The Role of Inhibitory Interneurons in the Prefrontal Cortex of Patients with Post-Stroke Dementia and other Dementias

Shobana Anpalakhan*, Vincent Foster, Arthur E. Oakley and Professor Raj N. Kalaria | Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, United Kingdom

Introduction

• Stroke and age are two major risk factors for the development of dementia. With the ageing population, the incidence of dementia is estimated to increase to over a million people within the UK by 2050.[1]

• The 1999 Cognitive Function After Stroke study investigated the role of stroke in the development of dementia. Approximately 30% of the stroke survivors from their cohort went on to develop post-stroke dementia, whilst others remained cognitively normal during their life span.[1]

• A major hallmark of post-stroke dementia is executive dysfunction.[2] To explain this finding, ongoing research has been focused on the roles of pre-frontal cortical circuits, involved in executive function, in the development of post-stroke dementia.

• Previous studies have identified striking changes in pyramidal neurons within the dorsolateral prefrontal cortex (dlPFC) found in Brodmann’s area 9.[3]

Objective

This project aims to:

• Investigate the role of the dlPFC in the development of post-stroke dementia, by assessing the densities of interneurons and glial cells, focusing on cortical layer V of the dlPFC.

• In the dlPFC, pyramidal neurons create networks of axons sending excitatory signals across different brain regions. Mediating them are GABAergic inhibitory interneurons.

• The balance between these neurons is vital for normal brain function. Stroke-caused lesions can lead to differences in their numbers thus affecting this crucial balance.

• Glial cells are non-neuronal cells that support and protect neurons.

Methodology

STUDY SUBJECTS

We studied the brains of approximately 60 subjects, comparing post-stroke dementia (PSD), post-stroke non-demented (PSND), Alzheimer’s disease (AD), vascular dementia (VaD), mixed dementia (consisting of AD & VaD pathology) subjects and age-matched controls (about 10 in each group).

3D STEREOLOGY

Brain sections of approximately 30µm thickness were analysed, with the operator remaining blinded to case details.

The sample area was mapped out at 2.5x magnification using the Visiopharm Integrator System software, and confirmed under 10x magnification.

Using a computer-generated random sampling technique, 20-40 samples were analysed within the sample area, per slide. Each case had 2-3 slides.

Using unbiased 3D stereology, large numbers of neurons and glial cells were sampled, and quantified under 100x magnification. Estimates of interneuronal and glial cell densities were calculated using this formula:

\[N_v = \frac{P \times Q}{P \times V} \]

Where: \(N_v \) = numerical density, \(P \) = dissector samples, \(Q \) = number of objects counted, \(P \) = total number of dissectors and \(V \) = dissector box volume.

RESULTS

Using the SPSS version 21, parametric and non-parametric tests were used with the level of significance set at \(p < 0.05 \).

• One-way ANOVA with post hoc tests were performed on normally distributed data.

• Mann-Whitney U-tests were performed on non-normally distributed data to establish any significance between groups.

Correlations between variables were investigated using Spearman’s rank (rho) coefficients.

STATISTICAL ANALYSIS

Figure 2 – An area of layer V mapped out from a section of Brodmann’s area 9

Figure 3 – Mean layer V interneuronal and glial cell densities in each dementia group

• Intereuronal densities were found to be non-normally distributed (\(p = 0.004 \)), while glial cell densities were found to be normally distributed (\(p = 0.059 \)).

• There were no significant differences in interneuronal and glial cell densities in layer V of the dlPFC between any of the subject groups.

• Interestingly, a significant correlation was found between the glial cell densities in layers III and V.

• Furthermore, no correlation was detected between fixation times and layer V interneuronal or glial cell densities, suggesting that fixation times did not affect the cell densities.

Conclusions

• Neither interneuronal nor glial cell densities in layer V of the dlPFC appear to distinguish PSD subjects from their PSND counterparts.

• Despite the different pathologies expressed across the demented groups, interneuronal and glial cell densities appeared to remain stable.

• This work will continue, analysing remaining cortical layers, with the hope of accurately assessing cell densities in the various dementia groups and elucidating why only a proportion of stroke patients develop dementia.

References:

1. [1]. Parkinson's Disease: UK Parkinson’s Disease Society
2. [2]. Alzheimer’s Society
3. [3]. Stroke Association

For further information, please contact: s.anpalakhan@newcastle.ac.uk

Figure 4 – Correlation between glial cell densities in layers III and V