FaSMEd

RAISING ACHIEVEMENT THROUGH FORMATIVE ASSESSMENT IN SCIENCE AND MATHEMATICS EDUCATION

David Wright, Jill Clark, Lucy Tiplady
Research Centre for Learning and Teaching
Newcastle University
d.g.wright@ncl.ac.uk
FP7 research project

Action: Science in Society (Research in the role of teaching methods and assessment methods in addressing low achievement in the field of Mathematics, Science and Technology) Collaborative Project

Purpose: To research the use of technology in formative assessment classroom practices that allow teachers to respond to the emerging needs of learners in mathematics and science.

Timescale 3 years

The project FaSMEd has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 612337
Partners

University of Newcastle upon Tyne, UK (Coordinator)
The University of Nottingham, UK
Ecole Normale Superieure De Lyon, France
National University Of Ireland Maynooth
University Of Duisburg-Essen, Germany
University Of Turin, Italy
Freudenthal Institute, University Of Utrecht, The Netherlands
African Institute For Mathematical Sciences Schools
Enrichment Centre, South Africa (Stellenbosch)
University College Of Trondheim, Norway
Objectives:

A design research project

To adapt and develop existing research-informed pedagogical interventions (developed by the partners), suited to implementation at scale, through:

◦ fostering high quality interactions in classrooms that are instrumental in raising achievement;

◦ Expanding our knowledge of technologically enhanced teaching and assessment methods addressing achievement in mathematics and science
Deliverables:

1. Offer approaches for the use of new technologies to support formative assessment.

2. Develop sustainable teaching practices that improve achievement in Mathematics and Science.

3. Produce a toolkit for teachers to support the development of practice and a professional development resource to support it.

4. Disseminate the outcomes.
The challenge of boundary crossing: opportunities for learning through dialogue

Our boundaries:

• Geographical/cultural - Science/Mathematics - Cognitive/affective - Researcher/teacher - School/home

Boundary crossing offers opportunities for learning through dialogue in relation to issues of:

 Identity
 Coordination
 Reflection
 Transformation

(Akkerman & Bakker (2011))
The purpose of education: what are our values?

• The project is embedded in a context with a clear political dimension of Social renewal and Social Justice:

• International statistics (PISA, TIMSS etc) demonstrate that across many (most) education systems, the membership of certain groups eg: Gender, class or ethnicity implies differential educational outcomes in science and mathematics.

• It is not just a technical issue of finding better ways of teaching and learning science and mathematics – it is about empowering our students.

• Mathematical and scientific literacy: ‘Reading and writing the world with science and mathematics’ (Freire (1970), Gutstein (2006))

• ‘Reading the world’ = Using science and mathematics to understand society and the world.

• ‘Writing the world’ = Developing a sense of individual and social agency through science and mathematics.
The context for technology in education

Fullan (2013)
Formative assessment - a process not a product – ‘Making learning visible’

“Students and teachers using evidence of learning to adapt teaching and learning to meet immediate needs minute-to-minute and day-by-day”.

(Thompson and Wiliam, 2007)

“... all those activities undertaken by teachers, and by their students in assessing themselves, which provide information to be used as feedback to modify the teaching and learning activities in which they are engaged. Such assessment becomes ‘formative assessment’ when the evidence is actually used to adapt the teaching work to meet the needs.”

(Black & Wiliam, 1998, para, 91)
Improving the flow (and quality) of information
Design or “Engineering” Research

Design-based research is a formative approach in which a product or process (or ‘tool’) is envisaged, designed, developed and refined through cycles of enactment, observation, analysis and redesign, with systematic feedback from end-users.

Educational theory is used to inform the design and refinement of the tools, and is itself refined during the research process.

Its goals are to create innovative tools for others to use, to describe and explain how these tools function, account for the range of implementations that occur and develop principles and theories that may guide future designs.

Ultimately, the goal is transformative; we seek to create new teaching and learning possibilities and study their impact on end-users.
Issues and challenges

The status of theory.
- What works? How does it function?

The importance of context.
- Social and cultural context. E.g. pressures, constraints.

The role of the researcher.
- From interventionist to ‘hands off’.

Design mutation
- Explain how and why things evolve.

Grain size and selection of teachers
- Small, close observations moving towards
 Larger more representative trials

The richness of the data
- range and evolution of implementation; learning gains, attitude changes. “I had no room to store all the data, let alone time to score it.’ (Brown, 1992)
The generic process

McKenney and Reeves (2012)
Analyze the context. Describe transformation envisioned
Analyze the context

Curriculum materials context
- 11-14, low attainers
- Existing technology use extremely varied
- Exemplar lessons v extended units of work

Professional development context
- Teachers experienced with technology?
- One-off workshops?
- Extended courses mediated by an outsider?
- Communities of teachers within a school using online resources.
- Communities of teachers across schools + outsiders. (e.g. “Japanese Lesson study”)
- Individual teachers working alone
What transformations are we seeking?

Better motivation

“The project aims to research the use of technology in formative assessment classroom practices in ways that allow teachers to respond to the emerging needs of low achieving learners in mathematics and science so that they **are better motivated** in their learning of these important subjects.”

Higher quality interactions among students

“That are instrumental in

- raising achievement for low achievers which support teachers in enabling low attaining students to:
 - Learn more mathematics and science
 - Get better at learning mathematics and science
 - Feel better about themselves as mathematics and science students.”
Analyze the context. Describe transformation envisioned

Develop theories and principles to guide the design
Principles from theory

Learning occurs through
- active participation in and reflection on social practices,
- internalisation and reorganisation of experience.

Activate pre-existing concepts and ideas.

Stimulate ‘conflict’ or ‘challenge’ to promote re-interpretation, reformulation and accommodation.

Devolve problems to learners. Learners articulate their own interpretations and create their own connections.

‘Productivity’ must give way to reflective periods for examining alternative meanings and methods.

This applies to teachers and students equally.
Pedagogy: Re-Engaging learners.

Inside mathematics, Re-engaging learners

- Re-Teaching:
 - Teaching the unit again
 - Addressing missing basic skills
 - Doing the same problems over
 - More practice, learn procedures
 - Focus mostly on underachievers
 - Cognitive load usually lower

- Re-Engaging:
 - Revisiting student thinking
 - Addressing conceptual understanding
 - Examining the task from different perspectives
 - Critique approaches, make connections
 - Engage entire class in mathematics
 - Cognitive load usually higher
Professional development (Wiliam, 2011)

Looking at the wrong knowledge...

The most powerful teacher knowledge is not explicit
– That’s why telling teachers what to do doesn’t work
– What we know is more than we can say
– And that is why most professional development has been relatively ineffective

Improving practice involves changing habits, not adding knowledge
– That’s why it’s hard

And the hardest bit is not getting new ideas into people’s heads

It’s getting the old ones out
– That’s why it takes time

But it doesn’t happen naturally
– If it did, the most experienced teachers would be the most productive, and that’s not true (Hanushek, 2005)
Phases of Professional Development

- Recognise, articulate and value
 Reflect on the contexts in which teachers work and make explicit existing values, beliefs and practices.
- Enact and take risks
- Contrast and challenge
Phases of Professional Development

Contrast and challenge
Illustrate vivid, contrasting practices.
Work on task genres.
Analyse videos.
Discuss theories, pedagogies, and context.
This provides ‘challenge’ or ‘conflict’.
Phases of Professional Development

Enact and take risks
Ask teachers to ‘suspend’ disbelief and act in new ways, ‘as if they believed differently’. Offer mentor and a network of support as they do this.
Recognise, articulate and value

Encourage teachers to meet together and reflect on their new experiences and the implications that these offer. Ask teachers to reflect on and recognise the growth of new beliefs.
Analyze the context. Describe transformation envisioned

Develop theories and principles to guide the design

Select research sites
Select research sites

Clusters of 3 schools, but which?

- Schools where technology use is strong?
- Schools where formative assessment is strong?
- Schools where neither technology nor formative assessment is embedded?
Analyze the context. Describe transformation envisioned

Develop theories and principles to guide the design

Select research sites

Create a design. Describe how it is intended to function
Create research instruments:
How is the design used/what is its impact?
The toolkit

“The expression ‘toolkit’ refers to a set of curriculum materials and methods for pedagogical intervention” (proposal)

Curriculum materials:
- Assessment tasks that make teachers more aware of learning obstacles.
- ‘Diagnostic’ tasks that make students more aware of learning obstacles
- Sample lesson plans that show how FA may be embedded to help overcome these obstacles. (e.g. MAP lessons)

Processes for pedagogical intervention:
- PD modules
- Ways of using the PD modules
Key strategies for formative assessment – the framework for the toolkit

<table>
<thead>
<tr>
<th></th>
<th>Where the learner is going</th>
<th>Where the learner is right now</th>
<th>How to get there</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>Clarifying learning intentions and sharing and criteria for success (1)</td>
<td>Engineering effective classroom discussions, activities and tasks that elicit evidence of learning (2)</td>
<td>Providing feedback that moves learners forward (3)</td>
</tr>
<tr>
<td>Peer</td>
<td>Understanding and sharing learning intentions and criteria for success (1)</td>
<td>Activating students as instructional resources for one another (4)</td>
<td></td>
</tr>
<tr>
<td>Learner</td>
<td>Understanding learning intentions and criteria for success (1)</td>
<td>Activating students as the owners of their own learning (5)</td>
<td></td>
</tr>
</tbody>
</table>

Wiliam & Thompson, 2007
Research instruments

What are we seeking to learn?

◦ Summative
 ◦ Better motivation among students?
 (e.g. Teacher/student questionnaires & interviews, lesson observations)
 ◦ Higher quality interactions among students?
 (e.g. Lesson observations, sample video analysis)

◦ Formative (for further development of toolkit)
 ◦ What are the easier/ more difficult formative assessment principles to adopt?
 ◦ What are the affordances / obstacles with technology?
 ◦ What are the most effective models for FA; for PD?
The Mathematics Assessment Project

“And I’m calling on our nation’s governors and state education chiefs to develop standards and assessments that don’t simply measure whether students can fill in a bubble on a test, but whether they possess 21st Century skills like problem solving and critical thinking and entrepreneurship and creativity.”

President Obama, 1 March 2009.

New lessons: We’ve been steadily adding new ‘Classroom Challenge’ lessons for grades 6-8 over the last few months, and in a few weeks all of the planned 20 lessons for each grade from 9 to 10 will be available.

New – TRU Math: Teaching for Robust Understanding of Mathematics is a suite of tools for professional development and research - the alpha versions of these documents are available [here](#).

The project is working to design and develop well-engineered assessment tools to support US schools in implementing the

Products

Tools for formative and summative assessment that make knowledge and reasoning visible, and help teacher to guide students in how to improve, and monitor their progress. These tools comprise:

- **Classroom Challenges:** lessons for formative assessment, some focused on developing math concepts, others on non-routine problem solving. A [Brief Guide for teachers and administrators (PDF)](#) is now available, and is recommended for anybody using the MAP Classroom Challenges for the first time.

- **Professional Development Modules:** to help teachers with the new pedagogical challenges that formative assessment presents.

- **Summative Assessment Task Collection:** to illustrate the range of performance goals required by CCSSM.

- **Prototype Summative Tests:** designed to help teachers and students monitor their progress, these tests provide a model for examinations that may replace or complement current US tests.

The team also contributes to some system capacity building activities within the wider collaboration that the Gates Foundation has assembled, including states and school systems across the US.
For MAP lessons

“The expression ‘toolkit’ refers to a set of curriculum materials and methods for pedagogical intervention” (proposal)

Curriculum materials:
- Formative Assessment Lessons
- Summative Assessment Task Collection
- Prototype Summative Tests

Processes for pedagogical intervention:
- Professional development modules
- Ways of using the PD modules
- TRU Math suite of tools that describe the characteristics of productive classrooms.
Supporting 21st Century Math Teaching

To truly meet the demands of the Common Core State Standards, it is not sufficient to simply revise the list of mathematical content covered in the curriculum. The Standards' emphasis on Mathematical Practices require students to be able to think mathematically, and apply the techniques they have learned to rich problems in diverse contexts. Achieving this requires changes in the way mathematics is taught and assessed in most schools.

The Mathematics Assessment Project has developed the Classroom Challenges to exemplify the types of activities needed to supplement traditional classroom practice and support the Standards. The Professional Development Modules are designed to help teachers with the practical and pedagogical challenges presented by these lessons.

Module 1 introduces the model of formative assessment used in the lessons, its theoretical background and practical implementation. Modules 2 & 3 look at the two types of Classroom Challenges in detail. Modules 4 & 5 explore two...
A Professional development resource

Modules covering the main pedagogical challenges:

Each is a three part “sandwich”:

- **Introductory session:**
 Teachers work on problems, discuss pedagogical challenges they present, watch video of other teachers using these problems and plan lessons.

- **Into the classroom:**
 Teacher teach the planned lessons.

- **Follow-up session:**
 Teachers describe and reflect on what happened, discuss video extracts, and plan strategies for future lessons.
Analyze the context. Describe transformation envisioned

Develop theories and principles to guide the design

Select research sites

Create a design. Describe how it is intended to function
Create research instruments:
How is the design used/what is its impact?

Conduct a trial of the design
Analyze the context. Describe transformation envisioned

Develop theories and principles to guide the design

Select research sites

Create a design. Describe how it is intended to function
Create research instruments:
How is the design used/what is its impact?

Conduct a trial of the design

Analyze the ways design was used and its impact.
Develop and refine theory. Revise the design.
Analyze the context. Describe transformation envisioned.

Develop theories and principles to guide the design.

Select research sites.

Create a design. Describe how it is intended to function.
 Create research instruments:
 How is the design used/ what is its impact?

Conduct a trial of the design.

Analyze the ways design was used and its impact.
 Develop and refine theory. Revise the design.

Iterate, expand sample size.
Successive Trials

<table>
<thead>
<tr>
<th>Level</th>
<th>Variables</th>
<th>Typical research and development foci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning studies</td>
<td>Student Task</td>
<td>R: Conceptual difficulties, Practical IT issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: Classroom activities, data capture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiastic teachers</td>
<td>Instruction Student Task</td>
<td>R: Teaching tactics and strategies, student learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: Classroom materials OK for some.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representative teachers</td>
<td>Teacher Instruction Student Task</td>
<td>R: Performance of typical teachers with realistic support.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic studies of teacher knowledge and competency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: Classroom materials that work for most teachers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System change</td>
<td>System School Teacher Instruction Student Task</td>
<td>R: System and cultural variables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: Tools for change - materials for assessment, professional development, community relations.</td>
</tr>
</tbody>
</table>
Proposal implies two iterations: Prototype & Final

By Month 10:
- 3.1 Develop a prototype toolkit for teachers to support their use of formative assessment in the classroom including advice and support in using technology
- 3.4 Develop prototype PD package for teachers

By Month 25
- 3.2 Evaluation of toolkit
- 3.5 Evaluation of PD package

By Month 36
- 3.3 Develop final toolkit
- 3.6 Develop final PD package
Case studies produced in second iteration

Clusters
“All partners will have a cluster of about three schools to implement each of the approaches”

What is the grain size of a “case study”?
- Student experience
- Teacher experience
- Whole school issues
- Cluster of schools
Analyze the context. Describe transformation envisioned.

Develop theories and principles to guide the design.

Select research sites.

Create a design. Describe how it is intended to function.
- Create research instruments:
 - How is the design used/what is its impact?

Conduct a trial of the design.

Analyze the ways design was used and its impact.
- Develop and refine theory. Revise the design.

Disseminate design and research.

Iterate, expand sample size.
Websites

<table>
<thead>
<tr>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://research.ncl.ac.uk/fasmed/</td>
</tr>
<tr>
<td>https://toolkitfasmed.wordpress.com/</td>
</tr>
<tr>
<td>http://map.mathshell.org/</td>
</tr>
</tbody>
</table>
References

Freire, P, 1970. Pedagogy of the oppressed. [New York]: Herder and Herder,

Wiliam, D, 2005 etc. http://www.dylanwiliam.org/

www.insidemathematics.org/classroom-videos/formative-re-engaging-lessons