Artificial Intelligence 1: Finite State Machines

Introduction

For an Al agent to appear more interesting, and to present more of a challenge, it is likely to be
required to change its behaviour at different times. For example, an enemy which just rotates on
the spot firing a gun is pretty dull; equally a character which simply walks back and forth between
two way-points is less than engaging; but a character which can choose between these two behaviours
starts to get a bit more interesting.

A Finite State Machine (FSM) is a well-established method of representing a range of behaviours
within a logical framework. This tutorial introduces the concept, and discusses how to apply it to an
AT agent within the context of a game.

What is a Finite State Machine?

According to Wikipedia, a Finite State Machine is:

A behavioural model used to design computer programs. It is composed of a finite number of states
associated to transitions. A transition is a set of actions that starts from one state and ends in another
(or the same) state. A transition is started by a trigger, and a trigger can be an event or a condition.

As can be inferred from this definition, FSMs are used across a wide range of software engineering
applications. In order to apply this approach to games technology, the best way to understand Finite
State Machines is to think about an example. Well consider one of the ghosts in Pac-man.

The ghosts have four behaviours:
e Wander the maze

e Chase Pac-man

e Run away from Pac-man

e Return to the central base

These are the four states of the AI system. Each ghost can change its behaviour between these
states depending on specific things happening in the game. For example, a ghost will change from
state 3 to state 4 if it is eaten by Pac-Man. The act of changing state is known as the transition, and
the event which has caused that change is known as the trigger. The four states, with their transitions

O ~NO O WN -

Sight Pac-Man

Wander the Maze Chase Pac-Man

Lose Sight
of Pac-Man

Pac-Man eats
Power Pill

Pac-Man
Eats Power Pill

Power Pill

wears off

Reach the
Base

Run away from
Pac-Man

Return to Base

Get eaten
By Pac-Man

and triggers can be summed up in a state diagram.

A state machine can also be represented by a table, but in general, the state diagram is more
intuitive, making it easier to consider how the system works as a whole. A table can be useful in
checking whether any transitions or triggers may be missing from the design. Its also worth noting
that the state machine is completely closed (i.e. all eventualities are covered), which is why the word
Finite is used in the description.

Programming a State Machine

There are a number of ways of implementing a FSM in code. Choosing the most appropriate for
your project is influenced by the expected complexity of the FSM, and how much the FSM is likely
to evolve during development. Three methods are discussed in this section, in order of increasing
flexibility and complexity.

Hard-coded switch statement

Fundamentally a state machine is a set of conditional statements, so it can be coded as a set of if-then
statements, or as a switch statement. A code snippet may look something like this:

If CurrentState == STATE_1
{
StatelBehaviour ();
If CheckTriggerito2()
{
SetState (STATE_2);
}

Hard coded switch

This is the FSM controller code; all of the transitional logic is centralised here. Notice that the
actual Al behaviour is contained within a function such as StatelBehaviour, and the algorithm to
decide whether a particular transition has been triggered is contained in a function such as Check-
Triggerlto2. The behaviour code, and the trigger algorithm, could be included in this piece of code
rather than in separate functions, but thatll result in a very long function very quickly.

However, coding even a simple state machine (such as the Pac-Man example) as a switch statement
will quickly become a tangled mess, which would be very difficult to change if the design evolves, or
a new type of Al must be introduced.

Hard-coded State Pattern

A more extendible approach is to set up a basic State class, and a set of specific states which inherit
their structure from the basic State class. At any time an Al agent has a state attached to it, when a
transition occurs, the state is replaced with the new state. In this case, each state is responsible for
determining when a transition should be triggered, so the FSM logic is distributed through the states,
rather than existing within a centralised controller function.

In order to make the controller code more centralised, a FSM class may also be implemented which
is used to transition between states when triggers occur. In that case a messaging system may be
implemented, whereby the FSM is instructed to change states when a trigger is detected within a
state behaviour.

Interpreted State Pattern

This is a data driven version of the state pattern. The data for how each state is connected, and how
each transition is triggered, is contained in a data file, read by the game at start-up. This data is held
in a table which can subsequently be modified at runtime if required.

As the data is in a file, the structure of the FSM can be changed without recompiling the code.
In fact, if a sufficiently intuitive tool is developed to generate this data, then it could be put in the
hands of the level designers, who could then tweak existing Al state machines, or generate new ones,
without programmer input. Of course, if a new type of behaviour is required (ie a new state), or a
new logical test for a trigger needs to be introduced, then additional code needs to be added to the
game.

State Oscillation

Before moving on, a word of warning about defining the trigger functions in a FSM. Consider a two
state FSM. The trigger to move from state A to state B occurs when the Al velocity is more than
10m/s. The trigger for moving from state B back to state A occurs when the velocity is less than or
equal to 10m/s. If the Als velocity is hovering around 10m/s, then the AI state could be switching
back and forth from one frame of the game to the next, creating a jittery behaviour. This is known
as state oscillation.

Trigger functions should be designed to avoid this happening. In the simple example above, it would
be better to trigger the transition from state A to state B when the velocity becomes higher than
11m/s, and to trigger the reverse transition when it becomes lower than 9m/s. Introducing hysteresis
like this into complementary trigger functions will reduce the chances of oscillation occurring.

AT Behaviours and AI Types

When designing an Al system it is important to distinguish between Al behaviours and Al types. A
well-designed Al system will consist of a set of defined behaviours which are then combined in various
different combinations to make the different Al types in the game.

For example, in our Pac-Man example, the Al type is the ghost, and the four states are the be-
haviours; it should be possible to add a new type of AI which utilises a different combination of those

behaviours (ie a new state machine with different transitions and triggers) without having to rewrite
any of the behavioural code.

If a data-driven approach is taken, such as the Interpreted State Pattern, then a designer should
be able to add a new AI type to the game, using a new combination of existing triggers and states,
with no further input from the software engineer.

Behaviour 1

Behaviour 2

Character Type A

Character 1
Character 2
Character 3

Behaviour 3

Behaviour 4
Character Type B

Character 7
Character 8

Behaviour 5

Hierarchical Finite State Machines

Using a Finite State Machine for a game AI agent has a couple of drawbacks:

e A FSM for a complex Al agent can become very complicated, and difficult to maintain for
example think of a police character in an open world city-based game who can patrol on foot,
pursue the player on foot, decide to get into a car, drive that car in a pursuit or a patrol, run
away, try to arrest someone, etc.

e Simpler FSMs can appear predictable and repetitive to the player.

A solution to both these issues is to implement a hierarchical Finite State Machine, whereby each
state in the higher level FSM is actually another FSM. The example of a police character may entail a
high level FSM with behaviours such as driving vehicle, being a passenger in vehicle and on foot. Each
of these states would then be a further FSM defining the various behaviours within that super-state.
Those FSMs could then, in turn consist of a set of states, some of which are actually lower-level FSMs.

Note that the structure for such a hierarchy is not the same as the tree structure, with nodes and
branches, which we have seen elsewhere. Each level of the hierarchy consists of a FSM with states,
triggers and transitions. Focusing on a higher-level state will reveal a further FSM, consisting of
states, triggers and transitions.

Patrol

Take Cover

Recover

Fuzzy State Machines

A further way of reducing the predictability of the AI behaviours is to allow an Al agent to combine
multiple behaviours at the same time. This is achieved through the use of Fuzzy Logic (rather than
binary logic) to implement a Fuzzy State Machine (FuSM).

States in a FuSM are not restricted to being on or off; instead they can hold an intermediate value.
This means that at any one time, more than one state may be active and to some degree be on and
off. If we go back to our police character Al in the open city game, there may be a chasing the player
state which can be combined with either the on foot state or the in vehicle state.

Perhaps counter-intuitively, this approach can actually reduce the complexity of the state machine,
while adding more complexity to the behaviour. A FuSM will typically require fewer states, due to
the possibility of combinations. In our example, the policeman would need separate states ina finite
state machine for chasing player on foot, chasing player in vehicle, patrolling on foot, patrolling in
vehicle, fleeing on foot, fleeing in vehicle, etc. Utilising a Fuzzy State Machine allows the combination
of on foot or in vehicle with chasing, patrolling or fleeing.

The engine code providing the means to change states based on fuzzy logic is more complex than
the straightforward code needed for binary decisions. However, assuming that it is implemented in a

suitable manner, the state machines can be expanded upon, or rearranged, with no changes required
on the engine.

Implementation

The example code shows a simple FSM encoded as a hard-coded switch statement.

The header file for the state class:

1| #pragma once

2

3/#include <stdlib.h>
4|#include <iostream>
5

© 00 ~NO O WN -

NNNMNNMNNMMNMDMNMNMNRP,P PR RPR PR, PR PR P2
W ~NOoO P WNEFE, O OWWONOOO P WNR~O

class State

{
public:
State (){};
“State O{};
inline bool getWantsFood() { return wantsFood;}
inline bool getWantsWalkies() { return wantsWalkies;}
inline bool getIsDead() { return isDead;}
inline void setProperties(bool setupWantsFood,
bool setupWantsWalkies, bool setupIsDead)
{
wantsFood = setupWantsFood;
wantsWalkies = setupWantsWalkies;
isDead = setupIsDead;
}
private:
// Here are some simple state properties to get you started. Feel
// free to add more! FSMs in the wild are always more complicated
// than this example - so make some complex ones of your own!
bool wantsFood;
bool wantsWalkies;
bool isDead;
s

The header file for the puppy

State.h

class:

#pragma once

#include <stdlib.h>
#include <iostream>

#include "State.h"

using namespace std;

class Puppy

{
public:
Puppy O ;
~Puppy O{};
void updateState ();
inline void eatFood(
inline void haveWalk
inline State getCurr
private:

// Energy variable.

// check more complex and interesting.
// a simplistic example,

int energy,;

//Puppy’s current st

// Increases energy
// Decreases energy

) { energy++; 1}
() { energy--; 1}

entState() { return currentState; }

You might add more variables to make the state
Remember , this is
have fun with it!

ate

29 State currentState;
30
31 //A selection of states reflecting some combinations of state
32 //properties. You could arrange these as an array if you like.
33 //Similarly, you can add more states - zombified might be
34 //a state with wantsFood and isDead set to true!
35 State hungry;
36 State hunting;
37 State bouncy;
38 State dead;
39| };
Puppy.h

The cpp file for the puppy class:
1|#include "Puppy.h"
2
3|using namespace std;
4
5| Puppy : : Puppy O)
6/
7 hungry.setProperties (true, false, false); // Setting
8 hunting.setProperties(true, true, false); // up
9 bouncy.setProperties(false, true, false); // our
10 dead.setProperties(false, false, true); // states
11
12 energy = 3; // Default energy value at creation
13
14 updateState () ; // Updates currentState
15|
16
17| void Puppy::updateState ()
18] {
19 if (energy < 1)
20 {
21 currentState = dead;
22 return;
23 b
24 else if (energy < 4)
25 {
26 currentState = hungry;
27 return;
28 X
29 else if (energy < 7)
30 {
31 currentState = hunting;
32 return;
33 }
34 else
35 {
36 currentState = bouncy;
37 return;
38 }
39|}

The main cpp file:

Puppy.cpp

l|#pragma once

© 00 ~NO O d WN

QO oo oo DD P DD WWWWwWwwwwwwiNNNNNNNMNNDMNNNNDNNRERERRRPRRPRRPRRPB R~
© 00 NO O WNEF, O OO NP WNF, O OO NOOOOPWNEFEOOWOWWNOOPdWNE O OWWNOO P WNDE-O

#include <stdlib.h>
#include <iostream>

#include "Puppy.h"
using namespace std;

void main ()

{
Puppy wuffles;
// Declare our input variable
int playerInput;
// Holding variable - just here to let you follow what’s happening
int moveOn;
// While Wuffles is alive...
while (!wuffles.getCurrentState ().getIsDead ())
{
playerInput = O;
while (playerInput < 1 || playerInput > 3)
{
// Main checks to see if Wuffles currently wants food
if (wuffles.getCurrentState ().getWantsFood ())
{
cout << "Wuffles looks like he wants something
to eat... \n \n";
3
// Main checks to see if Wuffles currently wants a walk
if (wuffles.getCurrentState ().getWantsWalkies ())
{
cout << "Wuffles looks like he wants to get out
the house... \n \n";
}
// Note that these are not mutually exclusive. currentState
// might support both of these statements - in which case
// both are true.
cout << "If you want to take Wuffles for walkies, enter 1!\n"
cout << "If you want to feed Wuffles, enter 2!\n";
cout << "If you want to take Wuffles hunting, enter 3!\n\n";
cin >> playerInput;
system("cls");
X
if (playerInput == 1)
{
wuffles.haveWalk () ;
cout << "You took Wuffles for a walk! He expended energy!\n";
X
if (playerInput == 2)
{
wuffles.eatFood () ;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

cout << "You fed Wuffles! He gained energy'!\n";
}
if (playerInput == 3)
{
wuffles.haveWalk () ;
wuffles.eatFood () ;
cout << "You took Wuffles out hunting!" << "\n\n" <<
"He expended emnergy to find a bunny rabbit,
but gained energy by eating it!\n";
}
cout << "\n" << "Enter a number to move on!" << "\n";
cin >> moveOn;
wuffles.updateState () ;
system("cls");
}
cout << "You let Wuffles die... How could you? ;_;\n\n";
cout << "Enter a number to close the program,
you heartless monster. \n";
int wayout;
cin >> wayout;
return;
3
main.cpp
Exercises

e Draw a state diagram for a new Al type in Pac-Man a SuperGhost that cant be eaten but
chases Pac-Man when the power pill is eaten, and returns to base if Pac-Man eats a piece of
fruit. This should be possible without introducing any new states to the four already used by
the normal Ghost.

e Choose a favourite video game, and try drawing the state machine for one of the Al types in
that game. If you have chosen a modern game, you may need to think about a specific part of
the AI types behaviour.

e Implement the Pac-Man ghost state machine. The behaviours should be implemented as a text
output along the lines of I am wandering the maze, with keyboard inputs providing the triggers.

