Investigating the Molecular Basis of Mitochondrial Disease: A Novel UQCRH Mutation causes a Defect in Complex III Assembly and Activity

Charlotte Sanders*, Dr. Kyle Thompson, Prof. Robert Taylor
*C.Sanders@ncl.ac.uk, 140058271, Pharmacology BSc Hons

Introduction

- Mitochondria produce ATP (adenosine triphosphate) which is the cell's primary energy currency.
- Mitochondrial disease occurs when these ‘powerhouses’ are dysfunctional and cells produce insufficient ATP.
- ATP is a product of oxidative phosphorylation (OXPHOS), a process requiring five protein complexes (I-V).
- Mutations within either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) impair OXPHOS.
- Complex III (CIII or cytochrome c oxidoreductase) contains 11 mtDNA and 10 nDNA-encoded subunits.
- CI mutations are diagnostically difficult to identify and are 890.

Experimental Methods

- Next Generation Whole Exome Sequencing (WES) identified a homozygous UQCRH deletion mutation.
- OXPHOS proteins from primary patient fibroblasts were analysed.
- Antibodies specific to different OXPHOS complex subunits were used to visualise the relevant proteins.

Results

- Western Blot (Figure 5A) detected decreased levels of complex III in the patient compared to controls.
- Blue Native PAGE showed a CIII band of a lower molecular weight protein complex for the affected patient.
- A different UQCRH antibody will be used in future Blue Native PAGE to obtain clearer bands when imaged and Sanger sequencing confirming the deletion breakpoint.

Discussion and Conclusion

- Decreased expression of Complex III in the patient presenting with mitochondrial disease:
 - The Western Blot (Figure 5A) detected decreased levels of CIII subunit UQCR2 in the patient fibroblasts when compared to the controls. Reduced steady-state levels of CIII negatively affects the availability of CIII in the OXPHOS process and the output of ATP.
 - Assembly of Complex III is incomplete in the affected patient mitochondria.
 - In the Blue Native (Figure 5B), the patient CIII band has a reduced molecular weight (MW) because it has travelled lower down than the controls.

Future Work

- A different UQCRH antibody will be used in future Blue Native PAGEs to obtain clearer bands when imaged and to determine if the UQCRH subunit is truly absent.
- Patient fibroblast cells will be subject to lentiviral transduction with wild-type cDNA. This is where DNA without the patient’s biochemical defects is introduced into patient cells to effect rescue and confirm the pathogenic nature of the mutation.
- Proteomic studies for patient CIII will help determine what protein segment is absent.

Acknowledgements

I am grateful to the British Inherited Metabolic Disease Group for their funding in my undertaking of this research and the great support and experience from the Wellcome Trust Centre for Mitochondrial Research.

References