FaSMEd

RAISING ACHIEVEMENT THROUGH FORMATIVE ASSESSMENT IN SCIENCE AND MATHEMATICS EDUCATION

David Wright, Jill Clark, Lucy Tiplady
Research Centre for Learning and Teaching
Newcastle University
d.g.wright@ncl.ac.uk
FP7 research project

Action: Science in Society (Research in the role of teaching methods and assessment methods in addressing low achievement in the field of Mathematics, Science and Technology) Collaborative Project

Purpose: To research the use of technology in formative assessment classroom practices that allow teachers to respond to the emerging needs of learners in mathematics and science.

Timescale 3 years

The project FaSMEd has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 612337
Partners

University of Newcastle upon Tyne, UK (Coordinator)
The University of Nottingham, UK
Ecole Normale Superieure De Lyon, France
National University Of Ireland Maynooth
University Of Duisburg-Essen, Germany
University Of Turin, Italy
Freudenthal Institute, University Of Utrecht, The Netherlands
African Institute For Mathematical Sciences Schools
Enrichment Centre, South Africa (Stellenbosch)
University College Of Trondheim, Norway
Objectives:

A *design research* project

To adapt and develop existing research-informed pedagogical interventions (developed by the partners), suited to implementation at scale, through:

- fostering high quality interactions in classrooms that are instrumental in raising achievement;
- Expanding our knowledge of technologically enhanced teaching and assessment methods addressing achievement in mathematics and science
Deliverables:

1. Offer approaches for the use of new technologies to support formative assessment.
2. Develop sustainable teaching practices that improve achievement in Mathematics and Science.
3. Produce a toolkit for teachers to support the development of practice and a professional development resource to support it.
4. Disseminate the outcomes.
Design or “Engineering” Research

Design-based research is a formative approach in which a product or process (or ‘tool’) is envisaged, designed, developed and refined through cycles of enactment, observation, analysis and redesign, with systematic feedback from end-users.

Educational theory is used to inform the design and refinement of the tools, and is itself refined during the research process.

Its goals are to create innovative tools for others to use, to describe and explain how these tools function, account for the range of implementations that occur and develop principles and theories that may guide future designs.

Ultimately, the goal is transformative; we seek to create new teaching and learning possibilities and study their impact on end-users.
The generic process

McKenney and Reeves (2012)
Analyze the context. Describe transformation envisioned

Develop theories and principles to guide the design

Select research sites

Create a design. Describe how it is intended to function
Create research instruments:
How is the design used/what is its impact?

Conduct a trial of the design

Analyze the ways design was used and its impact.
Develop and refine theory. Revise the design.

Disseminate design and research

Iterate, expand sample size
Issues and challenges

The status of theory.
 ◦ What works? How does it function?

The importance of context.
 ◦ Social and cultural context. E.g. pressures, constraints.

The role of the researcher.
 ◦ From interventionist to ‘hands off’.

Design mutation
 ◦ Explain how and why things evolve.

Grain size and selection of teachers
 ◦ Small, close observations moving towards larger more representative trials

The richness of the data
 ◦ range and evolution of implementation; learning gains, attitude changes
The challenge of boundary crossing: opportunities for learning through dialogue and identifying boundary objects

Our boundaries:

• Geographical/cultural - Science/Mathematics - Researcher/teacher

Boundary crossing offers opportunities for learning through dialogue in relation to issues of:

▪ Identity
▪ Coordination
▪ Reflection
▪ Transformation

(Akkerman & Bakker (2011))
Boundary objects in FaSMEd

- The toolkit
- Formative assessment
- Distance/time graphs
The toolkit

“The expression ‘toolkit’ refers to a set of curriculum materials and methods for pedagogical intervention” (proposal)

Curriculum materials:
- Assessment tasks that make teachers more aware of learning obstacles.
- ‘Diagnostic’ tasks that make students more aware of learning obstacles
- Sample lesson plans that show how FA may be embedded to help overcome these obstacles.
- Examples of how technology can support these.

Processes for pedagogical intervention:
- Professional Development modules
- Ways of using the PD modules
Formative assessment - a process not a product – ‘Making learning visible’

“Students and teachers using evidence of learning to adapt teaching and learning to meet immediate needs minute-to-minute and day-by-day”.

(Thompson and Wiliam, 2007)

“... all those activities undertaken by teachers, and by their students in assessing themselves, which provide information to be used as feedback to modify the teaching and learning activities in which they are engaged. Such assessment becomes ‘formative assessment’ when the evidence is actually used to adapt the teaching work to meet the needs.”

(Black & Wiliam, 1998, para, 91)
Assessment as learning

All learning involves assessment, because all learning involves interaction:

“In every moment of interaction, participants produce information that reflects their current understanding of each other’s statements and intended meanings, and this information plays a major role in the way the interaction progresses. In this sense, assessment is inherent in all interactions, although the function of assessment is, for the most part, tacit”.

Key strategies for formative assessment – the framework for the toolkit

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Where the learner is going</th>
<th>Where the learner is right now</th>
<th>How to get there</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clarifying learning intentions and sharing and criteria for success (A)</td>
<td>Engineering effective classroom discussions, activities and tasks that elicit evidence of learning (B)</td>
<td>Providing feedback that moves learners forward (C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peer</th>
<th>Understanding and sharing learning intentions and criteria for success (A)</th>
<th>Activating students as instructional resources for one another (D)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Learner</th>
<th>Understanding learning intentions and criteria for success (A)</th>
<th>Activating students as the owners of their own learning (E)</th>
</tr>
</thead>
</table>

Wiliam & Thompson, 2007
Improving the flow (and quality) of information

Student ↔ Teacher

Other students ↔ Technology
The context for technology in education

- Technological tools
- Rich learning tasks
- Pedagogy
- 21st Century skills
- The classroom: a community of learners
- Shared values: What is the purpose of education?

Fullan (2013)
Functionality of Technology for FA

1. Sending and Sharing
2. Processing and Analysing
3. Interactive Environments
3 dimensions of FA activities

- Interactive Environment
- Processing and Analysing
- Sending and Sharing

Participant/s
- Student
- Peer/Group
- Teacher

Functionality (technology)

FA Strategies (Black & Wiliam)
Why professional development is hard

Improving practice involves changing habits, not adding knowledge

– That’s why it’s hard

And the hardest bit is not getting new ideas into people’s heads

It’s getting the old ones out

– That’s why it takes time

But it doesn’t happen naturally
Professional development and researching the toolkit

A three part “sandwich”:

- **Introductory session:**
 Teachers work on problems, discuss pedagogical challenges they present and plan lessons.

- **Into the classroom:**
 Teacher teach the planned lessons.

- **Follow-up session:**
 Teachers describe and reflect on what happened and plan strategies for future lessons.
Pedagogy: Re-Engaging learners.

http://www.insidemathematics.org
The teaching sequence

1. Pre-assessment – individual ‘diagnostic’ task completed prior to main teaching sequence.
2. Teacher creates questions based on students’ responses to pre-assessment task.
3. Students individually review their response to the pre-assessment task using the teacher’s questions.
4. Students work in groups comparing solutions.
5. Students, as a class, presented with ‘sample’ solutions chosen to illustrate particular misconceptions or difficulties to analyse and assess.
6. Students review their developing solutions and may be invited to present their work to the whole class.
Key processes in Mathematics

Real World

Mathematics

Representing

Communicating and Reflecting

Analysing

Interpreting and Evaluating
Proposal implies two iterations: Prototype & Final

By Month 10:
- 3.1 Develop a prototype toolkit for teachers to support their use of formative assessment in the classroom including advice and support in using technology
- 3.4 Develop prototype PD package for teachers

By Month 25
- 3.2 Evaluation of toolkit
- 3.5 Evaluation of PD package

By Month 36
- 3.3 Develop final toolkit
- 3.6 Develop final PD package
Websites

http://research.ncl.ac.uk/fasmed/

https://toolkitfasmed.wordpress.com/

http://map.mathshell.org/
References

Wiliam, D, 2005 etc. http://www.dylanwiliam.org/

www.insidemathematics.org/classroom-videos/formative-re-engaging-lessons