
 

COMPUTING 
SCIENCE 
 
Title : Signatures and Efficient Proofs on Committed Graphs and NP-Statements 
Authors: Thomas Gross 
Keywords: graph, digital signature, zero-knowledge proof of knowledge, NP 
Pages: 20 
 
Abstract: 
 
Digital signature schemes are a foundational building block enabling integrity and non-repudiation. We 
propose a graph signature scheme and corresponding proofs that allow a prover (1) to obtain a signature 
on a committed graph and (2) to subsequently prove to a verifier knowledge of such a graph signature. 
The graph signature scheme and proofs are a building block for certification systems that need to 
establish graph properties in zero-knowledge, as encountered in cloud security assurance or provenance. 
We extend the Camenisch-Lysyanskaya (CL) signature scheme to graphs and enable efficient zero-
knowledge proofs of knowledge on graph signatures, notably supporting complex statements on graph 
elements. Our method is based on honest-verifier proofs and the strong RSA assumption. In addition, 
we explore the capabilities of graph signatures by establishing a proof system on graph 3-colorability 
(G3C). As G3C is NP-complete, we conclude that there exist Camenisch-Lysyanskaya proof systems 
for statements of NP languages.  

 
 
Author Info: Thomas Gross is a Lecturer in the School of Computing Science, Newcastle University. 
His areas of research interest include: security and privacy, applied cryptography and human 
dimensions of security decision making. 
 
 
 
 
 
 
 
 
 
 
 
 
TECHNICAL REPORT SERIES 
 

No. CS-TR-1417  May 2014 



TECHNICAL REPORT SERIES 
              
 
 
No. CS-TR-1417  November, 2015 
 
 
Title: Signatures and Efficient Proofs on Committed Graphs and NP-
Statements 
Authors: Thomas Gross 
 
 
Abstract 
 
Digital signature schemes are a foundational building block enabling integrity and non-
repudiation. We propose a graph signature scheme and corresponding proofs that allow a 
prover (1) to obtain a signature on a committed graph and (2) to subsequently prove to a 
verifier knowledge of such a graph signature. The graph signature scheme and proofs are a 
building block for certification systems that need to establish graph properties in zero-
knowledge, as encountered in cloud security assurance or provenance. We extend the 
Camenisch-Lysyanskaya (CL) signature scheme to graphs and enable efficient zero-
knowledge proofs of knowledge on graph signatures, notably supporting complex statements 
on graph elements. Our method is based on honest-verifier proofs and the strong RSA 
assumption. In addition, we explore the capabilities of graph signatures by establishing a 
proof system on graph 3-colorability (G3C). As G3C is NP-complete, we conclude that there 
exist Camenisch-Lysyanskaya proof systems for statements of NP languages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2015 Newcastle University. 
Printed and published by Newcastle University, 
Computing Science, Claremont Tower, Claremont Road, 
Newcastle upon Tyne, NE1 7RU, England. 



Bibliographical details 
 
Title : Signatures and Efficient Proofs on Committed Graphs and NP-Statements 
Authors: Thomas Gross 
Newcastle upon Tyne: Newcastle University: Computing Science, 2015. 
 
(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-
1417) 
 
 
Added entries 
 
 
NEWCASTLE UNIVERSITY 
Computing Science. Technical Report Series.  CS-TR-1417 
 
 
 
Abstract 
 
Digital signature schemes are a foundational building block enabling integrity and non-
repudiation. We propose a graph signature scheme and corresponding proofs that allow a 
prover (1) to obtain a signature on a committed graph and (2) to subsequently prove to a 
verifier knowledge of such a graph signature. The graph signature scheme and proofs are a 
building block for certification systems that need to establish graph properties in zero-
knowledge, as encountered in cloud security assurance or provenance. We extend the 
Camenisch-Lysyanskaya (CL) signature scheme to graphs and enable efficient zero-
knowledge proofs of knowledge on graph signatures, notably supporting complex statements 
on graph elements. Our method is based on honest-verifier proofs and the strong RSA 
assumption. In addition, we explore the capabilities of graph signatures by establishing a 
proof system on graph 3-colorability (G3C). As G3C is NP-complete, we conclude that there 
exist Camenisch-Lysyanskaya proof systems for statements of NP languages.  
--------- 
 
About the authors 
 
Thomas Gross is a Lecturer in the School of Computing Science, Newcastle University. His 
areas of research interest include: security and privacy, applied cryptography and human 
dimensions of security decision making. 
 

 
Suggested keywords 
 

graph, digital signature, zero-knowledge proof of knowledge, NP Pages: 20 



Signatures and Efficient Proofs on Committed Graphs
and NP-Statements

Thomas Groß

School of Computing Science, Newcastle University, UK

Abstract. Digital signature schemes are a foundational building block enabling
integrity and non-repudiation. We propose a graph signature scheme and corre-
sponding proofs that allow a prover (1) to obtain a signature on a committed graph
and (2) to subsequently prove to a verifier knowledge of such a graph signature.
The graph signature scheme and proofs are a building block for certification sys-
tems that need to establish graph properties in zero-knowledge, as encountered in
cloud security assurance or provenance. We extend the Camenisch-Lysyanskaya
(CL) signature scheme to graphs and enable efficient zero-knowledge proofs of
knowledge on graph signatures, notably supporting complex statements on graph
elements. Our method is based on honest-verifier proofs and the strong RSA as-
sumption. In addition, we explore the capabilities of graph signatures by estab-
lishing a proof system on graph 3-colorability (G3C). As G3C is NP-complete,
we conclude that there exist Camenisch-Lysyanskaya proof systems for state-
ments of NP languages.

1 Introduction

Digital signature schemes are foundational cryptographic primitives; they are useful
in themselves to ensure integrity and non-repudiation and as building block of other
systems. From their first construction by Rivest, Shamir and Adleman [27], digital
signatures have been on bit-strings or group elements, on a committed sequence of
bit-strings [11] or structure-preserved group elements [1]. In this work, we establish a
signature scheme and corresponding proof system for committed graphs.

The basis for this work is the Camenisch-Lysyanskaya proof system: a collection
of distributed algorithms that allow an issuer, a prover and a verifier to prove knowl-
edge of committed values, issue a Camenisch-Lysyanskaya (CL) signature [10,11] on
committed values, and prove knowledge of such a signature in zero-knowledge, while
selectively disclosing values or proving statements about them. It uses honest-verifier
Σ-proofs (Schnorr proofs [28]) and has the advantage that it keeps all attributes in the
exponent. It thereby allows us to access attributes with known discrete-logarithm-based
zero-knowledge proofs of knowledge [28,17,19,12,4,14]. The attributes that could be
signed are, however, limited by the message space of the CL-signature scheme: a se-
quence of small bit-strings.

We study how to extend the Camenisch-Lysyanskaya proof system to establish sig-
natures on committed graphs and, by extension, on committed statements from NP
languages. Zero-knowledge proofs of certified or committed graphs with the capability
of selective disclosure of graph elements or complex statements over graph attributes



have many significant applications beyond classical graph proof techniques [22,3] or the
more recent proposal of transitive signatures [24]. The key difference to earlier work is
that the graph encoding is universal, enables direct access to graph elements, and allows
a prover to be flexible in the statements proven after the graph is certified. Such graph
proofs are instrumental in foundational techniques, such as the zero-knowledge proof
of knowledge of certified petri nets as well as in various application scenarios, such
as for the certification of audited cloud topologies [2], for which propose a dedicated
framework for topology proofs, including coverage, disjointness and partitions as well
as connectivity and isolation, in a separate report [23].

First, we establish a new encoding of undirected graphs into the message space of
CL-Signatures. The encoding allows for unlabeled, vertex- or edge-labeled graphs. The
graph encoding is universal and operational in the sense that it supports efficient proofs
over graph elements (vertices, edges, labels) and their relations.

Second, we extend the Camenisch-Lysyanskaya proof system to graphs by integrat-
ing the graph encoding into integer commitments and the CL-Signature bootstrapping
process. This allows prover and issuer to sign committed graphs with sub-graphs con-
tributed by both parties and to prove knowledge of graph signatures in honest-verifier
Σ-proofs. The obtained graph proof system in itself allows for efficient zero-knowledge
proofs of interesting graph properties, such as partitions, connectivity and isolation [23],
which we demonstrate in a cloud application scenario. Graph proofs with a level of in-
direction between the authority on the graph (the issuer) and the verifier, established by
a graph signature and with access to a wide range of graph properties, have not been
covered by existing zero-knowledge graph proofs, such as [22,3,21], or transitive sig-
natures [24]. While the former graph proofs are powerful constructions allowing for
NP statements, e.g., graph 3-colorability or directed Hamiltonian cycle, their encoding
does not cater for proving relations over graph elements in zero-knowledge. The latter
is focused on the transitive closure along graph edges.

Third, we establish a proof system for graph 3-colorability (G3C) that allows us
to obtain CL-Signatures on committed instances of 3-colorable graphs and to prove
knowledge thereof to a verifier in zero-knowledge. Given that graph 3-colorability is
NP-complete, we can lift the Camenisch-Lysyanskaya proof system to NP statements.
Based on the 3-colorability proof system in a special RSA group and under the Strong
RSA assumption, we show that there exists a Camenisch-Lysyanskaya proof system
for any NP language, that is, the proof is capable of issuing CL-Signatures on com-
mitted statements from the NP language and to prove knowledge of such signatures in
honest-verifier Σ-proofs. Whereas the G3C-reduction does not offer particularly effi-
cient constructions for graph proofs, it shows the theoretical expressiveness of the graph
credential system.

In effect, this work extends the reach of the Camenisch-Lysyanskaya proof system
to signatures and proofs on structures of entire systems. To our knowledge, it is the
first work to enable signatures on committed graphs. Notably, the graph elements are
present in the exponents and, thereby, accessible to known discrete-logarithm-based
zero-knowledge proofs on a wide range graph properties in honest-verifier proofs.



1.1 Outline

In §2, we discuss the preliminaries of our graph proof construction: Camenisch-Lysyaskaya
signatures and Camenisch-Groß encoding. Based on the Camenisch-Groß encoding, we
establish a canonical encoding for vertex- and edge-labeled graphs in §3. §4 establishes
how integer commitments and CL-Signature are extended with the graph encoding. In
§5, we show how this proof system is used in proofs on cloud topology signatures as a
practical application scenario. We continue the main argument of the discussion in §6
to show how graph 3-colorability can be expressed in the graph proof system as proof
of the encoding’s theoretical reach. §8 considers earlier work on zero-knowledge proofs
and signatures on graphs, while §9 draws conclusions of this work’s properties.

2 Preliminaries

2.1 Assumptions

Special RSA Modulus A special RSA modulus has the form N = pq, where p = 2p′+ 1
and q = 2q′ + 1 are safe primes, the corresponding group is called special RSA group.
Strong RSA Assumption [27,19]: Given an RSA modulus N and a random element
g ∈ Z∗N , it is hard to compute h ∈ Z∗N and integer e > 1 such that he ≡ g mod N .
The modulus N is of a special form pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe
primes. Quadratic Residues The set QRN is the set of Quadratic Residues of a special
RSA group with modulus N .

2.2 Integer Commitments

Damgård and Fujisaki [17] showed for the Pedersen commitment scheme [25] that if it
operates in a special RSA group and the committer is not privy to the factorization of the
modulus, then the commitment scheme can be used to commit to integers of arbitrary
size. The commitment scheme is information-theoretically hiding and computationally
binding. The security parameter is `. The public parameters are a group G with special
RSA modulus N , and generators (g0, . . . , gm) of the cyclic subgroup QRN . In order
to commit to the values (V1, . . . , Vl) ∈ (Z∗n)l, pick a random R ∈ {0, 1}` and set
C = gR0

∏l
i=1 g

vi
i .

2.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for proving
statements about discrete logarithms, such as (1) proof of knowledge of a discrete log-
arithm modulo a prime [28] or a composite [17,19], (2) proof of knowledge of equality
of representation modulo two (possibly different) composite [12] moduli, (3) proof that
a commitment opens to the product of two other committed values [5,12], (4) proof
that a committed value lies in a given integer interval [4,12], and also (5) proof of the
disjunction or conjunction of any two of the previous [16]. These protocols modulo a
composite are secure under the strong RSA assumption and modulo a prime under the
discrete logarithm assumption.



Proofs as described above can be expressed in the notation introduced by Camenisch
and Stadler [13]. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that y =
gαhβ and ỹ = g̃αh̃δ holds, where u ≤ α ≤ v,” where y, g, h, ỹ, g̃, and h̃ are elements
of some groupsG = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek letters
denote quantities of which knowledge is being proven, while all other values are known
to the verifier. We apply the Fiat-Shamir heuristic [18] to turn such proofs of knowledge
into signatures on some messagem; denoted as, e.g., SPK{(α) : y = gα}(m). Given a
protocol in this notation, it is straightforward to derive an actual protocol implementing
the proof.

2.4 Camenisch-Lysyanskaya Signatures

Let us introduce Camenisch-Lysyanskaya (CL) signatures in a Strong RSA setting [11].
Let `M, `e, `N , `r and L be system parameters; `r is a security parameter, `M the

message length, `e the length of the Strong RSA problem instance prime exponent, `N
the size of the special RSA modulus. The scheme operates with a `N -bit special RSA
modulus. Choose, uniformly at random, R0, . . . , RL−1, S, Z ∈ QRN . The public key
pk(I) is (N,R0, . . . , RL−1, S, Z), the private key sk(I) the factorization of the special
RSA modulus. The message space is the set {(m0, . . . ,mL−1) : mi ∈ ±{0, 1}`M}.

Signing hidden messages. On input m0, . . . ,mL−1 , choose a random prime number e
of length `e > `M + 2, and a random number v of length `v = `N + `M + `r. To sign
hidden messages, user U commits to values V in an integer commitment C and proves
knowledge of the representation of the commitment. The issuer I verifies the structure
of C and signs the commitment:

A =
(

Z

CRml

l . . . R
mL−1
L−1 Sv′

)1/e

mod N.

The user completes the signature as follows: σ = (e,A, v) = (e,A, (v′ +R)).
To verify that the tuple (e,A, v) is a signature on message (m0, . . . ,mL−1), check

that the following statements hold:Z ≡ AeRm0
0 . . . R

mL−1
L−1 Sv (mod N),mi ∈ ±{0, 1}`M ,

and 2`e > e > 2`e−1 holds.

Theorem 1. [11] The signature scheme is secure against adaptive chosen message at-
tacks under the strong RSA assumption.

Proving Knowledge of a Signature. The prover randomizesA: Given a signature (A, e, v),
the tuple (A′ := AS−r mod N, e, v′ := v + er) is also a valid signature as well. Now,
provided that A ∈ 〈S〉 and that r is chosen uniformly at random from {0, 1}`N +`∅ ,



the value A′ is distributed statistically close to uniform over Z∗N . Thus, the user could
compute a fresh A′ each time, reveal it, and then run the protocol

PK{(ε, ν′, µ0, . . . , µL−1) :

Z ≡ ±Rµ0
0 · · ·R

µL−1
L−1 A

′εSν
′

(mod N) ∧
µi ∈ ±{0, 1}`M ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}

2.5 Set Membership from CL-Signatures

Set membership proofs can be constructed from CL-Signatures following a method pro-
posed by Camenisch, Chaabouni and shelat [8]. For a set S = {m0, . . . ,mi, . . . ,ml},
the issuer signs all set members mi in CL-Signatures σi = (A, e, v) and publishes the
set of message-signature pairs {(mi, σi)} integerly. To prove set membership of a value
committed in C, the prover shows knowledge of the blinded signature σ′i corresponding
to the message mi and equality of exponents with C. We explain this technique in de-
tail in the extended version of this paper and denote a set membership proof µ[C] ∈ S ,
which reads µ encoded in commitment C is member of set S.

2.6 Camenisch-Groß Encoding

The Camenisch-Groß (CG) Encoding [9] establishes structure on the CL message space
by encoding multiple binary and finite-set values into a single message, and we will use
a similar paradigm to encode graphs efficiently. We explain the key principles briefly
and give more details in the extended version of this paper.

The core principle of the CG-Encoding is to represent binary and finite-set attribute
values as prime numbers. It uses divisibility and coprimality to show whether an at-
tribute value is present in or absent from a credential. The attribute values certified in a
credential, say ei, ej , and el, are represented in a single message of the CL-Signature,
by signing the product of their prime representativeE = ei ·ej ·el in an Integer attribute.
The association between the value and the prime number of the encoding is certified by
the credential issuer.
Divisibility/AND-Proof. To prove that a disclosed prime representative ei is present in
E, we prove that ei divides the committed product E, we show that we know a secret
µ′ that completes the product:

PK{(µ′, ρ) : D ≡ ±(gei)µ
′
hρ (mod N)}.

Coprimality/NOT-Proof. We show that one or multiple prime representatives are not
present in a credential, we show coprimality. To prove that two values E and F are
coprime, i.e., gcd(E,F ) = 1, we prove there exist integers a and b such that Bézout’s
Identity equals 1, where a and b for this equation do not exist, if gcd(E,F ) > 1.

PK{(µ, ρ, α, β, ρ′) : D ≡ ±gµhρ (mod N) ∧ g ≡ ±Dα(gF )βhρ
′

(mod N)}.

OR-Proof To show that a credential contains an attribute e that is contained in an OR-
list, we show there exists an integer a such that ae =

∏`
i ei; if e is not in the list, then

there is no such integer a as e does not divide the product. We use the notation α ⊆ Ξ
for an OR-proof that α contains one or more values of Ξ .



3 Graph Encoding

We consider graphs over finite vertex sets, with undirected edges or directed arcs, and
finite sets of vertex and edge labels. Vertices and edges may be associated with multiple
labels. We leave the encoding of directed arcs to the extended version of this paper.

V Finite set of vertices
E ⊆ (V × V) Finite set of edges
G = (V, E , tV , tE) Graph
LV ,LE Finite sets of vertex and edge labels
fV : V → P(LV) Labels of a given vertex
fE : E → P(LE) Labels of a given edge
n = |V|,m = |E| Number of vertices and edges

For each vertex i in V , we introduce a vertex identifier, a prime ei, which represents
this vertex in credential and proofs. The symbol ⊥, associated with identifier e⊥ repre-
sents that a vertex is not present. All vertex identifiers are pair-wise different. We call
the set of all vertex identifiers ΞV , their product χV = ΠΞV . For each label k in the
label sets LV and in LE , we introduce a prime representative ek. All label representa-
tives are pair-wise different. We call the set of all label representativesΞL, their product
χL = ΠΞL. Vertex identifiers and label representatives are disjoint:

ΞV ∩ΞL = ∅ ⇔ gcd(χV , χL) = 1.

Random Base Association We encode vertices and edges into the exponents of integer
commitments and CL-Signatures and make them therefore accessible to proofs of linear
equations over exponents. We randomize the base association to vertices and edges:
For a vertex index set V= 0,. . . ,i,n-1 with vertex identifiers ei, we choose a uniformly
random permutation πV of set V to determine the base Rπ(i) to encode vertex i. Edge
bases Rπ(i,j) are chosen analogously with a random permutation πE .

Encoding Vertices To encode a vertex and its associated labels into a graph commitment
or CL-Signature, we encode the product of the vertex identifier ei ∈ ΞV and the prime
representatives ek ∈ ΞL for k ∈ fV(i) of the labels into a single of the signature
message. The product of prime representatives is encoded as exponent of dedicated
vertex bases R ∈ GV .

Encoding Edges To get a compact encoding and efficient proofs thereon, the encoding
needs to maintain the graph structure and to allow us to access it to proof higher-level
properties, such as connectivity and isolation. The proposal we make in this paper after
evaluating multiple approaches is to use divisibility and coprimality similar to the CG-
Encoding to afford us these efficient operations over the graph structure, while offering
a compact encoding of edges.

Recall that each vertex is certified with an vertex identifier from ΞV , e.g., ei or ej .
For each edge (i, j) ∈ E , we include an edge attribute as exponent of a random edge



Table 1. Interface of the graph signature scheme.

Commit(G;R) A PPT algorithm computing an Integer commitment on a graph.
Keygen(1`, params) A PPT algorithm computing the key setup.
HiddenSign(C,VU,VI, pk I) An interactive PPT algorithm signing a committed graph.

Private inputs: User U: GU, commitment randomness R; Issuer I: GI, sk I.
Verify(pk I, C,R

′, σ) A verification algorithm on graph commitment C and signature σ.

base Rπ(i,j) ∈ GE , containing the product of the vertex identifiers and the associated
label representatives ek ∈ ΞL for k ∈ fE(i, j) of the edge:

E(i,j) := ei · ej ·Πk∈fE(i,j)ek.

Whereas we usually consider simple graphs, specialities such as multigraphs, loops
(i, i) encoded as e2

i or half-edges encoded as (ej , e⊥) can be included.

Well-formed Graphs

Definition 1 (Well-formed graph). We call a graph encoding well-formed iff 1. the
encoding only contains prime representatives e ∈ ΞV ∪ ΞL in the exponents of des-
ignated vertex and edge bases R ∈ GV ∪ GE , 2. each vertex base R ∈ GV contains
exactly one vertex identifier ei ∈ ΞV , pair-wise different from other vertex identifiers
and zero or more label representatives ek ∈ ΞL, and 3. each edge base R ∈ GE con-
tains exactly two vertex identifiers ei, ei ∈ ΞV and zero or more label representatives
ek ∈ ΞL.

Theorem 2 (Unambiguous encoding and decoding). A well-formed graph encoding
on the integers is unambiguous modulo the base association. [Proof A.1]

4 Signatures on Committed Graphs

CL-signatures are signatures on committed messages, where messages can be con-
tributed by issuer and user. This translates to a user committing to a hidden partial graph
GU, which is then completed by the issuer GI, as outline in the interface in Table 1. We
establish the setup for the construction first, explain the proof of representation second,
and the issuing third. We discuss notions of secrecy and imperfections of this construc-
tion in §4.1.

As a point of reference, we give the structure of the graph signatures first. We have
bases Rπ(i) ∈ GV , which store attributes encoding vertices, and bases Rπ(i,j) ∈ GE ,
which store attributes encoding edges. Observe that which base stores which vertex or
edge is randomized by permutations πV and πE .

Z = · · ·ReiΠk∈fV (i)ek

π(i) · · ·︸ ︷︷ ︸
∀ vertices i

· · ·ReiejΠk∈fE (i,j)ek

π(i,j) · · ·︸ ︷︷ ︸
∀ edges (i,j)

AeSv mod N



4.1 Secrecy Notion

In a known-graph proof, the structure of the graph G = (V, E) is an auxiliary input to
the verifier. Such a proof occurs if the prover needs to prove knowledge of a (NP-hard)
property of the entire graph, e.g., a proper coloring in graph 3-colorability (cf. §6.1).

A hidden-graph proof keeps the structure of the graph G = (V, E) secret. For in-
stance, there are graph proofs in which a local property is proven and the graph structure
itself kept secret, e.g., when proving that disclosed vertices of the graph are connected
by a hidden path (cf. § 5).

The number of bases from GV and GE in a CL-Signature reveals an upper-bound on
the number of vertices n and edges m of the signed graph. A suitable padding can be
introduced by encoding nil-vertices e⊥ and nil-edges (e⊥, e⊥).

Proving properties over multiple attributes reveals which bases were involved in
the proof. Characteristic patterns over said bases may interfere with the CL-Signature’s
multi-use unlinkability. For instance, if the prover shows that vertices i and j are con-
nected by an edge (i, j) along with properties on the vertices themselves, the verifier
will learn that the bases for the vertex identifiers ei and ej are related to the base for
the encoding of edge (i, j). To overcome this linking, the prover can obtain a collec-
tion of CL-Signatures on the same graph, each with a randomized association between
bases and vertices/edges, that is, using different random permutations πV and πE . When
proving a property over the graph the prover chooses a CL-Signature from the collection
uniformly at random and proves possession over that instance.

4.2 Proof of Representation

For a full proof of representation, we need to establish that the encoded graph in a graph
commitment or CL-Signature is indeed well-formed (Def. 1). Given a graph commit-
ment C the prover and verifier engage in the following proof of representation (the
proof for a CL credential work analoguously). We show that vertex bases contain a bi-
partition of one and only one vertex identifier ei ∈ ΞV and a set of labels el ∈ ΞL.
Edge bases contain a bi-partition of a product of exactly two vertex identifiers (ei · ej)
and a set of labels el ∈ ΞL. To prove that the representation contains exactly one vertex
identifier for a vertex base and two vertex identifiers for an edge base, we establish a set
membership proof.

1. Commitments The prover computes Integer commitments on the exponents of all
vertex and edge bases. For each vertex i and for each edge (i, j), the prover computes
commitments on vertex attribute and identifier (all modN )::

Ci = ReiΠk∈fV (i)ekSr and C̆i = ReiS r̆;

C(i,j) = ReiejΠk∈fE (i,j)ekSr, C̆(i,j) = ReiejS r̆ and Ċi = ReiS ṙ.

2. Proof of knowledge. We build up the proof of possession and well-formedness
step by step, where it is understood the proofs will be done in one compound proof
of knowledge with referential integrity between the secret exponents. Let us consider a
proof fragment for vertices i, j and an edge (i, j) committed in a graph commitment C
(the same proof structure is used for CL-Signatures).



2.1 Proof of representation. We prove that commitment C can be decomposed into
commitments Ci, Cj , one for each vertex i, j and one commitment C(i,j) for each edge
(i, j):

PK{(µi, µj , µ(i,j), ρ, ρi, ρj , ρ(i,j)) :
C ≡ ± · · ·Rµi

π(i) · · ·R
µj

π(j) · · ·R
µ(i,j)
π(i,j) · · ·S

ρ (mod N) ∧ (1)

Ci ≡ ±RµiSρi (mod N) ∧ Cj ≡ ±RµjSρj (mod N) ∧ (2)
C(i,j) ≡ ±Rµ(i,j)Sρ(i,j) (mod N)}. (3)

2.2 Vertex composition. Second, we need to show properties of the vertex composition,
that the encoding for each vertex i contains exactly one vertex identifier ei ∈ ΞV and
zero or multiple label representatives ek ∈ ΞL. We show this structure with help of
the commitments C̆i and set membership and prime-encoding OR proofs. This proof is
executed for all vertices.

PK{(εi, ρ̆i, γi, ρ′i) :

C̆i ≡ ±RεiSρ̆i (mod N) ∧ Ci ≡ ±C̆γiSρ
′
i (mod N) ∧ (4)

γi[Ci] ⊆ ΞL ∧ εi[C̆i] ∈ ΞV}. (5)

2.3 Edge composition. Third, we prove the structure of each edge (i, j) over the
commitments C(i,j), showing that each commitment contains exactly two vertex iden-
tifiers ei, ej ∈ ΞV as well as zero or more label representative ek ∈ ΞL:

PK{(εj , ρ(i,j), γ(i,j), ρ
′
(i,j)) :

C̆(i,j) ≡ ±Ċ
εj

i S
ρ(i,j) (mod N) ∧ (6)

C(i,j) ≡ ±C̆
γ(i,j)
(i,j) S

ρ′(i,j) (mod N) ∧ γi,j ⊆ ΞL}. (7)

2.4 Pair-wise difference. Finally, we prove pair-wise difference of vertices by show-
ing that the vertex representatives are pair-wise co-prime over the commitments C̆i and
C̆j .

PK{(∀i, j : αi,j , βi,j , ρi,j) : R ≡ ±C̆αi,j

i C̆
βi,j

j Sρi,j (mod N)}. (8)

4.3 Joint Graph Issuing

To jointly issue a graph CL-signature, a user commits to a hidden partial graph and the
issuer adds further elements to the graph (cf. §2.4)

In the setup, the issuer establishes a user vertex space and issuer vertex space, i.e.,
a bi-partition on vertex and edge bases, GV and GE and on vertex identifiers ΞV . Thus,
user and issuer can encode partial graphs without interfering with each other.

In the joint graph issuing, user and issuer designate and disclose connection points
(vertex identifiers) that allow the user and the issuer to connect their sub-graphs delib-
erately. The user constructs a graph representation by choosing two uniformly random



permutation πV and πE for the base association on the user bases and commits to his
sub-graph in a graph commitment. The user interacts with the issuer in a proof of repre-
sentation of his committed sub-graph. The issuer verifies this proof, chooses uniformly
random permutations for his graph elements and encodes them into his base range. The
issuer creates the pre-signature of the CL-Signature scheme on the entire graph, proving
that the added sub-graph is well-formed. The user completes the CL-Signature with his
own randomness.

Theorem 3 (Security of graph signatures). The graph signature scheme maintains
confidentiality and integrity of the encoded graphs and offers existential unforgability
against adaptive chosen message attacks under the strong RSA assumption.[Proof A.1]

5 Application Scenario: Cloud Topology Proofs

In cloud security assurance, recent research aims to prove the security properties of a
topology, where the infrastructure configuration is modelled as a graph and security
properties are verified with either specialized analysis tools, model checkers or graph
rewriting tools, such as in Bleikertz et al. [2]. How can a cloud provider convince a
customer that the infrastructure fulfills the customer’s security requirements without
disclosing the topology itself?

So far, zero-knowledge proofs on clouds have been focused on Direct Anonymous
Attestation (DAA) of hosts and virtual machines [6] with an optional binding of user
credentials to them [7]. The graph proof acts as connective to lift DAA to attestations
of entire infrastructure clouds (including their topology): We can embed DAA proofs
into the context of the topology of the machine in question.
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Portgroups

VMs

Host

Portgroups

Network

VLAN 1 VLAN 2

vSwitch vSwitch

Host

vSwitch

Host

Customer A Other Customers

eVM

Customer A Other Customers
eVM

eH eHeH

eVS eVS eVS
ePG ePG ePG

eN

eVLAN1 eVLAN2 eVLAN3VLAN 3

Fig. 1. Model of a cloud topology (left), encoded graph representation (right).

Let us consider the example depicted in Fig. 1 that customer A owns an DAA-
verified host as well as the VLAN with ID VLAN1 and requires the provider to prove
that no other customer has access to VLAN1, which implies isolation of network com-
munication. As the customer has no reason to trust the cloud provider, the topology
status needs to be certified by an issuer, an independent auditor. As the clouds ask for
rapid provisioning, the auditor must be able to be offline at the time of the proof.

Therefore, the certification of the topology graph and the proof of properties over
it needs to be decoupled: We need the capability that the auditor can create a digital



signature on the topology over which the cloud provider can dynamically create zero-
knowledge proofs of knowledge of security properties relevant to the customer and
integrate it with DAA-proofs of the hosts and virtual machines [7]. Hence, we have
a protocol model with an independent auditor as issuer of graph signatures, the cloud
provider as prover of machine and graph properties and the customer as verifier of such
proofs.

We model the system in Fig. 1 by encoding all components of the topology as L
graph vertices, labelled with the type of the component: LV = {VM,H,VS,PG,N}.
Edges are encoded as indicated by the topology connections, where the edge labels rep-
resent the VLAN IDs: LE = {VLAN1,VLAN2,VLAN3}. The issuer associates prime
representatives to all vertices and labels. During the issuing phase, the issuer certifies
his independent analysis of the infrastructure.

We discuss a comprehensive framework for cloud topology proofs in a separate
report [23] and only include an proof of isolation as an example here. To convince the
verifier in zero-knowledge that no part of the hidden graph outside of customer A’s
infrastructure has access to the same VLAN VLAN1, the prover computes a graph bi-
partition between the sub-graph belonging to customer A and remainder of the cloud
(wlog we reorder the vertex and edge bases of the remainder to cover 0, . . . , `).

Commitments. The prover computes integer commitments C̃i on the cumulative
products of vertex and edge attributes of the remainder, each with uniformly-chosen
randomness ri:

C̃0 = Rm0Sr0 mod N, C̃1 = Rm0m1Sr1 , . . . , C̃` = RΠ
`
0miSr` mod N

Proof of knowledge. The prover sends the randomized graph signature A′ and the
commitments C̃i to the verifier and interacts with it in the following proof of knowledge:

PK{(µ0, . . . , µL−1, ε, ν
′, ρ0, . . . , ρ`, α, β, ρ) :

Z ≡ ±Rµ0
0 · · ·R

µ`

` R
µ`+1
`+1 · · ·R

µL−1
L−1 A

′εSν
′

(mod N) ∧
C̃0 ≡ ±Rµ0Sρ0 (mod N) ∧ . . . ∧ C̃` ≡ ±C̃µ`

`−1S
ρ` (mod N) ∧

R ≡ ±(ReVLAN1)αC̃β` S
ρ (mod N) ∧

µi ∈ ±{0, 1}`M ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}.

Thereby, the prover convinces the verifier that the label representative eVLAN1 is coprime
to the cumulative product of the topology sub-graph not belonging to customer A:

gcd(eVLAN1, Π
`
0mi) = 1 ⇔ 1 = aeVLAN1 + bΠ`

0mi

Hence, customer A can be confident that his part of the infrastructure is isolated from
the remainder of the cloud by VLAN separation. The proof is efficient as it has computa-
tional and communication complexity ofO(m) as expected of a proof that inadvertently
needs to touch all edges. Yet, are graph proofs are practical for larger infrastructures?
We approach this question similarly to topology verification [2]: lifting the static treat-
ment of the entire graph to a differential treatment on graph diffs. Thus, differential
graph signatures is part of our future work.



6 Graph 3-Colorability and NP Statements

6.1 Graph 3-Colorability

We adapt the following definition from Goldreich, Michali and Wigderson [22].

Definition 2 (Graph 3-Colorability). A graph G = (V, E) is said to be 3-colorable
if there exists a vertex label mapping fV : V → {1, 2, 3} called proper coloring such
that every two adjacent vertices are assigned different color labels. This means that for
each edge (i, j) ∈ E fV(i) 6= fV(j). The language graph 3-colorability, denoted G3C,
consists of the set of undirected graphs that are 3-colorable. Graph 3-Colorability is
known to be NP-complete. [20]

We adapt the graph 3-colorability problem to show in honest-verifier zero-knowledge
that the prover knows an CL signature on an instance of a proper coloring of a given
graph G.

Without loss of generality, we assume that graph G is simple and connected. The
three color labels L = {1, 2, 3} are encoded with three primes ΞL = {e1, e2, e3}. The
graph is encoded with vertex identifiers ΞV and these vertex labels. In addition to the
conditions for a well-formed graph (Def. 1), we require that each vertex base contains
exactly one label representative from ΞL, which we show with a set membership proof
on the secret vertex label.

The prover shows knowledge of a proper graph coloring by showing that the product
of vertex identifiers and label representatives for each pair of adjacent vertices (i, j) are
coprime.
Common inputs: Graph G, public-key of the CL-issuer.
Prover input: CL-Signature on proper coloring for G3C.

1. Credential randomization and commitments. The prover computes randomiza-
tions for the graph signature as well as for all occurrences of set membership proofs.
The prover computes Integer commitments on the exponents of all vertex and edge
bases. For each vertex i, the prover computes two commitments on the vertex attribute
and the vertex identifier:

Ci = ReiefV (i)Sr mod N and C̆i = ReiSr mod N.

For each edge (i, j), the prover computes the commitment:

C̆i,j = ReiejSr mod N.

2. Proof of knowledge. The prover sends the commitments to the verifier. Then,
prover and verifier engage in the following proof of possession over the graph signature
and vertices i and j and all edges (i, j). We build upon the proof of representation and
well-formedness presented in §4.2 with the following differences: Instead of proving
that a vertex contains zero or multiple labels, we prove that the vertex contains ex-
actly one label. Further, the proof is simplified because the edges do not contain labels.
Again, we explain the proofs step by step, while it is understood that the proofs are
executed as compound proof of knowledge with referential integrity between the secret
exponents.



2.1 Possession of CL-Signature. First, we prove of possession of the graph signature
and representation of the commitments. Clause 1 proves possession of the CL-Signature
on the graph. The clauses 2 and 3 prove the representation on the integer commitments
on signed attributes for vertices j, j and edges (i, j), and, thereby, make the attributes
accessible for the analysis of the exponents.

PK{(µi, µj , µ(i,j), ε, ν
′, ρi, ρj , ρ(i,j)) :

Z ≡ ± · · ·Rµi

π(i) · · ·R
µj

π(j) · · ·R
µ(i,j)
π(i,j) · · · (A

′)εSν
′

(mod N) ∧ (1)

Ci ≡ ±RµiSρi (mod N) ∧ Cj ≡ ±RµjSρj (mod N) ∧ (2)
C(i,j) ≡ ±Rµ(i,j)Sρ(i,j) (mod N) ∧ (3)

µi, µj , µ((i,j)) ∈ ±{0, 1}`M ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}

2.2 Well-formedness. Second, we establish that the vertex attributes are well-formed:
Clause 4 establishes the relation betweenCi and C̆i and, thereby, shows that a vertex at-
tribute is bi-partitioned onto a vertex identifier and a label representative part. Clause 5
establishes that they contain exactly one vertex identifier and label representative of the
certified sets ΞV and ΞL.

PK{(εi, ρi, γi, ρ̆i) :
C̆i ≡ ±RεiSρi (mod N) ∧ Ci ≡ ±C̆γiSρ̆i (mod N) ∧ (4)

γi[Ci] ∈ ΞL ∧ εi[C̆i] ∈ ΞV}. (5)

Clause 5 is different from a proof of well-formedness as introduced in §4.2, as it en-
forces that that vertex i contains exactly one label.

2.3 Proper coloring. Third, clauses 6 and 7 complete the statement by establishing
that there is a proper coloring for the adjacent vertices i and j: Clause 6 shows that
commitment C(i,j) is on an edge (i, j). Finally, Clause 7 establishes that the attributes
for vertex i and j are coprime, by proving that Bézout’s Identity equals 1. It follows that
the labels of both vertices must be different.

PK{(εi, ρ′(i,j), α(i,j), β(i,j), ρ(i,j)′′) :

C̆(i,j) ≡ ±C̆εi
j S

ρ′(i,j) (mod N) ∧ (6)

R ≡ ±Cα(i,j)
i C

β(i,j)
j Sρ

′′
(i,j) (mod N)}. (7)

3. Verification. The verifier outputs accept if the proof of knowledge checks out;
reject otherwise.

Lemma 1 (Knowledge of a CL-Signature of G3C). The prover convinces the verifier
in zero-knowledge that the prover knows a proper graph 3-coloring for known graph G.
[Proof A.2]

Lemma 2. The proof has an asymptotic computation complexity ofO(n+m) exponen-
tiations and a communication complexity of O(n + m) group elements and is thereby
a polynomial time proof. [Proof A.2]



6.2 Proofs Systems for Languages in NP

Having established a proof for certified graph 3-colorability, we can use the fact that
G3C is NP-complete to establish that such Camenisch-Lysyanskaya proof systems exist
for statements from other NP languages.

Definition 3. We call a Camenisch-Lysyanskaya proof system a set of PPT machines
Prover P, Verifier V and Issuer I that engage in the following protocols:

Proof of representation P→ I : Proof of representation on committed values V .
Issuing I→ P : Issuing of CL-Signature σ on hidden committed values V .
Proof of possession P→ V : Proof of possession of CL-Signature σ.

The issuer I can act in the role of the verifier V and thereby allow the bootstrapping of
further CL-Signatures from the hidden v alues of existing CL-Signatures.

Compared to a zero-knowledge proof system for an NP language, this construction
offers a level of indirection: The issuer acts as auditor with authority to decide whether
the statement of an NP language is fulfilled in a certain environment, and its signature
binds this statement to that environment. The instance of the NP language can either be
provided by the issuer or provided by the prover and verified by the issuer.

The proof follows the same strategy as one of the initial results that all languages
in NP have zero-knowledge proof systems, by Goldreich, Micali and Widgerson [22]:
Given a CL proof system for G3C, we use the existing poly-time NP reductions to
transform any NP language statement into an instance of G3C. This instance is then en-
coded as a graph in a CL-Signature and knowledge of the signature proven to a verifier.
Lemma 1 shows that this is a zero-knowledge proof of knowledge of a proper coloring.

Theorem 4. Statements of languages in NP can efficiently be proven in a Camenisch-
Lysyanskaya proof system based in honest-verifier zero-knowledge. [Proof A.3]

7 Efficiency Analysis

We display the efficiency analysis for the proof predicates in Table 2, where vertex
and edge composition proofs show the overhead over the basic proof of possession
(cf. topology proofs [23]). We measure computational complexity in multi-base ex-
ponentiations. The communication complexity is dominated by the transmitted group
elements from Z∗N , which is equal to the number of multi-base exponentiations (one
for each Integer and Schnorr proof commitment). The most expensive proof is the com-
plete graph representation established in the issuing, where the set membership proofs
(4 MExps) and the OR-based subset proofs (6 MExps) constitute significant overhead.
The square-complexity is introduced by the final disjointness proof to establish that the
graph is indeed well-formed. In the down-stream proofs, the verifier trusts the issuer
to only certify well-formed graphs, which allows us to reduce complexity by only the
computing the proof of possession and the statement proven.

The modular exponentiations for message bases Ri are with small exponents of
size of `M � `N , where the parameter `M can be chosen similarly small as in Direct
Anonymous Attestation (DAA) [6].



Table 2. Efficiency of proofs of predicates in multi-base exponentiations (MultiExps) dependent
on the number of vertices n and of edges m. For a simple graph holds m ≤ n(n−1)

2 . ` < m is
the number of edges the unknown remainder of a graph bi-partition in §5.

Predicate Basis Commitments MultiExps
# # O

Possession n + m 2n + 2m + 1 O(n + m)
Vertex Composition Possession n 3n O(n)
Edge Composition Possession 2m 4m O(m)

Total Well-formed Graph 2n + 3m n2 + 8n + 8m + 1 O(n2)

Cloud Topology Isolation (§5) ` < m 2`+ 2 < 2m + 2 O(m)
Graph-3 Colorability (§6) n + m 6n + 4m + 1 O(n+m)

In addition, the Σ-proofs employed in this work benefit from batch-proof tech-
niques, such as [26]. The graph proofs are likely to be transformed to signature proofs
of knowledge with the Fiat-Shamir heuristic [18] and can thereby be computed offline.

8 Related Work

Establishing zero-knowledge proofs on graphs and their properties is a classic area of
research. Such proofs were instrumental in showing that there exist zero-knowledge
proof systems for all NP languages. We discuss their graph modelling: Goldreich, Mi-
cali and Wigderson [22] offered such a construction with O(m2) rounds and O(n)
messages each. Based on the existence of a nonuniformly secure encryption function,
they explored graph isomorphism and non-isomorphism as well as graph 3-colorability
(G3C). Blum’s proof [3] shows directed Hamiltonian cycles (DHC) in graphs. Both
proofs use a metaphor of locked boxes to formulate the proof. Goldreich et al.’s G3C
proof encodes the colors of adjacent vertices in boxes. Blum’s proof of Hamiltonian
cycles encodes the graph’s adjacency matrix randomly in n +

(
n
2
)

such boxes, giving
the verifier the choice to either verify the correct graph representation or the knowledge
of the Hamiltonian cycle. Blum offers an alternative construction for G3C with a sim-
ilar methodology, encoding the graph representation and the coloring of each vertex in
separate yet related boxes and operating on an adjacency matrix lifted to the labeling.
Goldreich and Kahan [21] offered a constant-round construction based on the existence
of collections of claw-free functions, also using G3C as NP-problem. We observe that
these constructions are specific to the statement to be proven and do not cater for a level
of indirection through a signature scheme.

A related notion to full graph signatures is transitive signature schemes, e.g., as pro-
posed by Michali and Rivest [24]. They are concerned with the transitive closure of
signatures on graph elements, where vertices and edges are signed individually; how-
ever, they do not offer zero-knowledge proofs of knowledge on graph properties.



9 Conclusion

We have introduced a practical construction of signatures on committed graphs and
zero-knowledge proofs over their structure. The scheme is special in that it enables
proofs over the entire graph structure, including statements such as isolation (two ver-
tices are not connected by any sequence of edges). The construction derives its secu-
rity from the properties of the Camenisch-Lysyanskaya (CL) signature scheme under
the Strong RSA assumption. The interactive proofs are honest-verifier zero-knowledge
if executed with multiple rounds with small challenges. While we have established a
framework for graph topology proofs separately [23], this work focuses on the founda-
tions of graph encoding in CL-signatures itself. We show its theoretical expressiveness
by proving that the scheme is capable of signing committed NP statements and prov-
ing properties thereof, via reduction to graph 3-colorability. The presented scheme is
efficient and practical because once the issuer has established graph well-formedness
in O(n2), the prover can resort to proofs over the graph structure in linear time. The
used Σ-proofs can be handled efficiently with batch processing techniques [26]. As fu-
ture work, we aim at establishing a differential graph signature scheme, which can be
employed for large-scale graph topologies as found in virtualized infrastructures.

References

1. ABE, M., FUCHSBAUER, G., GROTH, J., HARALAMBIEV, K., AND OHKUBO, M.
Structure-preserving signatures and commitments to group elements. In Advances in
Cryptology–CRYPTO 2010. Springer, 2010, pp. 209–236.

2. BLEIKERTZ, S., GROSS, T., AND MÖDERSHEIM, S. Automated Verification of Virtualized
Infrastructures. In ACM Cloud Computing Security Workshop (CCSW’11) (Oct 2011), ACM.

3. BLUM, M. How to prove a theorem so no one else can claim it. In Proceedings of the
International Congress of Mathematicians (1986), vol. 1, p. 2.

4. BOUDOT, F. Efficient proofs that a committed number lies in an interval. In Advances in
Cryptology — EUROCRYPT 2000 (2000), B. Preneel, Ed., vol. 1807 of Lecture Notes in
Computer Science, Springer Verlag, pp. 431–444.

5. BRANDS, S. Rapid demonstration of linear relations connected by boolean operators. In
Advances in Cryptology — EUROCRYPT ’97 (1997), W. Fumy, Ed., vol. 1233 of Lecture
Notes in Computer Science, Springer Verlag, pp. 318–333.

6. BRICKELL, E., CAMENISCH, J., AND CHEN, L. Direct anonymous attestation. In Proc.
11th ACM Conference on Computer and Communications Security (2004), acm press,
pp. 225–234.

7. CAMENISCH, J. Protecting (anonymous) credentials with the Trusted Computing Group’s
TPM v1.2. In SEC (2006), vol. 201 of IFIP, Springer, pp. 135–147.

8. CAMENISCH, J., CHAABOUNI, R., AND SHELAT, A. Efficient protocols for set membership
and range proofs. In Advances in Cryptology-ASIACRYPT 2008 (2008), Springer, pp. 234–
252.

9. CAMENISCH, J., AND GROSS, T. Efficient attributes for anonymous credentials. ACM
Transactions on Information and System Security (TISSEC) 15, 1 (2012), 4.

10. CAMENISCH, J., AND LYSYANSKAYA, A. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Advances in Cryptology —
EUROCRYPT 2001 (2001), B. Pfitzmann, Ed., vol. 2045 of LNCS, Springer Verlag, pp. 93–
118.



11. CAMENISCH, J., AND LYSYANSKAYA, A. A signature scheme with efficient protocols. In
Security in Communication Networks SCN 2002 (2003), vol. 2576 of LNCS, Springer Verlag,
pp. 268–289.

12. CAMENISCH, J., AND MICHELS, M. Proving in zero-knowledge that a number n is the
product of two safe primes. In Advances in Cryptology — EUROCRYPT ’99 (1999), J. Stern,
Ed., vol. 1592 of Lecture Notes in Computer Science, Springer Verlag, pp. 107–122.

13. CAMENISCH, J., AND STADLER, M. Efficient group signature schemes for large groups. In
Advances in Cryptology — CRYPTO ’97 (1997), B. Kaliski, Ed., vol. 1296 of Lecture Notes
in Computer Science, Springer Verlag, pp. 410–424.

14. CHAN, A., FRANKEL, Y., AND TSIOUNIS, Y. Easy come – easy go divisible cash. In
Advances in Cryptology — EUROCRYPT ’98 (1998), K. Nyberg, Ed., vol. 1403 of Lecture
Notes in Computer Science, Springer Verlag, pp. 561–575.

15. COOK, S. A. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing (1971), ACM, pp. 151–158.

16. CRAMER, R., DAMGÅRD, I., AND SCHOENMAKERS, B. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Advances in Cryptology — CRYPTO ’94
(1994), Y. G. Desmedt, Ed., vol. 839 of LNCS, Springer Verlag, pp. 174–187.

17. DAMGÅRD, I., AND FUJISAKI, E. An integer commitment scheme based on groups with
hidden order. http://eprint.iacr.org/2001, 2001.

18. FIAT, A., AND SHAMIR, A. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology — CRYPTO ’86 (1987), A. M. Odlyzko, Ed.,
vol. 263 of Lecture Notes in Computer Science, Springer Verlag, pp. 186–194.

19. FUJISAKI, E., AND OKAMOTO, T. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology — CRYPTO ’97 (1997), B. Kaliski, Ed.,
vol. 1294 of Lecture Notes in Computer Science, Springer Verlag, pp. 16–30.

20. GAREY, M. R., JOHNSON, D. S., AND STOCKMEYER, L. Some simplified np-complete
problems. In Proceedings of the sixth annual ACM symposium on Theory of computing
(1974), ACM, pp. 47–63.

21. GOLDREICH, O., AND KAHAN, A. How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology 9, 3 (1996), 167–190.

22. GOLDREICH, O., MICALI, S., AND WIGDERSON, A. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38,
3 (1991), 690–728.

23. GROSS, T. Certification and efficient proofs of committed topology graphs. Cryptology
ePrint Archive Report 2014/255, IACR, 2014. http://eprint.iacr.org/.

24. MICALI, S., AND RIVEST, R. L. Transitive signature schemes. In Topics in Cryptology-
CT–RSA 2002. Springer, 2002, pp. 236–243.

25. PEDERSEN, T. P. Non-interactive and information-theoretic secure verifiable secret sharing.
In Advances in Cryptology – CRYPTO ’91 (1992), J. Feigenbaum, Ed., vol. 576 of Lecture
Notes in Computer Science, Springer Verlag, pp. 129–140.

26. PENG, K., BOYD, C., AND DAWSON, E. Batch zero-knowledge proof and verification and
its applications. ACM Transactions on Information and System Security (TISSEC) 10, 2
(2007), 6.

27. RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 2 (Feb. 1978), 120–126.

28. SCHNORR, C. P. Efficient signature generation for smart cards. Journal of Cryptology 4, 3
(1991), 239–252.

http://eprint.iacr.org/2001
http://eprint.iacr.org/


A Proofs

A.1 Wellformed Encoding and Security

Proof (Unambiguous encoding and decoding: Theorem 2). We show that there is a bijection
between encoding and graph.
Graph→ encoding: For each graph there exits a unique encoding modulo base association. For
all vertices i ∈ V choose the vertex identifier ei ∈ ΞV , for the labels k ∈ fV(i) choose the prime
representative ek ∈ ΞL and compute their product. As said factors are prime, it follows from
the fundamental theorem of arithmetic that the eiΠk∈fV (i)ek represents a unique integer. Given
that the user is not privy to the discrete logarithm between one base and another (guaranteed by
the CL-Signature setup), the bases unabiguously separate the exponents. Thus, apart from the
random permutation of the base association, the encoding is unambiguous.
Encoding → graph: With knowledge of the elements of ΞV and ΞL, an encoded product can
be decoded efficiently and unabiguously into the elements of the graph. That the parties are not
privy to the discrete logarithm between base and another guarantees attribute separation. The base
designates unambiguously whether a vertex or an edge is encoded. Given that all representatives
of the encoding are prime, the product can be decomposed into a unique factorization by the
fundamental theorem of arithmetic. Each representative unambiguously represents either a vertex
identifier in ΞV or a label in ΞL, as both sets are disjoint. �

Proof (Security of graph signatures: Theorem 3). The security of the scheme is directly derived
from the unambiguous embedding into Integer commitments and Camenisch-Lysyanskaya sig-
natures and their security properties. Theorem 2 establishes that the graph encoding encodes
graphs unamiguously into the CL-message space. The graph structure is encoded in the expo-
nents of the Integer commitment and CL-signature schemes. Confidentiality is derived from the
information-theoretical hiding property of the Integer commitment scheme and the hiding proper-
ties of CL-signatures on committed messages. Under the condition that the adversary is not privy
to the group-order of the commitment and the CL signature scheme, we obtain that integrity for
both schemes holds over the integers and thereby the graph encoding (cf. [17]). We obtain ex-
istential unforgability against chosen message attacks directly from the CL-signature scheme in
Theorem 1 [11].

A.2 Graph 3-Colorability (G3C)

Proof (Graph 3-Colorability: Lemma 1). 1. Proof of Knowledge. It is standard to show that there
exists a knowledge extractor for all exponents of the proof such that the equality of exponents
equations are fulfilled.

We obtain from Clause 1 that the prover knows the representation of a CL-Signature of the
given structure. From the existential unforgeability of CL-Signatures, we see that the issuer must
have signed the secret attributes µi, µj and µ(i,j). Proving equality of exponents with correspond-
ing integer commitments is standard, by which the arguments over the commitments, such as Ci,
C̆i and C(i,j) transfer to the structure of the signed messages.

The Clause 4 shows that a message µi consists of two factors known to the prover: µi = εiγi.
The following Clause 5 employs a set membership proof to show that εi ∈ ΞV and that γi ∈ ΞL.
We use that the set membership from §2.5 guarantees that εi and γi are exactly one member of the
set to conclude that a message µi contains exactly one vertex identifier and one label identifier.
Thus, µi is well-formed. Similarly, Clause 6 establishes the structure µ(i,j) = εiε for the edge
(i, j), showing it to be well-formed. Because the prover is not privy to the group order, these
statements hold over the integers, by the results of Damgård and Fujisaki [17]. Therefore, with



the proof of representation including pair-wise difference, we conclude that the signed graph is
well-formed.

Clause 7 shows that the labeling fV of the signed graph is a proper coloring. Again, we
employ Damgård and Fujisaki’s [17] result that equations hold over the integers. We have that for
each edge (i, j), the corresponding signed messages have the following structure:

µi = εiγi and µj = εjγj .

We show that the secret labels γi and γj are different by showing that µi and µj are coprime,
where we use Bézout’s Identity:

gcd(µi, µj) = 1 ⇔ 1 = α(i,j)µi + β(i,j)µj .

The equality of exponent proof of Clause 7 achieves this as follows

R ≡ ±Cα(i,j)
i C

β(i,j)
j Sρ(i,j) (mod N)

R1 ≡ ±(Rµi S
ρi )α(i,j) (Rµj S

ρj )β(i,j)Sρ(i,j) (mod N)

R1 ≡ ±Rα(i,j)µiSα(i,j)ρiRβ(i,j)µjSβ(i,j)ρjSρ(i,j) (mod N)

R1 ≡ ±Rα(i,j)µi+β(i,j)µjSα(i,j)ρi+β(i,j)ρj +ρ(i,j) (mod N)

From this equation we can conclude that gcd(µi, µj) = 1 and that, therefore, γi 6= γj , which
implies that fV(i) 6= fV(j) and that the CL signature indeed contains a proper coloring. �

2. Zero-Knowledge. We claim that proof does not disclose anything else than the statement
made that the prover knows a CL-Signature of a proper coloring on known graph G.

TheΣ-proofs here are zero-knowledge in an honest verifier setting if performed with multiple
rounds and small challenges. It is standard to construct a simulator for allΣ-proofs of representa-
tion for the CL-Signature and the commitments as well as for their conjunction [13,16], showing
that the verifier does not learn anything else than the relations on exponents shown.

It remains to be shown what the relations disclose. We will argue on the statements made on
the secret messages γi, which contain the color. Clause 4 establishes that γi is part of commitment
Ci, but does not disclose further information than the equality of exponents.

Clause 5 proves that γi is a member of the set ΞL = {1, 2, 3}. This statement itself is part of
the known problem definition of G3C. The set membership proof is a proof of representation for
an anonymized CL-Signature and a standard proof of equality of exponents, and thereby, does
not disclose further information.

Finally, Clause 7 references µi = εiγi to prove that γi and γj of an adjacent edge are
coprime. As the vertex identifiers are pair-wise different by definition and as all representatives
are primes, this only establishes that γi 6= γj as required by the G3C problem, but nothing else.
�

Proof (Polynomial Proof of G3C: Lemma 2). Precomputation: The prover computes 2n + 1
signature randomizations with one exponentiation each and 2n + m integer commitments with 2
exponentiations each. The pre-computation phase uses 6n + 2m + 1 exponentiations, transmits
4n + m + 1 group elements, and thereby has a computation complexity of O(n + m) and a
communication complexity of O(n + m).

Proof of Knowledge: The Schnorr proofs in the proof of knowledge are zero-knowledge if
executed with small challenges over multiple rounds and can be connected with techniques from
Cramer et al. [16]. The round complexity of the overall protocol is dependent on the proof mode
(cf. Brands [5]).

Clause 1 is executed once yielding a Schnorr proof with n + m + 2 exponentiations for the
prover.



The clauses 2 are executed once for each vertex, such as i and j, Therefore we have n Schnorr
proofs with 2 exponentiations each for the prover.

The clauses 3 are executed once for each edge (i, j), making m Schnorr proofs with 2 expo-
nentiations each for the prover.

The clauses 4 are executed once for each vertex, such as i or j. We have 2n Schnorr proofs
with 2 exponentiations each for the prover.

The set membership proofs of Clauses 5 are executed once for each vertex and its label. Each
set membership proof is a proof of representation of a designated CL-Signature for the set mem-
ber, amounting to 3 exponentiations for the prover. In total, we have 2n such proofs of posses-
sions, all done with a single Schnorr proof proving equality of exponents with the corresponding
commitment.

Clause 6 proves the edge structure and is executed once per edge, yielding m Schnorr proofs
with 2 exponentiations each for the prover. Finally, the proper graph coloring in Clause 7 is shows
once for each edge (i, j) amounting to m Schnorr proofs with 3 exponentiations for the prover.

The proof of knowledge of graph coloring thereby requires 5n + 3m + 1 = O(n + m)
Schnorr proofs with a computational complexity for the prover of 13n + 8m + 2 = O(n + m)
exponentiations.

The total computational complexity is therefore O(n + m), the communication complexity
is O(n + m) group elements. The G3C proof is done in polynomial time. The round complexity
depends on the proof mode, where variants with multiple rounds (number of rounds depending
on the error probability), with four rounds and initial commitments of the verifier on challenges,
and three rounds in a Σ-proof (not zero-knowledge) are possible. �

A.3 CL Proof Systems for NP-Statements

Proof (Sketch NP-Statements: Theorem 4). Let a NP language L be given. Let τ be a polynomial-
time computable and invertible reduction from L to Graph 3-Colorability (G3C): τ can be con-
structed by composing a polynomial-time reduction of L to 3SAT by Cook’s proof [15] and a
polynomial-time reduction from 3SAT to G3C. We have that x ∈ L iff τ(x) is 3-colorable.

On common input x, both prover and verifier compute graphG← τ(x). In Goldreich, Micali
and Widgerson’s work, the proof proceeds to use any interactive zero-knowledge proof system to
prove that G is 3-colorable and thereby show that x ∈ L. Our proof continues from this point to
show that there exists a Camenisch-Lysyanskaya proof system.

On obtaining G = τ(x), the prover constructs a graph commitment C on G as defined in §3,
including a labeling fV of a proper coloring of G. The known-graph proof transmits G itself, yet
keeps the proper coloring confidential as default.

Proof of representation P → I : The prover interacts with an CL-Signature issuer, proving
representation and wellformedness of the commitment C in a known-graph proof, disclosing
information to satisfy the verification requirements of the issuer. As τ(x) is invertible, this proof
of representation of G and the proper coloring serves as proof of representation for x and x ∈ L.

Issuing I → P : Upon acceptance of the proof, the issuer signs the committed graph G in
a CL-Signature σ. Given the invertibility of τ , this signature holds for x as well. sigma is a
CL-Signature on τ(x) and the proper coloring of τ(x) iff x ∈ L.

Proof of possession P→ V : The prover interacts with the verifier to proof knowledge of the
CL-Signature σ on a proper coloring on G and thereby shows graph 3-colorability of τ(x), which
holds iff x ∈ L. Thereby, the proof of possession of σ translates to a proof of possession of the
statement x ∈ L. The proof is zero-knowledge if executed with small challenges over multiple
rounds. �
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