post-processing effect, ran in image
space - deferred rendering. Deferred rendering allows many lights to be drawn on screen at once, with
the expensive fragment processing only performed on those pixels that are definitely within reach of
the light. Like the blur post-processing you saw earlier, deferred rendering is a multipass rendering
algorithm, only this time, instead of two passes, three passes are performed - one to draw the world,
one to light it, and one to present the results on screen. To pass data between the separate render
passes, a large number of texture buffers are used, making use of the ability of a Frame Buffer Object
to have multiple colour attachments.

G-Bulffers

Deferred rendering works by splitting up the data needed to perform lighting calculations into a num-
ber of screen sized buffers, which together are known as the G-Buffer. You should be pretty used to
multiple buffers by now - classical rasterisation uses at least one colour buffer, a depth buffer, and
maybe a stencil buffer. What deferred rendering does is extend this to include a buffer for everything
we need to compute our real-time lighting. So, as well as rendering our colour buffer and depth buffer,
we might have a buffer containing TBN matrix transformed normals, too. If the vertices to be ren-
dered have a specular power, either as a vertex attribute or generated from a gloss-map, we can write
that out to a buffer, too. By using the Frame Buffer Object capability of modern graphics hardware,
all of these buffers can be created in a single rendering pass. Just like how we can load in normals
from a bump map, we can write them to a frame buffer attachment texture - textures are just data!

Normally, each of these buffers will be 32bits wide - the internals of graphics cards are optimised
to handle multiples of 32 bits. This raises some important issues. The normals we’ve been loading in
from bump maps are 24 bits - we store the z,y, and 2z axis as an unsigned byte. It’s therefore quite
intuitive to think about writing them out to the G-Buffer as 24 bits, too. But this leaves us with
8 bits ’spare’ in our G-Buffer, as the alpha channel would not be used. What to do with these 8
bits of extra data is entirely up to the exact implementation of deferred rendering that is to be used.
One popular solution is to put some per-pixel data in it , such as how much specularity to apply, or
maybe some flags to determine whether lighting should affect the model, or if it should be blurred in a
post-process pass. Sometimes, it might be decided to store the normals in a higher precision instead,
and maybe have 12-bits for the z and y axis, with the z axis reconstructed in a fragment shader.
Whatever per-pixel information required to correctly render the scene is placed into this G-Buffer, in
a single rendering pass.

1L

Jaseans Aty

Example G-Buffer output for a cityscape rendered using deferred rendering. Clockwise from top left:
Diffuse colours, World space normals, depth, and material information such as fullbright and
shadowed areas

Light Volumes

Unlike the ’'traditional’ lighting techniques, where lighting is calculated in the same rendering pass as
the vertices are transformed in, deferred rendering does it in a second pass, once the G-Buffer has
been filled (i.e. lighting has been deferred until after the geometry has been rendered). In this pass,
we render light volumes, to the screen, using the same view and projection matrices as the first render
pass - so we are drawing lights in relation to our camera.

But what actually is a light volume? If you cast your mind back to the real time lighting tutori-
als, you were introduced to the concept of light attenuation, where each light had a position, and a
radius. That means that our light was essentially a sphere of light, illuminating everything within it.
That’s what a light volume is, a shape that encapsulates the area we want the light to illuminate -
except in deferred rendering, we actually draw a mesh to the screen, at the position where our light
is. This mesh could simply be a sphere for a pointlight, or a cone for a spotlight - any shape we can
calculate the attenuation function for can be used for a light volume.

Light volume A encapsulates nothing, while light volume b encapsulates part of the tree - lighting
calculations will only be performed on the fragments of tree inside the light volume

However, remember that in 'view space’ (i.e in relation to the camera), a light volume could appear
to encapsulate an object, but in actuality the object is too far away from the light to be within its
volume. So there is a chance that a light volume could ’capture’ an object not inside it, which must
be checked for in the second render pass. Consider the following example of a light volume appearing
to contain an object not within its radius:

Light Position: (0,0,0)
Caw Position: (0,0,0)

Light Position: (0,0,0)

The cow on the left is small, and is fully enclosed within the light volume. The cow on the right is
far away, so although it looks like it is within the light volume from the camera’s perspective, it is
actually outside of the light volume’s radius

Deferred Lighting Considerations

So, how does splitting our rendering up into two stages help us render lots of lights? By using light
volumes, and only performing lighting calculations within that volume, we can drastically reduce the
number of fragment lighting calculations that must be performed.

Think about the traditional process: Imagine we are using our bump mapping shaders, expanded
to contain an array of 16 lights, spread throughout the game world. So for every fragment written to
the back buffer, we must perform 16 sets of lighting calculations.

The vast majority of the time, any particular fragment will only be lit by 1 or 2 lights, so that
in itself causes a lot of wasted processing - even if we used the discard statement to ’early out’ of
the lighting process, we've still waste processing, and fragment shaders aren’t particularly strong at
using loops to start with. It gets worse! Imagine we have a really complex scene, with lots of objects
overlapping each other. That means lots of fragments will be overwritten, so the time spent on calcu-
lating lighting for them is effectively wasted. Even if we use the early-z functionality by drawing in
front-to-back order, and use face culling to remove back facing triangles, we still might get fragments
that are written to many times. If we want to draw more lights than we can calculate in a single
fragment shader, we must perform multiple rendering passes, drawing everything in the world multiple
times!

Deferred rendering solves all of these problems. When it comes to performing the lighting calcu-
lations in the second pass, we already know exactly which fragments have made their way to the
G-Buffer, so we get no wasted lighting calculations - every G-Buffer texel that is 'inside’ a light vol-
ume will be seen in the final image. By using additive blending of output fragments in the second
render pass, G-Buffer texels that are inside mulitple light volumes get multiple lighting calculation
results added together. Finally, by only running the expensive lighting fragment shader on fragments
that are inside light volumes, we save time by not running any calculations on fragments that will
never be lit. By using deferred rendering, we go from maybe 8 or so lights on screen at a time before
rendering slows down, to being able to quickly process 1000s of small lights, and maybe 100s of larger
lights.

As with seemingly everything in graphical rendering, deferred rendering does have its downsides,
too. The most obvious problem is space - the G-Buffer consists of multiple screen-sized textures, all of
which must in be in graphics memory. It is easy to end up using 64Mb of graphics memory just for the
G-Buffer - no problem on a PC thesedays, but tricky on a console with only 256Mb of graphics memory!

The second problem is related to the first - bandwidth. All of these G-Buffer textures must be sampled
at least once per lit fragment, which can add up to a lot of data transfer every frame in cases where
lots of lights overlap each other. This increase in bandwidth is offset to some degree by being able
to do everything in a single lighting pass, and by guaranteeing that if data is transferred, then it is
because the data almost certainly will be used.

Thirdly, deferred rendering doesn’t help us with the problem of transparent objects. If we write
transparent objects to the G-Buffer, what is behind the transparent fragments won’t be shaded cor-
rectly, as the normals and depth read in will be for the transparent object! As with 'forward’ rendering,
it is usual to perform deferred lighting on only opaque objects, and then draw the transparent ones
on top, using 'normal’ lighting techniques, or maybe not even lit at all.

Having to render data into G-Buffers, rather than always having vertex attributes to hand, does
place some limitations on the types of effect used - there’s only so much data we can pack into the
G-Buffer without requiring even more textures, further increasing space and bandwidth requirements.

Lastly, depending on the API used, we might not be able to perform antialiasing using deferred
rendering. Antialiasing is the process of removing ’jaggies’ - the jagged edges along the edges of
polygons. Older hardware cannot store the information required to perform hardware antialiasing in
a G-Buffer texture. Antialising using edge detection and a blur filter has become a popular solution
to this.

Despite these drawbacks, variations on deferred rendering have become the standard method of draw-
ing highly complex, lit scenes - Starcraft 2, Killzone 2, and games using the CryEngine 3 and Unreal
3 game engines all support deferred lighting in some form.

Rendering Stages

Basic deferred rendering is split into three render passes - the first renders graphical data out into the
G-Buffer, the second uses that data to calculate the accumulated light for each visible pixel, and the
third combines the basic textures and lighting into a final scene.

1) Fill the G-Buffer

First, the G-Buffer must be filled. This stage is similar to how you were rendering things before
we introduced per-pixel lighting. For every object in the scene, we transform their vertices using a
"ModelViewProjection” matrix, and in a fragment shader sample their textures. However, instead of
rendering the textured result to the back buffer, we output the data we need to perform lighting to
several colour buffers, via a frame buffer object with multiple attachments.

Meshes
Diffuse Texture .
Buffer Fill
Bump map P
Gloss Map
Etc...

2) Perform Lighting Calculations

With the G-Buffer information rendered into textures, the second pass of calculating the lighting
information can be performed. By rendering light volumes such as spheres and cones into the scene,
the fragments which might be lit can be ’captured’, and processed using the lighting fragment shader.
In the fragment shader, the world position of the fragment being processed is reconstructed with help
from the G-Buffer depth map - using this we can perform the lighting calculations, or discard the
fragment if the fragment is too far away from the light volume to be rendered. We must still check
whether fragments ’captured’ by the light volume are outside the light’s attenuation, due to situations
where the light volume covers objects that are very far away.

Diffuse Light

Specular Light

Lighting
Shader
Normals, Depth,

Light Volume Meshes

3) Combine Into Final Image

In the final draw pass, we draw a single screen-sized quad, just like we do to perform post-processing
techniques. In the fragment shader, we simply sample the lighting attachment textures, and the dif-
fuse texture G-Buffer, and blend them together to create the final image.

Combine
Shader

Final combined Image

Diffuse light, specular light,
Diffuse Texture

© 00 ~NO O WN -

NNNNRFE,E PP PR PR PP
WNNFP, O OO0 NOOPd WNE- O

Example Program

To show off deferred rendering, we're going to use our heightmap again. This time though, instead
of rendering a single light in the centre of the heightmap, we’re going to use deferred rendering to
draw 64 lights, spread throughout the scene. And to make it even more interesting, those lights
are going have random colours, and rotate around the centre of the heightmap! We're going to use
spherical light volumes for this program, to show off how using a light volume produces just the same
results as the traditional real time lighting methods you have been introduced to. We don’t need
any new classes in the nclgl this time around, just a new Renderer class in the Tutorial 15 project.
Also in the Tutorial 15 project, we need 5§ new text files, for the vertex and fragment shaders of
deferrred rendering’s 3 render passes. For the first pass we’re going to reuse the bump Vertex shader,
but combine it with a new fragment shader, called bufferFragment.glsl. For the second pass, we need
two files, pointLightvert.glsl and pointLightFrag.glsl, and for the third pass we need, combine Vert.glsl
and combineFrag.glsl. Don’t worry, only one of these shaders is a long one!

Renderer header file

First off, our new Renderer class header file. There’s nothing much new in here, just lots of old! We
have a define, LIGHTNUM that will determine how many lights are rendered on screen - you’ll see
how this is used shortly. We also have 4 new functions, a helper function for each of the three deferred
rendering passes, and a function that will create a new screen sized FBO attachment. We stick this
into a function as we're creating quite a lot of FBO attachments in this tutorial, and the code is
almost identical, so it makes sense to stick it all together to reduce the chances of errors creeping in.

#pragma once

#include "./nclgl/0GLRenderer.h"
#include "./nclgl/Camera.h"
#include "./nclgl/0BJmesh.h"
#include "./nclgl/heightmap.h"

#define LIGHTNUM 8 //We’ll generate LIGHTNUM squared lights...

class Renderer : public OGLRenderer {
public:

Renderer (Window &parent) ;

virtual ~“Renderer (void);

virtual void RenderScene ();
virtual void UpdateScene(float msec);

protected:
void FillBuffers(); //G-Buffer Fill Render Pass
void DrawPointLights (); //Lighting Render Pass
void CombineBuffers(); //Combination Render Pass
//Make a new texture...
void GenerateScreenTexture(GLuint &into, bool depth = false);

renderer.h

Now for our member variables. We have 3 Shaders, a pointer to some Light structs, a HeightMap,
a light volume Mesh, a quad Mesh, and a Camera. We're going to use a rotation float to keep how
much to rotate our lights by, two FBOs, and 5 FBO attachment textures - now you can see why we
stuck the attachment texture initialisation into a function!

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Shader *
Shader *
Shader *

Lightx*
Mesh *
OBJMesh *
Mesh*
Camera*

float

GLuint
GLuint
GLuint
GLuint

GLuint
GLuint
GLuint

sceneShader;
pointlightShader;
combineShader;

pointLights;
heightMap;
sphere;
quad ;
camera;

rotation;

bufferFBO;
bufferColourTex;
bufferNormalTex;
bufferDepthTex;

pointLightFBO;
lightEmissiveTex;
lightSpecularTex;

//Shader to fill our GBuffers
//Shader to calculate lighting
//shader to stick it all together

//Array of lighting data
//Terrain!

//Light volume

//To draw a full-screen quad
//0ur usual camera

//How much to increase rotation by

//FBO for our G-Buffer pass
//Albedo goes here
//Normals go here

//Depth goes here

//FBO for our lighting pass
//Store emissive lighting
//Store specular lighting

Renderer Class file

We begin our Renderer class with its constructor, as ever. We start off by initialising the rotation
variable to 0.0f, and creating a new Camera and quad Mesh. Then, beginning on line 10, we begin
the process of creating enough Lights for our deferred scene. What we want to create is a grid of light
volumes, each with its own position, colour and radius. The number of lights along each axis of the
light grid is controlled by the LIGHTNUM define in the header file, so by default, we’ll create 8 lights
along each axis, creating 64 lights in total:

renderer.h

The HeightMap terrain, with 64 light volumes lighting its area

© 00 ~NO O WN -

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#include "Renderer.h"
Renderer::Renderer (Window &parent) : OGLRenderer (parent) {
rotation = 0.0f;
camera = new Camera(0.0f,0.0f,
Vector3 (RAW_WIDTH*HEIGHTMAP_X / 2.0f,500,RAW_WIDTH*HEIGHTMAP_X));
quad = Mesh::GenerateQuad();
//Need to make an empty constructor for the Light class...

pointLights = new Light [LIGHTNUM*LIGHTNUM];
for(int x = 0; x < LIGHTNUM; ++x) {
for(int z = 0; z < LIGHTNUM; ++z) {
Light &1 pointLights [(x*LIGHTNUM) +z];

float xPos = (RAW_WIDTH*HEIGHTMAP_X / (LIGHTNUM-1)) * x;
float zPos (RAW_HEIGHT*HEIGHTMAP_Z / (LIGHTNUM-1)) * z;
1.SetPosition(Vector3 (xPos ,100.0f,zPos));

0.5f + (float)(rand ()%129) / 128.0f;
float g 0.5f + (float)(rand()%129) / 128.0f;
float b 0.5f + (float)(rand()%129) / 128.0f;
1.SetColour (Vector4(r,g,b,1.0£f));

float r

float radius = (RAW_WIDTH*HEIGHTMAP_X / LIGHTNUM) ;
1.SetRadius (radius);

renderer.cpp

So, we initialise enough Lights to fill the scene (line 10), and then set their positions (line 17) and
colours (line 22) using a double for loop - one to traverse each axis. We want the colour of each light
to be quite bright, so it is set to 0.5, with a random float between 0.0 and 0.5 added to it. The loop
is set up so that as the LIGHTNUM define is changed, the positions and radii are still useful values.

Once the Lights are set up, we can create the HeightMap (just as we do in the bump mapping
tutorial), and create a Mesh for the light volume. We're going to use another OBJ mesh, just like
how we generated a Mesh from an OBJ file in the scene graph tutorial.

heightMap = new HeightMap (TEXTUREDIR"terrain.raw");

heightMap->SetTexture (SOIL_load_0GL_texture (
TEXTUREDIR"Barren Reds.JPG",SOIL_LOAD_AUTO,
SOIL_CREATE_NEW_ID,SOIL_FLAG_MIPMAPS));

heightMap->SetBumpMap (SOIL_load_0OGL_texture (
TEXTUREDIR"Barren RedsDOT3.JPG", SOIL_LOAD_AUTO,
SOIL_CREATE_NEW_ID, SOIL_FLAG_MIPMAPS));

SetTextureRepeating (heightMap->GetTexture (), true);
SetTextureRepeating (heightMap ->GetBumpMap () , true) ;

sphere = new 0BJMesh ();
if (! sphere->Load0BJMesh (MESHDIR"ico.obj")) {
return;

}

renderer.cpp

44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73

Next up, we create the three shader programs required for the three render passes. We're reusing
one shader file from an earilier tutorial, but the other 5 are all new!

sceneShader = new Shader (SHADERDIR"BumpVertex.glsl",
SHADERDIR"bufferFragment.glsl");
if (! sceneShader ->LinkProgram()) {
return;

}

combineShader = new Shader (SHADERDIR'"combinevert.glsl",
SHADERDIR" combinefrag.glsl");
if (! combineShader ->LinkProgram()) {
return;

}

pointlightShader = new Shader (SHADERDIR'"pointlightvert.glsl",
SHADERDIR"pointlightfrag.glsl");
if (!pointlightShader ->LinkProgram()) {
return;

}

renderer.cpp

Now the Shaders are done with, its time to move on to the FBOs and its attachments. To perform
deferred rendering we need two FBOs - one for the first rendering pass, and one for the second; the
third render pass outputs to the back buffer. SO, on lines 60 and 61, we generate two FBOs. Each of
these FBOs is going to have two colour attachments, in the first pass to keep the texture samples and
normals, and in the second pass to keep diffuse and specular lighting. To tell OpenGL which colour
channels to render to, we must pass it a pair of named constants - in this case we’ll be drawing into
the first and second colour attachments, so on line 63, we create a pair of GLenums, equating to the
relevent named constants. Then, on lines 68 to 72, we use the function GenerateScreenTexture, which
will be described shortly, to generate the FBO attachment textures. For now, just note that we send
a value of true to the first function call, which creates the depth texture.

glGenFramebuffers (1,&bufferFBO) ;
glGenFramebuffers (1,&pointLightFB0);

GLenum buffers[2];
buffers[0] = GL_COLOR_ATTACHMENTO ;
buffers[1] = GL_COLOR_ATTACHMENT1 ;

//Generate our scene depth texture...
GenerateScreenTexture (bufferDepthTex , true);
GenerateScreenTexture (bufferColourTex) ;
GenerateScreenTexture (bufferNormalTex) ;
GenerateScreenTexture (lightEmissiveTex);
GenerateScreenTexture (lightSpecularTex) ;

renderer.cpp

With the FBOs and their attachment textures created, we can start binding attachments to their
respective FBOs. First, we’ll set up the FBO for the first deferred rendering pass. It’s not too
different to the FBO creation process in the post-processing tutorial, only this time we’re creating
two colour attachments. Once all of the textures are attached, a call to glDrawBuffers, using the
buffers variable made on line 63, lets the FBO know that it is going to render into both of its colour
attachments.

74
75
76
7
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116

//And now attach them to our FBOs

glBindFramebuffer (GL_FRAMEBUFFER, bufferFBO0);

glFramebufferTextureQD(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO ,
GL_TEXTURE_2D, bufferColourTex, 0);

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1,
GL_TEXTURE_2D, bufferNormalTex, 0);

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, bufferDepthTex, 0);

glDrawBuffers (2, buffers);

if (glCheckFramebufferStatus (GL_FRAMEBUFFER) !=
GL_FRAMEBUFFER_COMPLETE) A
return;

renderer.cpp

Next we simply do the same for the second rendering pass. Note that in this pass, we don’t have a
depth attachment at all - we’re going to reconstruct world positions in the shader, using the depth
buffer of the first rendering pass, passed in as a normal texture. As we’re done with FBOs for now,
on line 99 we unbind the FBO, then enable the OpenGL states we need - depth testing, culling, and
blending.

glBindFramebuffer (GL_FRAMEBUFFER, pointLightFBO);

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO,
GL_TEXTURE_2D, lightEmissiveTex, 0);

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 ,
GL_TEXTURE_2D, lightSpecularTex, 0);

glDrawBuffers (2, buffers);

if (glCheckFramebufferStatus (GL_FRAMEBUFFER) !=

GL_FRAMEBUFFER_COMPLETE) {

return;

is

glBindFramebuffer (GL_FRAMEBUFFER, 0);

glEnable (GL_DEPTH_TEST) ;

glEnable (GL_CULL_FACE) ;

glEnable (GL_BLEND) ;

init = true;

}

renderer.cpp

Finally our constructor is finished! Now to tear it all down in the destructor. Remember that the
pointLights pointer is an array, and so should be deleted using delete]].

Renderer:: Renderer (void) {
delete sceneShader;
delete combineShader;
delete pointlightShader;
delete heightMap;
delete camera;
dieplfeitie sphere;
delete quad ;
delete [] pointLights;

10

117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148

glDeleteTextures (1,&bufferColourTex);
glDeleteTextures (1,&bufferNormalTex) ;
glDeleteTextures (1 ,&bufferDepthTex) ;
glDeleteTextures (1,&lightEmissiveTex) ;
glDeleteTextures (1,&lightSpecularTex);

glDeleteFramebuffers (1,&bufferFB0O) ;
glDeleteFramebuffers (1,&pointLightFBO0) ;
currentShader = O;

renderer.cpp

In the constructor, we used a helper function, called GenerateScreenTexture. Here’s how it works.
It takes in two parameters - the first is a reference to a GLuint texture name, and the second is a
boolean which controls whether we are generating a depth texture or a colour texture. The second
parameter has a default value of false - that’s why one one call had a second parameter in the con-
structor, as we only need to generate a depth texture once. The process for generating either type of
texture is pretty similar, and should be familiar from the post-processing tutorial, and the appendix
of tutorial 3. We generate a screen-sized texture, and use the depth parameter to decide on the type
and format of the texture (on lines 136 and 138).

void Renderer::GenerateScreenTexture(GLuint &into , bool depth) {
glGenTextures (1, &into);
glBindTexture (GL_TEXTURE_2D, into);
glTexParameterf (GL_TEXTURE_2D ,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf (GL_TEXTURE_2D ,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterf (GL_TEXTURE_2D ,GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf (GL_TEXTURE_2D ,GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D (GL_TEXTURE_2D, O,
depth ? GL_DEPTH_COMPONENT24 : GL_RGBAS8,
width, height, O,
depth ? GL_DEPTH_COMPONENT : GL_RGBA,
GL_UNSIGNED_BYTE, NULL);
glBindTexture (GL_TEXTURE_2D, 0);
}

renderer.cpp

In the UpdateScene function for this tutorial, as well as our usual camera stuff, we’re going to set
the rotation variable, to a value derived from msec, so we get a nice and consistent rotation for our
64 lights.

void Renderer::UpdateScene(float msec) {
camera->UpdateCamera (msec) ;
viewMatrix = camera->BuildViewMatrix();
rotation = msec * 0.01f;

renderer.cpp

We have another small RenderScene function this time around, as the actual rendering is handled by
three helper functions - one for each rendering pass. We make sure the back buffer is cleared, and the
buffers are swapped once everything is drawn, though.

11

149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

void Renderer::RenderScene () {
glBindFramebuffer (GL_FRAMEBUFFER, 0);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

FillBuffers ();
DrawPointLights ();
CombineBuffers ();
SwapBuffers () ;

renderer.cpp

Here’s how we perform the first deferred rendering pass, which outputs the texture colours and nor-
mals of every pixel on screen. As we’re rendering into an FBO, the first function called is to bind that
FBO, and clear its contents. Calling glClear using the colour buffer bit on an FBO with multiple
colour targets, will clear every bound target. Beyond that, rendering the scene is much as you’ve seen
before - we bind the texture and bumpmap texture units to the shader, set up the matrices, and draw
the heightmap. It’s the shader that will perform all of the interesting stuff to put the values into
the correct FBO attachment textures. Although we don’t calculate any lighting in this pass, we do
calculate the TBN matrix, so we need the bump maps of every object we draw.

void Renderer::FillBuffers() {
glBindFramebuffer (GL_FRAMEBUFFER, bufferFBO0);
glClear (GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
SetCurrentShader (sceneShader) ;
glUniformli(glGetUniformLocation (currentShader ->GetProgram(),
"diffuseTex") , 0);
glUniformli (glGetUniformLocation (currentShader ->GetProgram(),
"bumpTex") , 1);
projMatrix = Matrix4::Perspective(1.0f,10000.0f,
(float)width / (float)height, 45.0f);
modelMatrix.ToIdentity () ;
UpdateShaderMatrices () ;
heightMap->Draw () ;
glUseProgram (0) ;
glBindFramebuffer (GL_FRAMEBUFFER, 0);
}

renderer.cpp

Now for the second pass, which we perform in the function DrawPointLights. Like the first pass (and
the rendering you are used to), we begin by binding the appropriate shader, binding the appropriate
FBO, and clearing its colour buffer (we have no depth buffer in this pass). In this pass, though,
we don’t clear the colour to dark grey like normal, but to black. That’s because we’re going to be
blending the colour of the results of this pass in the third pass, so we want unlit pixels to be black.
If the clear colour was grey, it would appear that the entire scene had been lit by a grey light, and
appear washed out. We also want fragments that are ’captured’ by multiple lights to have the sum of
those light colours as its colour, so we enable additive blending on line 185.

Then on lines 187 to 196, we bind the depth and normal FBO attachments from the first pass as
uniform textures in this pass, giving our fragment shader access to the roughness and position of the
fragments captured by our light volumes. Then, we send our camera’s position to the shader, so we
can calculate specularity, and also the pizelSize value we first saw in the post-processing tutorial.

12

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

void Renderer::DrawPointLights () {
SetCurrentShader (pointlightShader);

glBindFramebuffer (GL_FRAMEBUFFER, pointLightFBO);

glClearColor (0,0,0,1);
glClear (GL_COLOR_BUFFER_BIT) ;

glBlendFunc (GL_ONE ,GL_ONE) ;

glUniformli (glGetUniformLocation (currentShader ->GetProgram(),
"depthTex"), 3);

glUniformli (glGetUniformLocation (currentShader ->GetProgram(),
"normTex") , 4);

glActiveTexture (GL_TEXTURE3) ;
glBindTexture (GL_TEXTURE_2D, bufferDepthTex) ;

glActiveTexture (GL_TEXTURE4) ;
glBindTexture (GL_TEXTURE_2D, bufferNormalTex);

glUniform3fv(glGetUniformLocation (currentShader ->GetProgram(),
"cameraPos"), 1,(float*)&camera->GetPosition());

glUniform2f (glGetUniformLocation (currentShader ->GetProgram() |,
"pixelSize"), 1.0f / width, 1.0f / height);

renderer.cpp

Now to draw the lights! we can do the light volume drawing using a double for loop, but what about
rotating them? If we just have a rotation matrix for each light’s model matrix, they’ll simply spin
around their origin, which as they’re spheres, will not look very interesting! Instead, we want to
rotate them in relation to the centre of the HeightMap. So for each light, we’re going to go through
the following process. Firstly, we’re going to translate by half way along the heightmaps width and
length, moving the ’origin’ to the centre of the heightmap. Then, we’re going to rotate by a rotation
matrix, rotating around this new origin. Then, we're going to translate in the opposite direction to
the first translation, moving the light back to the origin being in the corner of the heightmap. You
should recognise this from the texture mapping tutorial, where we did the same thing to the texture
matrix, so that the texture rotated about the middle of the triangle. By doing this every frame, the
entire light grid will slowly rotate around the centre of the height map.

From left to right: Lights at their local origins, with the world origin in the top left. Translating light
origins to be from the centre of the heightmap. Rotating the lights by 45 degrees. Translating back to
an origin at the top left

13

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

So, on line 206 we calculate the translation matrix to ’push’ the light to be in relation to the middle
of the screen, and on 207 we calculate the matrix to "pop’ it back. Then, on line 209, we begin the
double for loop to set up the model matrix for each light (line 214), update the shader light variables
(line 223), and update the shader matrix variables (line 225).

On line 227, we calculate the disance of the camera from the current light, then on line 228 we
test against it. Why do we do this? If we have back face culling enabled, and the distance between
the light volume and the camera is less than the light’s radius, then it follows that the camera is inside
the light volume. That means every face of the light is facing away from the camera, and so will not be
drawn! We can’t capture any fragments if our light volume isn’t drawn. So we flip face culling around
to cull front faces temporarily when the camera is inside the light’s radius. But why don’t we just
disable face culling entirely for lights? If we did, most pixels would then be captured by a light twice
- once by one ’side’ of the light volume, facing away, and once by the front ’side, facing towards. So
the lighting calculations will be incorrect, as a light would be influencing its captured fragments twice
- unless the camera was inside. Swapping culled faces removes the chance of accidentally performing
lighting calculations twice for a single light.

Vector3 translate = Vector3((RAW_HEIGHT*HEIGHTMAP_X / 2.0f),500,
(RAW_HEIGHT*HEIGHTMAP_Z / 2.0f));

Matrix4::Translation(translate);
Matrix4::Translation(-translate);

Matrix4 pushMatrix
Matrix4 popMatrix

for(int x = 0; x < LIGHTNUM; ++x) {
for(int z = 0; z < LIGHTNUM; ++z) {
Light &1 = pointLights [(x*LIGHTNUM)+z];
float radius 1.GetRadius () ;

modelMatrix =
pushMatrixx*
Matrix4::Rotation(rotation,Vector3(0,1,0)) *
popMatrix *
Matrix4::Translation(l.GetPosition()) *
Matrix4::Scale(Vector3(radius ,radius,radius));

1.SetPosition(modelMatrix.GetPositionVector ());
SetShaderLight (1) ;
UpdateShaderMatrices () ;

float dist =(1.GetPosition()-camera->GetPosition()).Length();
if (dist < radius) {//camera is inside the light volume!
glCullFace (GL_FRONT) ;
}
elseq
glCullFace (GL_BACK) ;
}

sphere->Draw () ;

renderer.cpp

14

239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

Once we’re done sending each light to the shader, we can set everything back to ’default’, which
in our case is to have back face culling enabled, and the clear colour to be dark grey. To keep things
neat, we also unbind the second pass shader and its FBO.

glCullFace (GL_BACK);
nglendFunC(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glClearColor (0.2f,0.2f,0.2f,1);
ngindFramebuffer(GL_FRAMEBUFFER, 0);
glUseProgram (0) ;

}

renderer.cpp

Finally, the last function! CombineBuffers performs the third deferred rendering pass, which takes
in the diffuse texture colours from the first render pass, the lighting components from the second,
and combines them all together into a final image, using the combineShader shader. It does this as a
post processing pass, so we just render a single screen sized quad via an orthographic projection, set
three textures up, and render the quad. We use the third, fourth, and fifth texture units to do this,
so that the Draw function of the Mesh class does not unbind any of our textures (remember, we’ve
set up the Draw function to its diffuse texture in the first texture unit, and its bumpmap in the second).

void Renderer::CombineBuffers () {
SetCurrentShader (combineShader) ;

projMatrix = Matrix4::0rthographic(-1,1,1,-1,-1,1);
UpdateShaderMatrices () ;

glUniformli (glGetUniformLocation (currentShader ->GetProgram(),
"diffuseTex") , 2);

glUniformli (glGetUniformLocation (currentShader ->GetProgram(),
"emissiveTex") , 3);

glUniformli(glGetUniformLocation (currentShader ->GetProgram(),
"specularTex") , 4);

glActiveTexture (GL_TEXTURE2) ;
glBindTexture (GL_TEXTURE_2D, bufferColourTex) ;

glActiveTexture (GL_TEXTURE3) ;
glBindTexture (GL_TEXTURE_2D, lightEmissiveTex) ;

glActiveTexture (GL_TEXTURE4) ;
glBindTexture (GL_TEXTURE_2D, lightSpecularTex) ;

quad->Draw () ;

glUseProgram (0) ;

renderer.cpp

15

O 00 ~NO O WN -

NNMNNNMNNNRPE, PP PR PR PR PP
B WOWNEFE O OO0 NOOhEd WD~ O

G-Buffer Shader

The first render pass fills the G-Buffer with the values we need to calculate the lighting for our scene.
We use the bump Vertex.glsl shader for the vertex program, but we need a new fragment program. Like
the bumpFragment shader, we have two texture samplers - one to take the diffuse texture, and one for
the bump map texture. We work out the TBN and the fragment’s world space normal, but then in-
stead of calculating lighting straight away, we output the normal to the second FBO colour attachment.

New to this shader is writing to multiple outputs. Earlier, we bound two colour attachments to
the G-Buffer FBO - so we can save our the diffuse texture samples, and the per-pixel normals. To
fill each of these, we have an output array, which our shader can access using fragColour[0] and
fragColor[1] - we put our sampled texture colours in the first, and our TBN transformed normals
in the second. These output vec4s get automatically bound to the appropriate colour attachment of
our FBO, so we don’t need to do any binding of values like we have to for uniforms.

See how on line 23 we multiply the local normal by 0.5 and then add 0.5 to it? This performs
the opposite of the expansion of bump map normals to a range of -1 to 1; this time, we change the
range from -0.5 to 0.5 using the multiply, and to a range of 0.0 to 1.0 using the add. We do this as
we need the normal written to the attachment to be in a range suitable for a texture.

Fragment Shader

#version 150 core
uniform sampler2D diffuseTex; //Diffuse texture map
uniform sampler2D bumpTex; //Bump map
in Vertex {
vec4 colour;
vec2 texCoord;
vec3 normal;
vec3 tangent;
vec3 binormal;
vec3 worldPos;
} IN;
out vec4 fragColour [2]; //0ur final outputted colours!
void main(void) {
mat3 TBN = mat3 (IN.tangent, IN.binormal, IN.normal);
vec3 normal = normalize (TBN *

(texture2D (bumpTex, IN.texCoord).rgb)* 2.0 - 1.0);
fragColour [0] = texture2D (diffuseTex, IN.texCoord);
fragColour [1] = vec4(normal.xyz * 0.5 + 0.5,1.0);

}

bufferFragment.glsl

16

© 00 ~NO O d WN -

[S S O
o Ok WD = O

Point Light Shader

Now for the shader used to draw the light volumes on screen. For the light volume vertices, we just
do the usual - make an MVP matrix, and transform the vertices by it. We don’t care about any other
vertex attributes this time around, everything will be generated in the fragment shader. However, to
do that we need one extra piece of information, the inverse of the matrix formed by multiplying the
view and projection matrices together. Then in the fragment shader, we output the lighting to two
colour attachments - one for the diffuse light, and one for the specular light.

Vertex Shader

#version 150 core

uniform mat4 modelMatrix;
uniform mat4 viewMatrix;
uniform mat4 projMatrix;
uniform mat4 textureMatrix;

in vec3 position;
out mat4 inverseProjView;

void main(void) {
gl_Position

(projMatrix * viewMatrix * modelMatrix)
* vecd4 (position, 1.0);

inverseProjView inverse (projMatrix*viewMatrix) ;

pointlightvertex.glsl

Recalculating the world space position

For every fragment of our first render pass that is captured by a light volume, we need to work out
its world position - both to calculate correct attenuation, and to determine whether the fragment
actually is inside the volume, or is merely behind it in screen space.

The first stage of this is to calculate the fragment’s screen space position - where it is on screen.
We can do this using the GLSL command gl FragCoord. This function returns the screen coor-
dinates of the currently processed fragment, so if the screen was 800 pixels wide, the furthest right
fragment processed would have a gl _FragCoord.x value of 800. However, before we work out the world
space position, we need this value to first be in the 0.0 to 1.0 range, so we can sample the G-Buffer
attachment textures using it. So, we divide it by the pizelSize uniform variable, which you should
remember from the post processing tutorial. That gives us z and y axis from the 0-1 range, but what
about z?7 We can use thse z and y coordinates to sample a z coordinate from the depth buffer, giving
us all 3 axis’ in the 0-1 range.

Once we've used these z and y coordinates to sample any other colour attachment textures (such
as the sample to the normal attachment on line 21 of the fragment shader), we can move this frag-
ment position from screen space (0 - 1 range) to clip space (-1.0 - 1.0 range), by multiplying it by
2.0 and subtracting 1.0. Then, this value gets multiplied by the inverse projection-view matrix we
created in the vertex shader. Finally, we divide the resulting z, y, and z values by the clip space w
value, moving us from post-divide clip space to world space.

17

© 00 ~NO O WN -

OB D DWW W WWWWWWWNNNNNMNNNDMNNNMNRERPRRPRRPRRPRRPRRPR R~ 2
W NP O OWOWONOOOPdWNEFE O OWONOUOU P WNEFE OO NOO P WNE~O

Fragment Shader

Here’s how we're going to perform the lighting per fragment. Our uniform values are the same as
the bump mapping tutorial, only this time we’re taking in the inverse matrix we created in the vertex
shader, and outputting two colours - in one texture we’re going to save the diffuse colour, and in a
second we're going to save the specular colour. Between lines 17 and 24 we reconstruct the world
position of the fragment we are working on, and then between lines 26 and 31, we see how far the
fragment is from the light volume, and if it’s too far away, discard the fragment. In the previous
lighting tutorials, we multiplied our specularity by the lambertian reflectance amount to save some
processing and local variables, but really it should be separate. So, this time we write out the diffuse
lighting, multiplied by the lambertian reflectance value, to the first colour attachment, and the spec-
ular value multiplied by the specular factor to the second attachment.

#version 150 core
uniform sampler2D depthTex;
uniform sampler2D normTex;
uniform vec2 pixelSize;
uniform vec3 cameraPos;
uniform float lightRadius;
uniform vec3 lightPos;
uniform vecéd lightColour;
in mat4 inverseProjView;
out vecé4 fragColour [2];
void main(void) {
vec3 pos = vec3((gl_FragCoord.x * pixelSize.x),
(gl_FragCoord.y * pixelSize.y), 0.0);
pos .z = texture (depthTex, pos.xy).r;
vec3 normal = normalize (texture (normTex, pos.xy).xyz*2.0 - 1.0);
vec4 clip = inverseProjView * vec4(pos * 2.0 - 1.0, 1.0);
pos = clip.xyz / clip.w;
float dist = length(lightPos - pos);
float atten = 1.0 - clamp(dist / lightRadius, 0.0, 1.0);
if (atten == 0.0) {
discard;
}
vec3 incident = normalize(lightPos - pos);
vec3 viewDir = normalize (cameraPos - pos);
vec3 halfDir = normalize (incident + viewDir);
float lambert = clamp (dot (incident, normal) ,0.0,1.0);
float rFactor = clamp (dot (halfDir, normal) ,0.0,1.0);
float sFactor = pow(rFactor, 33.0);
fragColour [0] = vec4(lightColour.xyz * lambert * atten, 1.0);
fragColour [1] = vec4(lightColour.xyz * sFactor * atten*0.33,1.0);
}

pointlightfragment.glsl

18

© 00 ~NO O d WN -

e e
DS W N -, O

O 00 NO O WN =

NN, PP PP PR R R
= O O 00 ~NO O WN = O

Buffer Combine Shader

In the last pass, we’re going to draw a screen sized quad, and combine the textured colour attachment
from the first pass, with the two lighting textures from the second pass. We’ll also do ambient lighting
in the fragment shader, to lighten up any areas that weren’t lit up by our light volume pass.

Vertex Shader

All we're doing is rendering a single quad, so the vertex shader is very simple - we transform the
quad’s vertices, and output its texture coordinates.

#version 150 core
uniform mat4 projMatrix;

in vec3 position;
in vec2 texCoord;

out Vertex {
vec2 texCoord;
} 0UT;

void main(void) {
gl_Position = projMatrix * vec4(position, 1.0);
OUT . texCoord texCoord;

combinevert.glsl

Fragment Shader

The fragment shader isn’t much more complicated. We have three textures - one containing our tex-
tured scene, and two for the light components. We simple sample each of those textures, and blend
them together, including a small amount of ’ambient’ colouring (line 17).

#version 150 core

uniform sampler2D diffuseTex;

uniform sampler2D emissiveTex;

uniform sampler2D specularTex;

in Vertex {
vec2 texCoord;

} IN;

out vec4 fragColour;

void main(void) {
vec3 diffuse = texture(diffuseTex , IN.texCoord).xyz;
vec3 light = texture(emissiveTex, IN.texCoord).xyz;
vec3 specular = texture (specularTex, IN.texCoord).xyz;
fragColour.xyz = diffuse * 0.2; //ambient
fragColour.xyz += diffuse * light; //lambert
fragColour.xyz += specular; //Specular
fragColour.a = 1.0;

}

combinefrag.glsl

19

Tutorial Summary

Upon running the program, you should see the heightmapped terrain, lit by 64 light volumes. The light
volumes slowly rotate around the centre of the heightmap, illuminating the scene using a variety of
colours. The attenuation of light, and the movement of specular highlights should look like "traditional’
real time lighting techniques, but on a much grander scale. Deferred lighting makes the handling of
such a large number of lights possible. These lights can be of any shape and size, and the process of
lighting a scene is completely decoupled from its rendering, allowing incredibly rich graphical scenes to
be rendered quickly. Deferred rendering is bandwidth and memory intensive, but the tradeoff in terms
of visual quality is such that deferred rendering has become a popular method of creating realistic lit
scenes in modern games, widely adopted in both console and PC titles.

Further Work

1) In the example program of this tutorial, we used a light volume loaded in as an OBJ mesh. What

shape was the mesh? How does this shape still produce spherical light volumes? Why do we use a

simplified shape for our light volumes? Hint: how many lights are we drawing, and how many could

we draw?

2) Spheres aren’t the only shape of light volume we can use in deferred rendering. If you've at-

tempted spot lights before, try adding a ’deferred’ spotlight to the example program. What shape of

simplified geometry could we use for a spotlight?

3) Some variations of deferred lighting don’t actually use world space light volumes to capture lit

pixels! How could you capture pixels for a point light using a single quad? In which space would this

be drawn in?

4) Investigate these presentations on recent titles that have used some form of deferred lighting:
http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf
http://www.pcgameshardware.com/aid,674502/Starcraft-2-Technology-and-engine-dissected /News/

http://www.spuify.co.uk/?7p=323

20

