© 00 ~NO O WN -

Al - State Machines

Introduction

The artificial intelligence displayed in games is usually due to one of two things: knowing where to
go (and the best way to get there), and making decisions based on the situation. If an AI opponent
runs away to find a health pack when their health drops too low, it’s because some code ran an if
statement on a threshold value somewhere, and then calculated a path to a part of the level expected
to contain some heath packs.

In this part of the module, we’ll be taking a look at the ways in which pathfinding, and decision
making, can be integrated into a game engine, starting with a look into the idea of finite state ma-
chines.

Finite State Machines

The AI found in most games is pretty limited - it will do one of a number of different things, depending
on a set of specific conditions within the game. To take classic arcade game PacMan as an example,
the ghosts that chase the player always do the same things (in fact, they are so predictable that
high-scoring players can accurately predict the ghost’s actions); the ghosts wander around looking for
the player, and chase after them if they can be seen, however if the player picks up a powerup, the
ghosts will always run away until the powerup has expired.

While we certainly could model these changes of logic by having a set of bools and if statements,
things quickly start to become unwieldy. In the above example we could probably get away with two
bools for our ghosts - one for ’player is seen’ and one for 'player has powerup’, and from there build
up some logic:

if (can see player) {
ChasePlayer ();

}

else if (player has powerup) {
RunAway () ;

}

else {
WanderMaze () ;

}

Simple PacMan example

This seems OK at first, but there’s a problem - in that pseudocode above, the ghost will ignore
the powerup state if it can see the player, and won’t do the 'right’ thing for the gameplay mechanics.
Only if the 'player has powerup’ state is checked first will the ’right’ thing be done. But even by
changing that, we’d not be modelling PacMan correctly - when a ghost is ’eaten’ by the player, it
has to return to the middle of the screen before it can chase the player once more. So we actually
need another bool, and check for that one first, so that the ghost doesn’t run away from the player
once eaten. For this particular case, we could have an enum instead of a series of bools, giving us a
mutually exclusive set of states that the ghost AI could be in:

DO WN -

switch(ghostState) {
case DEAD: MoveToMiddle () ; break;
case CHASE: ChasePlayer () ; break;
case POWERUP: RunAway();break;
case DEFAULT: WanderMaze () ;break;

}

PacMan example with switch statements

That’s probably OK for PacMan, and probably not a million miles away from how the logic was
actually implemented (albeit probably in assembly). But what if we have states that can overlap,
rather than being mutually exclusive? Maybe when the player has a powerup, the ghosts only run
away when PacMan is nearby, and they otherwise still wander - now player distance is a metric, and it
can modify multiple different states! That means more if statements, variables, and things that have
to be in a specific order to do the 'correct’ thing.

It’s clear, then, that we need to in some way extend the logic of the AI in a more encapsulated
way, so that every logical state that the AI can be in (and any data it needs to use as part of its func-
tioning) is fully separated, allowing for a set of logic blocks that can be reasoned about in a clearer way.

Instead of representing each of the things an AI character can do as a single function, we can in-
stead group together discrete logic blocks together as a finite state machine. A finite state machine is
like a graph, where the individual nodes are ’states’, or functions that in some way act upon an object.
Connecting each node are edges or ’transitions’, and each of these represents some decision or value,
that if changed in a specific way, will lead to the current 'state’ transitioning to another. So rather than
just having a chunk of code consisting of tangled bools and if statements, we can instead model the
specifics of our Al character, and when it should change its mind about doing specific things as a graph:

Can see PacMan |
Maze Wander -
State

Chase PacMan State

P

 Cannot see PacMan

Pacman Pacman
Reaches Eats Eats
base Powerup Powerup

Powerup
Wears off

Return to Base

State

Hide from Pacman
State

-

Gets eaten
by PacMan

If we view our game logic like this, there’s no possible ambiguity in what should happen, or when -
the AI should enact the logic of exactly one of those states at a time, and should change to a different
state if a specific transition condition is met. When designing behaviours for the Al agents in your
games, it is often worthwhile trying to draw out your desired logic as a state machine diagram like the
one above, as it gives you both a visual indication as to whether a behaviour should work, but also
serve as a checklist of implemented functionality, and something to refer back to later when testing.

Modeling State Machines in code

While modelling the proposed logic of an Al character using a state machine diagram helps us decide
what states we require to produce a desired effect, and which variables need to be considered to change
which state should be executed, at some point this is going to have to be converted back into code,
where errors could lead to incorrect, or at least undesirable, results. So how to turn the state machine
back into code? Each state could be a simple function, with an AI then holding a pointer to the

© 00 ~NO O WN -

e e el e
g WN = O

~N O O WN -

© 00 ~NO O WN -

"active’ state function, which could then be modified by the state function itself:

void Ghost::GhostUpdate () {
activeState (this, &activeState);
}
void Ghost::WanderState (Ghost& g, StateFunc* changeFunc) {
g.position.x += randO01();
g.position.y += randO01();
if (PacmanGame :: PowerpillActive ()) {
*changeFunc = RunAwayState;
}
}
void Ghost::RunAwayState (Ghost& g, StateFunc* changeFunc) {

//Make ghosts run away!
X

State machine as functions example

This works, but what if a particular state needs to store some addition state variables? Perhaps the
wandering state has a speed value to modify the position by, or a counter that increments every frame,
so that the ghost only changes direction every n frames? That’s then another variable that needs
to sit directly in the Ghost class of our example, where it could be misused, or modified by other states.

Instead, it may be better to have a State class, with a virtual UpdateState method that can be
called every frame - subclasses can then be derived which override the UpdateState method, and
which may keep some internal state as member variables; if they don’t provide accessors, then they
can have their state modified by any external code, and we can make stronger guarantees as to what
the state will actually do in any frame.

We could then model an entire ’state machine’ with a class that stores all of the states that it could
be in, along with the state that is currently active:

class StateMachine {
void UpdateMachine () {
activeState->UpdateState () ;
}
State*xactiveState;
vector<State*> allStates;
}

State Machine class pseudocode

If we are going to have use a class to represent a state, perhaps there should also be a class to
represent a transition, too? This would allow us to fully encapsulate the concept of a state - no state
knows about any other state, but we can still write logic inside a "Transition’ class to handle the
movement from state A to state B:

class Transition {
virtual bool ShouldTransition () {
}
Statex GetState () {
return newState;
}
State*x oldState;
State*x newState;

10
11
12
13
14
15
16

class RunOnPowerPillTransition : Transition {

bool ShouldTransition() override {
if (PacmanGame::PowerpillActive ()) {
return true;
}
}
}

Transition class pseudocode

By separating all of the workings of how an Al should operate or react to changes in the world
out into discrete units of logic, it becomes easier to compose the logic in such a way that the correct
thing will always happen, and making the process of debugging the Al in your game easier.

State oscillation and hysteresis

A state machine is ’7dumb’ in that it will do whatever it is you tell it to do, so without some careful
planning of states and transitions, errors can still occur in your game AI. One such potential problem
is that of state oscillation. Consider the following state machine to model the actions of a sneaky
Ghost, who tries to follow the player, but who runs away if the player gets too close:

-\ Distance < 10 //

Move Towards Hide from Pacman
PacMan State

/‘ Distance = 10 \

Seems sensible? You’d think so, but have a closer look. What happens when the Ghost gets to a
distance of 10?7 According to our state machine behaviour, the Ghost will turn around and run away.
Next frame, because the Ghost has ran away a small amount, the player is now 10 + a small amount
away...causing the state machine to switch back to the 'follow the player’ state. In other words, the
states will begin to oscillate back and forth, and probably not result in the behaviour you’d like. In this
particular case, as we’re modelling a change in position, the Ghost would literally oscillate on the spot!

To solve this, we can introduce the concept of hysteresis. Broadly, hysteresis means that a sys-
tem’s behaviour is based not only on it’s current state, but also taking into consideration its past
state. While this sounds complicated, it can be actually quite simple for a state machine, as we’re
dealing with a limited number of states, and we know what possible changes should be made to those
states. A simple example of state hysteresis in our Ghost example above would be to simply separate
out the run away distance and follow distance:

\‘- Distance < 10 r/

Move Towards Hide from Pacman
PacMan - State

.

/ Distance = 15 \‘

Even that small change is enough to stop the state rapidly oscillating, although the Ghost will
eventually turn the other way. In this case our concept of hysteresis is to just consider the direction
the distance value is moving in when transitioning to each state, and using it to accommodate the
fact that if we’re transitioning away from a state, we probably don’t want to immediately transition
back to it.

Another solution is to use time as part of our past state. This implementation could be as sim-
ple as a ’'timeout’ value per transition, that prevents the finite state machine from transitioning to
a new state for a small amount of time, even if the conditions for a particular state would be met.
An alternative could be for the transition to have a ’lead in’ time, whereby that transition will only
become active if its condition has been true for a given time period - both of these can produce broadly
the same results, its just a case of which transition is 'in charge’ of the delay (for timeouts it would

be the transition that has been just activated, while for a ’'lead in’ time, it is the potential transition
that might be activated).

This can be quite a useful property in a finite state machine, as it can represent a reaction time
to a particular event - maybe red ghosts are quicker to react to PacMan that blue ghosts - with the
same state machine, a red ghost could have a shorter ’lead in’ time than a blue ghost, making it
harder to catch when running away, and also harder to run away from. This can produce an Al that
feels a little bit more organic, and potentially more ’fair’ for the player trying to beat the AI; most
players can’t immediately turn 180 degrees and land a perfect headshot in and FPS game, and so an
AT probably shouldn’t be able to, either.

Hierarchical State Machines

Sometimes the logic of a particular discrete state in an AI behaviours gets quite complex, too. Con-
sider in an FPS game, where a patrolling Al opponent might wander around looking like its doing
some important business:

50%
Chance

’/ State B

State A

Play Idle Anim 50%>| Wander To Location

Chance\
50% 50%
Chance Chance

50% Chance
50% Chance

State C

Patrol Immediate
Location

On being shot at by the player, maybe the Al opponent might take cover and try and shoot back
a the player, and if the player walks off, the opponent resumes their previous ’idling’ behaviour. As a
state machine, we might represent this newly enhanced behaviour like so:

50%
Chance

State A State B

Play Idle Anim 5055~ Wander To Location

Chance

50% 50%
Chance Chance 5'Chance
0

State C

Patrol Immediate

Shot by Player Location

Shot by Player

Player Player
Left Area State D Left Area
20%
Take Cover Chance
Further
State F

State E

Retreat

Shoot at Player

That’s a lot of transitions! The logic is starting to build up, and starting to look a little hard to
follow again. More states and transitions means more C++ code is required, and more code means
more potential mistakes. One potential solution to this is to replace the ’shot by player’ set of states
with another state machine! This is known as a hierarchical state machine, and in using one our Al
opponent example might end up with a state machine like this:

Patrolling Superstate

L& & &8 & &8 & &8 B _§ _§B _§B _§N _§B _§ |
50%
Chance

State A State B

Play Idle Anim 509> Wander To Location
Chance

50% 50%
Chance Chance 50% Chance
50% Chance

State C

Patrol Immediate
Location

—_—_—_—_—-\

\—————————----—-/

Shot by Player Player
Left Area

Under Fire Superstate

-—-—--—-_-—-—--\

State D

80%

Chance Take Cover

Seconds
lapsed

State E State F

Shoot at Player Retreat

. — —
e ¥ —Fr §F §F B § |

\

——_—_—_—_—_—_—_J

If at any point one of the transitions of the ’shot by player’ state are met (in this case, the player
gets bored and walks off), the state transitions as normal back to the 'patrol’ state. Otherwise, the
logic actually enacted upon the AI opponent is part of the ’inner’ child state machine. This allows
for the same encapsulation of each piece of logic the AT might execute, but allows for us to reuse our
state machine concept to keep the code simple - we end up with a lot of ’states’, but each one has
well defined inputs, outputs, and actions.

Pushdown Automata

In our model of a state machine so far, there’s only ever one ’copy’ of each state per object, it just may
or may not be executed in a particular game update depending on whether it has been transitioned to
or not. Sometimes, we might actually want to have multiple copies of a state. For example, we might
want an Al character to temporarily suspend doing their current task and go and do something else
for a bit (maybe stop patrolling their level area and go and investigate a noise) before going back to
whatever they were doing previously. Maybe that ’something else’ will lead to additional ’side jobs’
that will eventually be completed. For some combinations of tasks, we could model this with a stan-
dard finite state machine (Patrol — > investigate noise — > wander about — > Patrol), but in doing
so we may lose some information - in this example there’s nothing to make the Al character go back
to where they used to be patrolling before hearing the noise, and so unless there’s some hard-coded
location data, they would instead start patrolling wherever they’d ended up after investigating a noise.

A common method of storing state information temporarily is to use a stack, a ’'first in, last out’
data structure. Even if you’ve never programmed or directly used a ’stack’ object in C++, if you've
ever called a function, you’ve indirectly used a stack to store the state of the CPU registers when
calling a function (data is pushed onto the stack), which can then be restored after the function has
returned (the data is popped off the stack). Even if that function calls a stream of additional functions,
as long as we have enough stack space to keep pushing states, we can eventually pop them all off and
get back to where we started.

We can combine the features of a state machine and a stack to form a pushdown automata. Rather
than transitioning from state to state (with each state being a single ’instance’ in memory), we can
move to a new state by pushing a new instance of a state onto a stack - only the state at the top of
the stack will be executed/updated per game tick. New states can later be pushed on, but we can
always get back to our initial state by progressively popping states off. What determines whether
a state is pushed or popped is a transition just as before, its just now there’s a strict ordering, and
a strict history of states - we can push any new type of state we want onto the stack, but we can
only ever pop back to a previous state. As an example of this, we can model the patrolling and noise
investigating behaviour:

State C

Reached sound
source Wander around

State B State B

Noise Heard | Go to noise source Go to noise source

Timeout Elapsed

State A State A State A State A

Patrol around position Patrol around position Patrol around position Patrol around position

State Stack

Each of the ’Patrolling’ states holds where the AI was when a new state was popped, and so
maintains a history of what the AI was doing before a new decision had to be made, and so can
resume that behaviour - perhaps on being 'popped’ back to, a 'patrol’ state immediately pushes a
‘move to position’ state onto the stack, and provides it with the position of where the Al was before
investigating some noise, which will then pop itself off the automata stack when the AI is within a
threshold distance of that position. By cutting up the actions an Al may perform into discrete states,
we can then compose quite expansive Al logic, with the strict rules for transitioning from state to
state allowing what should happen with an Al at any point in time to be reasoned about.

PUSH STATE

User Presses

P Key
State D
PUSH STATE
PUSH STATE Pause Game State
User Presses User Presses
Options Button Start Game
f State C) //
State B POP STATE State C
; Mai Stat i
Options Screen ain Game State Main Game State
User presses _ J
Done
State A State A State A State A { State A B
Main Menu f
Main Mend Main Menu Main Menu Main Menu

.

State Stack

© 00 ~NO O WN -

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25

The idea of pushdown automata has its uses beyond agent AI. Think about how the main menu
of a game works - there’ll be some buttons which open up other menus (to set the controls, or graph-
ics options etc), and a big 'Start Game’ button. Once the game’s started, maybe the player will
eventually trigger a cutscene where control is taken away temporarily to play a video, or maybe the
player presses the pause button, bringing up a little UI that allows them to save/load/quit the game.
Pressing quit returns us all the way back to the main menu again. Sound familiar? We can model
this behaviour using a pushdown automata like the one above.

As with many of the concepts introduced over the course of this tutorial material, there’s often
more than one use for them, so even if you don’t require the complex state behaviour that can be
expressed by a pushdown automata, keep them in mind for other parts of your games.

Tutorial Code

To get used to modelling state machines in code, we’re going to take a quick look at how to make a
‘standard’ state machine as a set of extendable classes. The example won’t do much, just increment
some numbers which causes a transition to trigger in some states. But, in doing so, we’ll be creating all
of the underlying 'machinery’ we need for our state machines, and from there allowing more complex
states to be created for Al to use in its behaviour model.

StateMachine Class

To represent a state machine as a whole, we have a new class StateMachine. This class will contain
std containers to hold all of the states it can be in, and the transitions that control when to move
from one state to another. Here’s the code for the class:

namespace NCL {
namespace CSC8503 {
class State; //Predeclare the classes we need
class StateTransition;
//Typedefs to make life easier!
typedef std::multimap<State*, StateTransition*> TransitionContainer;
typedef TransitionContainer::iterator TransitionIterator;
class StateMachine {
public:
StateMachine () { activeState = nullptr;}
~“StateMachine () {}
void AddState(Statex s);
void AddTransition(StateTransition* t);
void Update ();
protected:
Statex* activeState;
std::vector<Statex> allStates;
TransitionContainer allTransitions;
};
}
3

State Machine class header

To add a state, we just add the passed in parameter s to the allStates vector - if this is the first
state added to the state machine, we’ll assume it’s the default starting state, too. Transitions are no
different, except we're using a multimap to represent the directed graph nature of the state machine,
based on the source state as the map’s key, and the transition itself as the value.

© 00 ~NO O WN -

[
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

void StateMachine::AddState(Statex s) {
allStates.emplace_back(s);
if (activeState == nullptr) {
activeState = s;
}
}

void StateMachine::AddTransition(StateTransition* t) {
allTransitions.insert (std::make_pair (t->GetSourceState(), t));

}

State Machine class file

As you’ve probably found when using the STL, the combination of namespaces and templates can
result in some particularly unwieldy variable names. To reduce this a little bit, on like 6 and 7 we
can see some typedefs, which let us create a new keyword that really maps onto a variable type - in
this case were saying that a 'TransitionContainer’ is really a std::multimap of a specific type, and
similarly then defining the iterator type required to iterate through it on line 7. This saves us a little
bit of space and time, and helps provide as much contextual information as possible when looking at
code using these types.

Now, to update our state machine’s behaviour, we just run Update on the active state, and then
get the subset of transitions coming off that state - if one of them can transition to a new state, we get
it and set our activeState pointer. The StateMachine class itself knows nothing about the workings
of how a state works, what it is modelling, or how a transition decides when it should transition,
making it nice and general purpose.

void StateMachine::Update() {
if (activeState) {
activeState ->Update () ;
//Get the transition set starting from this state node;
std::pair<TransitionIterator, TransitionIterator> range =
allTransitions.equal_range (activeState);
//Iterate through them all

for (auto& i = range.first; i != range.second; ++i) {
if (i->second->CanTransition()) { //some transition is true!
State* newState = i->second->GetDestinationState ();
activeState = newState;
}
}

State Machine class file

That’s all there is to a finite state machine at the highest level - all of the actual implementation
of a specific state machine can sit in the states themselves.

StateTransition Class

To represent a transition from one state to another, we’re also going to make a StateTransition class,
that holds pointers to some states, and which has a single pure virtual function CanTransition, that
will return true if some internal condition is met, meaning that our state machine should transition
to a new state As with the state machine, the concept of a state transition is being kept away from the
logic of any implementation of what should be checked to decide on when a transition should occur.
This leads to a pretty sparse class:

© 00 ~NO O WN -

10

12
13
14

O 00 ~NO O WN =

10

namespace NCL {
namespace CSC8503 {
class State;
class StateTransition {
public:
virtual bool CanTransition() const = 0;
State*x GetDestinationState() const {return destinationState;}
State*x GetSourceState () const {return sourceState; }
protected:
State * sourceState;
State * destinationState;
i
}
+

StateTransition class header

State Class

All we can say about a state is that it in some way 'Updates’ by running some logic, so our class
representing this ends up with not much in it at all beyond a pure virtual Update method:

namespace NCL {
namespace CSC8503 {
class State {
public:
State () ;
virtual ~“State();
virtual void Update() = 0; //Pure virtual base class

};

State class header

Between this, the StateTransition class, and the StateMachine class itself, we don’t need anything
else to represent the concept of a state machine, but to create some concrete implementations of a
state machine, we’re going to have to make some subclasses.

GenericTransition Class

Quite often the decision on whether to transition from one state to another in our state machines is
based on a simple value comparison - if health < 20, enter 'run away state’; if distance from enemy >
10, enter sprint state, and so on. So that means we can actually model many common transitions by
storing a value, and then performing a comparison check, as part of the CanTransition method of the
StateMachine class. To model this behaviour, we’re going to make a subclass of StateTransition,
and use templates to allow it to compare one object against another, using a passed in function. This
allows us to check versus an object’s (imaginary!) GetHealth() or GetPosition() methods just as easily,
with one method.

The class itself is fairly straightforward, but the use of templates makes it look a bit more awkward
than it really is. The purpose of the class is to transition from one state to another, if a comparison
between two particular values passes. To do this though, we actually need two templated types - If we
wanted to compare a PhysicsObject’s position against a position in the world, we’d need to store the
PhysicsObject, and a Vector3, as even though we're extracting a Vector3 to compare, we need to
keep hold of the PhysicsObject in the meantime to know what to check. Our GenericTransition
class starts as follows:

10

© 00 ~NO O WN -

NNNNPFE,E PP PR PR PP
WNFP, O OO0 NOOPd WN - O

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

template <class T, class U>
class GenericTransition : public StateTransition {
public:
typedef bool (*GenericTransitionFunc) (T, U);
GenericTransition(GenericTransitionFunc f,
T testData, U otherData, State*x srcState, Statex destState)
dataA (testData), dataB(otherData)
func = f;
sourceState srcState; //
destinationState destState;

}

~“GenericTransition () {}

virtual bool CanTransition() const override{

if (func) {
return func(dataA, dataB);
}
return false;
}
protected:
GenericTransitionFunc func;
T datal;
U dataB;

GenericTransition class header

We store a couple of pieces of data (they might be the same type, there’s nothing about a templated
type that disallows two separate template types from being of the same type), and a function pointer
that the CanTransition method uses to determine whether it’s time to change from one state to an-
other. The only interesting thing is that we must instantiate the dataA and dataB variables with an
initialiser list (shown on line 7). Why? Our template type might be a reference, and therefore the
templated variables must be filled in in this manner.

The final part of this class, back in the public section of the header, is a set of generic static functions
that can perform simple comparisons - we don’t have to use them (we could just pass in a lambda,
instead), it does provide another example of being able to pass around function pointers. If we want,
we can pass these functions in to the constructor of a Generic Transition, as they meet the function
signature of the func variable, which was typedef’d on line 4.

public:
static bool GreaterThanTransition(T dataA, U dataB) {
return datalA > dataB;
}
static bool LessThanTransition(T dataA, U dataB) {
return dataA < dataB;
}
static bool EqualsTransition(T dataA, U dataB) {
return dataA == dataB;
}
static bool NotEqualsTransition(T dataA, U dataB) {
return dataA != dataB;
}
}
}; //end of namespace CSC8503
}; //end of namespace NCL

GenericTransition class header

11

O 00 ~NO O WN -

10

12
13
14
15
16
17
18
19
20
21
22
23

GenericState Class

As well as creating whole subclasses to represent a state, we can take advantage of function variables
and lambdas to create a ’generic’ state that simply runs a function. This becomes harder to use if a
particular state needs to keep lots of variables around, but we can easily plug basic functions into a
state machine by creating a class that looks like the following;:

#pragma once

namespace NCL {
namespace CSC8503 {
typedef void (*StateFunc) (voidx) ;

class GenericState : public State {
public:
GenericState(StateFunc someFunc, void* someData) {
func = someFunc;
funcData = someData;
}
void Update() override {
if (funcData != nullptr) {
func (funcData) ;
}
}
protected:
StateFunc func;
void* funcData;
}; //end of GenericState class
} //end of CSC8503 namespace
} //end of NCL namespace

GenericState Class

This GenericState class overrides the Update method of the State class, and uses it to call another
function, with a single stored piece of state as a parameter. This piece of state is simply a void pointer,
which the function will have to cast to something sensible to operate on - we’ll see an instance of this
in action shortly.

Main function

Great! Now we have the ’engine’ of our finite state machine, and can build up game logic in a discrete
manner. To get a feel for how to compose a state machine using these classes, we're going to create
the very simple 2 state machine:

Data =
State A) ata >0 State B

Data++ - K Data--

Data ==

Two states, two transitions, and that’s it! To do so, we’re going to just fill in a function called by
the main function, TestStateMachine as follows:

12

© 00 ~NO O WN -

N I e e e e e L el
O OW 00N O WNN = O

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

void TestStateMachine () {

StateMachine*x testMachine = new StateMachine ();
int someData = 0;
StateFunc AFunc = [](void* data) {

(int*)data;

int* realData
(*realData)++;
std::cout << "In State A!" << std::endl;

};
StateFunc BFunc = [](void* data) {
int* realData = (int*)data;
(*realData) --;
std::cout << "In State B!" << std::endl;
};
GenericState*x stateA = new GenericState (AFunc, (void*)&someData);
GenericState*x stateB = new GenericState (BFunc, (void*)&someData);

testMachine->AddState (stateld);
testMachine->AddState (stateB);

TestStateMachine function

We're defining a couple of local functions as lambdas - one will take in a pointer and try and increment
the value it points to (line 8), while the other decrements it (line 13). From these functions, and the
integer on line 4, we can form a couple of GenericStates.

We can model the transitions between our simple machine’s states using the GenericTransition
class from earlier - this time templated such that each one takes in a reference to an integer (the
variable from line 4), and an integer that will be used as a comparison value. We can pass in the
Greater ThanTransition and FEqualsTransition functions (templated the same way) to then perform
the comparison.

GenericTransition<int&, int>* transitionA =
new GenericTransition<int&, int>(
GenericTransition<int&, int>::GreaterThanTransition,
someData, 10, stateA, stateB); //if greater than 10, A to B

GenericTransition<int&, int>* transitionB =
new GenericTransition<int&, int>(
GenericTransition<int&, int>::EqualsTransition,
someData, 0O, stateB, stateA); //if equals 0, B to A

testMachine ->AddTransition(transitionA);
testMachine->AddTransition(transitionB) ;

for (int i = 0; i < 100; ++i) {
testMachine ->Update(); //run the state machine!
}
delete testmachine;
}//end of TestStateMachine function!

TestStateMachine function

Once the transitions and states are added to the machine, it’s ready to run! As a test, we just run the
Update for the testMachine 100 times - it should start off in stateA (as it was the first state added),
and after 10 iterations (which should run the AFunc lambda), the checks of the transitions within
the StateMachine::Update method should test against transitionA, and trigger the change into stateB.
After 10 more iterations, the same mechanisms will trigger transitionB, to change back into stateA.

13

Conclusion

If we run the code, nothing will change graphically in the scene, but in the console we should see a
bunch of text output - while the state machine has state a active, an integer increases, which will
eventually cause transition a to trigger, resulting in state b becoming active. This state then decreases
the integer back down until it hits 0, where another transition will trigger, causing the state to revert
back to a again.

Finite state machines are incredibly useful tools when developing an Al in a game. First, a sim-
ple finite state diagram like the ones in this tutorial allow for a bit of visual sanity checking over what
gameplay mechanics should do, and if there are any flaws or failure states in the behaviour being
modelled. When it comes down to programming them, we get to separate the logic out in a way
where it is immediately obvious what should be running at any particular time, and what data should
be readable or writeable at any given point in the behaviours operation.

We can further compose hierarchical state machines, to handle nested sets of Al behaviours, in a
way that allows for easy transition between one and another, in a way that still follows a preset,
well-defined set of rules. Beyond even this, we can use state machine behaviour to model interactions
beyond the raw Al of our game - the menus in our games can be managed by state machines, and
even which gameplay code should be used at a given time could all be encapsulated within a state
machine. When some historical information is required (previous menus visited, previous tasks that
have been temporarily paused), we can additionally make use of pushdown automata to give our state
machines an additional stack of states, and their related required data.

Further Work

1) The state machine example in this tutorial is enough to get you started with making more complex
code interactions that affect your game world as a whole. You might like to try making a StateMa-
chine instance in the TutorialGame class that has a set of states that move a physics body around
the world in a pattern, with each state checking the distance of the body to a predefined target,
adding forces to move towards it, and transitioning to the next state when the distance is less than a
threshold value.

2) You could try modifying the above state machine to additionally check to see if a specific other
physics body is close by, and if so, transition to a state that applies forces to move towards it, instead
of the predefined path. If the 'other’ physics body is being moved around by the mouse / keyboard,
it should feel like the state machine body is patrolling the world, and chasing the "player’.

3) You can further refine this behaviour by coding a hierarchical state machine, by having a sub-
class of State that itself holds a StateMachine, and updates it in its own Update method.

4) There is the skeleton of a Pushdown automata inside the codebase download, made out of the
PushdownMachine and PushdownState classes. You may wish to use these as the basis for some
basic mechanics requiring a history of states. The 'main menu’ for your coursework game is probably
a good place to try this out, as a set of classes, each of which outputs some information to the screen,
and may pause / restart the underlying physics or game mechanics of the program.

14

