
Physics Tutorial 5: Collision Manifolds

Summary

In this tutorial we be expanding our collision detection procedure in order to accurately generate a
collision manifold. We will be covering what collision a manifold entails, along with a discussion of
the clipping method which will become the main method of computing the collision manifold in this
tutorial series.

New Concepts

Contact points, collision manifold, clipping method, Sutherland-Hodgman clipping

Introduction

At this point we have identified when two objects have collided and retrieved the collision/contact
normal N as well as the penetration distance p. However, one more piece of information is required be-
fore our physics engine can move to the last stage in its update loop and actually resolve our collisions.

Specifically, we need to identify the contact points. Previously, we considered the contact point as
it applies in collision detection (and collision response, discussed in a future tutorial), but a simple
approach is inappropriate to resolving sophisticated collisions.

In this tutorial we will introduce collision manifold. We will define its purpose, and explain how it
can be computed using the Clipping Method. By the end of this tutorial, we will have all information
required to perform collision response updates, which will be the subject of the final two tutorials in
the physics portion of this module.
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What is the Contact Point?

At the moment we have the direction of the collision (normal) and the penetration distance. How-
ever if this was all that was used to resolve a collision between two objects then no rotation would
ever occur in our physics engine. We recall that another piece of collision data exists: the contact point.

A contact point describes a point at which two objects touch. This can be used to resolve collisions
in the form of a distance constraint, to constrain the two objects from overlapping in the following
time step.

It should be obvious, however, that even a contact point will not necessarily convey all the infor-
mation required to generate meaningful rotations in response to a collision. Consider the difference
between a penny rolling across a surface, and a tyre. If we’re going to try and accurately respond
to detected collisions, we’ll need to gather more data regarding just how our objects are interfacing -
this is where the collision manifold is helpful.

What is a Collision Manifold?

A collision manifold is a collection of contact points that form all of the necessary constraints that
allow the object to properly resolve all penetrations. It can be seen as the summation of the surface
area between two colliding objects. As shown in Figure 1, this could form either a single point, a line
or a 2D polygon.

Figure 1: The Contact Manifold

In a discrete physics system, this poses a problem as collisions are only detected after the two
objects are already overlapping. This results not in a 2D surface area where the two objects are
touching, but rather a 3D volume by which they have already interpenetrated.

To overcome this, we infer the contact manifold as though the two objects were only touching.
This permits us to handle the collision resolution as though this were a real event (as interpenetration
doesn’t occur in real-world occurrences of the collisions we’re modelling).
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The Clipping Method

To compute the manifold we will be using the clipping method, in which we will be progressively
clipping a face of one object with the perimeter of a second object. This results in a 2D collision
manifold which can then be used in our resolution calculations.

The best way to show how this algorithm works is through an example. Consider the scenario
shown in Figure 2.

Figure 2: Collision Scenario

In this hypothetical case, two boxes have collided. At this point in our execution, we have just
finished executing our SAT routines and know both the collision normal N and penetration depth p.

There are several steps to determining the manifold through the clipping method, and we will
address each in turn, beginning with the process by which we identify significant faces (those involved
in the collision).

Identifying the Significant Faces

The first step is to identify the significant faces that are intersecting. This is accomplished by selecting
the vertex furthest along the collision normal. In Figure 3, these vertices are highlighted with red
circles.

Figure 3: Furthest Vertices Along the Collision Normal

We next select a face on each object which satisfies the following criteria:
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• The face includes the selected vertex

• The face’s normal is the closest to parallel with the collision normal of all faces which contain
the selected vertex

Doing this for both objects gives us the two most significant faces for contact generation.

N.B.: The normal is inverted when selecting the vertex of the second object.

Calculating the Incident and Reference Faces

The reference face will become the point of reference when clipping occurs in subsequent stages of the
check. The incident face will, in turn, become a set of vertices that will be clipped.

To do this we compute which of the two significant faces have a normal that is closest to parallel
with that of the collision normal. Consider Figure 4. In this case the normal of the face indicated by
a blue line is closest to parallel and, as such, that face becomes the reference face.

Figure 4: The Contact Manifold

The other face then becomes the incident face which we will clip to generate the contact points.
In our example it is comprised of two vertices.

Adjacent Face Clipping

We now clip the incident with all the adjacent faces of the reference. This is done by taking the
adjacent faces normal and any vertex that it contains to produce a plane equation. The algorithm we
use to compute the clipping is known as Sutherland-Hodgman Clipping. This can easily be adapted
to suit a 3D scenario, making it appropriate for use in our physics engine.

Figure 5: Adjacent Face Clipping
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The first clipping plane we will illustrate in this example is the left hand face, shown on the left
hand side of Figure 5. As one of the vertices of the incident face lies within the clipping region, it
will be replaced with a vertex that lies on the edge of the clipping plane. The second clipping plane is
that of the right hand face, shown on the right hand side of Figure 5. In this case, it should be noted
that none of the points of the incident face lie in the clipping region, so no changes will be made.

Final Clipping

The final clip plane is that of the reference face itself. However instead of clipping the incident face as
in the previous stage, we now just remove all points that lie inside the clipping region. In this shown
in Figure 6, this leaves us with just a single contact point and not a line or polygon.

Figure 6: Adjacent Face Clipping - Right Hand Face

Although at first glance it seems like we are ignoring critical contact points, this is in fact correct.
What we are trying to infer are the points of contact when the two objects first touched, not all which
have occurred since they overlapped. In this example, only the corner of the reference face would be
in contact with the other object; that is obvious when comparing the shapes with the direction of
travel along the collision normal.

This may seem a wasteful check, given that the manifold produced is only a single contact point.
It is important to remember, though, that the collision manifold can be one point, two points, or
many; the reason we undertake the clipping process is to obtain the most accurate idea of the collision
manifold as possible, irrespective of the number of points generated. If we consider the nature of
collisions between convex objects in general, it should be obvious that most collision manifolds will
only be a single point - as they represent the manner in which the objects first began to interface; the
clipping method lets us resolve the more complex scenarios where this is not the case.

Implementation

Review day 4 of the Practical Tasks handout. Try to make good use of additional time this afternoon
to extend your collision detection approach to suit even more complex objects. If you have the
opportunity, look into extending your approach to broad phase culling.

Tutorial Summary

In this tutorial we have introduced the concept of the collision manifold, and explained its importance
in obtaining believable collision responses, particularly in the context of angular motion. We have
determined step-by-step how to extract the collision manifold in an efficient manner which is easily
adaptable to suit our physics engine. We now have all collision data required to implement the final
stage of our physics update loop: collision response.
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1

2 // PhysicsEngine :: NarrowPhaseCollisions ()

3

4 // After:

5 bool okA =

6 cp.pObjectA ->FireOnCollisionEvent(cp.pObjectA , cp.pObjectB );

7 bool okB =

8 cp.pObjectB ->FireOnCollisionEvent(cp.pObjectB , cp.pObjectA );

9

10 // Insert:

11

12 if(okA && okB)

13 {

14 // Build full collision manifold that will also handle the

15 // collision response between the two objects in the solver

16 // stage

17

18 Manifold* manifold = new Manifold ();

19

20 manifold ->Initiate(cp.pObjectA , cp.pObjectB );

21

22 // Construct contact points that form the perimeter of the

23 // collision manifold

24

25 colDetect.GenContactPoints(manifold );

26

27 if (manifold ->contactPoints.size() > 0)

28 {

29 // Add to list of manifolds that need solving

30 manifolds.push_back(manifold );

31 }

32 else

33 delete manifold;

34 }

PhysicsEngine.cpp

1

2 // CollisionDetectionSAT :: GenContactPoints ()

3

4 if (! out_manifold || !areColliding)

5 return;

6

7 if (bestColData._penetration >= 0.0f)

8 return;

9

10 // Get the required face information for the two shapes around the

11 // collision normal

12

13 std::list <Vector3 > polygon1 , polygon2;

14 Vector3 normal1 , normal2;

15 std::vector <Plane > adjPlanes1 , adjPlanes2;

16

17 cshapeA ->GetIncidentReferencePolygon(

18 bestColData._normal , polygon1 , normal1 , adjPlanes1 );

19

20 cshapeB ->GetIncidentReferencePolygon(

21 -bestColData._normal , polygon2 , normal2 , adjPlanes2 );
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22

23 // If either shape1 or shape2 returned a single point , then it must

24 // be on a curve and thus the only contact point to generate is

25 // already availble

26

27 if (polygon1.size() == 0 || polygon2.size() == 0)

28 {

29 return; // No points returned , resulting in no possible contact

30 // points

31 }

32 else if (polygon1.size() == 1)

33 {

34 out_manifold ->AddContact(

35 polygon1.front(), // Polygon1 -> Polygon 2

36 polygon1.front() + bestColData._normal

37 * bestColData._penetration , bestColData._normal ,

38 bestColData._penetration );

39 }

40 else if (polygon2.size() == 1)

41 {

42 out_manifold ->AddContact(

43 polygon2.front() - bestColData._normal

44 * bestColData._penetration ,

45 polygon2.front(), // Polygon2 <- Polygon 1

46 bestColData._normal ,

47 bestColData._penetration );

48 }

49 else

50 {

51 // Otherwise use clipping to cut down the incident face to fit

52 // inside the reference planes using the surrounding face planes

53

54 // First we need to know if have to flip the incident and reference

55 // faces around for clipping

56

57 bool flipped = fabs(Vector3 ::Dot(bestColData._normal , normal1 ))

58 < fabs(Vector3 ::Dot(bestColData._normal , normal2 ));

59

60 if (flipped)

61 {

62 std::swap(polygon1 , polygon2 );

63 std::swap(normal1 , normal2 );

64 std::swap(adjPlanes1 , adjPlanes2 );

65 }

66

67 // Clip the incident face to the adjacent edges of the reference

68 // face

69

70 if (adjPlanes1.size() > 0)

71 SutherlandHodgmanClipping(polygon2 , adjPlanes1.size(),

72 &adjPlanes1 [0], &polygon2 , false);

73

74 // Finally clip (and remove) any contact points that are above

75 // the reference face

76

77 Plane refPlane =

78 Plane(-normal1 , -Vector3 ::Dot(-normal1 , polygon1.front ()));

79 SutherlandHodgmanClipping(polygon2 , 1, &refPlane , &polygon2 , true);
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80

81 // Now we are left with a selection of valid contact points to be

82 // used for the manifold

83

84 for (const Vector3& point : polygon2)

85 {

86 // Compute distance to reference plane

87

88 Vector3 pointDiff =

89 point - GetClosestPointPolygon(point , polygon1 );

90 float contact_penetration =

91 Vector3 ::Dot(pointDiff , bestColData._normal );

92

93 // Set Contact data

94

95 Vector3 globalOnA = point;

96 Vector3 globalOnB =

97 point - bestColData._normal * contact_penetration;

98

99 // If we flipped incident and reference planes , we will

100 // need to flip it back before sending it to the manifold.

101 // e.g. turn it from talking about object2 ->object1 into

102 // object1 ->object2

103

104 if (flipped)

105 {

106 contact_penetration = -contact_penetration;

107 globalOnA =

108 point + bestColData._normal * contact_penetration;

109

110 globalOnB = point;

111 }

112

113 // Just make a final sanity check that the contact point

114 // is actual a point of contact not just a clipping bug

115

116 if (contact_penetration < 0.0f)

117 {

118 out_manifold ->AddContact(

119 globalOnA ,

120 globalOnB ,

121 bestColData._normal ,

122 contact_penetration );

123 }

124 }

125 }

CollisionDetectionSAT.cpp
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