
Introductory Shell Scripting for Phylogenetics

 - 1 -

UNIX shell scripting for high-throughput Phylogenetics.

Aim: To use the command line shell environment to execute batch jobs
and to create a discovery pipeline for bioinformatics.
Introduction to the shell.

The UNIX/LINUX shell scripting environment is one of the most
important and powerful ways of using the computer. When you log onto a
UNIX machine, you enter an environment called the shell. This is the
part of the UNIX system that controls the resources of the UNIX
Operating system. There are a number of different flavours of this
environment. The original shell sh, was written by Steve Bourne and is
known as the Bourne shell. Other common shells include the C shell
csh, the enhanced C shell tcsh, the Korn shell ksh, and the “Bourne
Again Shell” bash. All of these various shells offer enhancements to
the Bourne shell. For Linux, the default shell when you log in is the
bash shell. You will be presented with a ‘prompt’ and at the prompt
you will type commands. In this practical, the prompt is represented
by a dollar sign ($), do not type the dollar sign.

Commands:

Ordinarily, you will enter a single command on the command line.
E.g.:

$ date

This will print the current date and time. However, you may also
group commands together by separating them using a semi-colon. For
instance:

$ date; ls

This will execute the date command, when the date program exits,
the ls program will execute. The ls command lists the contents of the
current directory.

Using wildcards to specify files

The shell gives you a way to abbreviate files. This can be
achieved using the * wildcard. For instance, if you wish to list all
the files in a directory that end in the extension .fasta, you could
issue the command:

$ ls *.fasta

Other alternatives include:

$ ls bovine* //all files beginning with the string bovine
$ ls *paup* //list all files containing the string paup

//anywhere.
The question mark “?” matches any single character:

$ ls bovin? //Matches “bovine”, but not bovine.paup.
$ ls bovin* //Matches “bovine” and also bovine.paup.
$ ls bovin[Ee] //Matches “bovine” and “bovinE”.
$ ls bovin[a-f]//Matches “bovina”, “bovinb”… “bovinf”.

Introductory Shell Scripting for Phylogenetics

 - 2 -

The following is a brief summary of the most frequently-used unix
commands. Type each command and become familiar with its usage.

Commands Explanation
alias permits redefinition of an existing command

with another string
alias listlong=’ls –
la’

Define the command ‘listlong’ as an alias of
the command ls -la

apropos lists all the man entries relating to a topic
(same as man -k)

apropos date Show all manual entries that contain the word
date.

cat concatenates and displays files
cat myfile displays myfile on the screen
cat one.seq two.seq >
both.seq

writes two files into one

cd changes current directory cd /etc cd .. cd
../sub2

cmp Compares two files and prints the character and
line number where they first differ.

cmp newfile oldfile (see also diff)
cp copies files
cp file1 file2 Copy the contents of file1 into a new file

called file2
cp /tmp/sequence.fas . Not the ‘dot’ at the end, this means ‘here’.

Copy the file called ‘sequence.fas’, which is
located in the directory ‘/tmp’ to here.

date displays current date and time
echo these words Echo prints out the command line parameters

(i.e. “these words”).
exit leaves the current shell (same as ^d) usually =

logout
find searches the directory tree find / -name

lostfile
finger tells you who is logged on (see also w and who)
grep searches a file for a string: grep word file

grep 'two words' file
head prints the first few (default = 10) lines of a

file: head oddfile
head -5 msgfile (displays first five lines)
history displays last several commands used
!! re-executes the last command
!51 executes command 51 in the history list
jobs lists background processes (created with ^z or

bg)
jobs -l (el not one) includes the pid (process id

number)
kill stops a process (use ps aux | grep $USER to

find your processes)
kill 2986 kills off the process with pid 2986
kill -9 2986 definitely kills off pid 2986
ls lists files in a directory
ls -alF /usr/local/bin lists 1) all files in 2) long format 3)

identifies directories / executable files * and
symbolic links @ in the directory
/usr/users/bin

more Displays a file one screenful at a time:
more longfile Displays longfile one screenful at a time

Introductory Shell Scripting for Phylogenetics

 - 3 -

man Gives manual information on a topic
man kill Gives manual information on the ‘kill’ command
man ls Gives manual information on the ‘ls’ command.
mkdir Creates a new subdirectory mkdir subd
mv (move) renames a file (or dir.)
mv file1 file2 Renames “file1”. Its new name is “file2”.
mv file1 /subd/file1 Moves “file1” to a subdirectory called subd and

in this subdirectory, its name is “file1”.
passwd Invokes a password changing program
rm Removes/deletes a file. -i option advised if

wildcards in use:
rm -i *.seq Removes (in interactive mode) all files with

the .seq extension.
rmdir Removes a directory - you must delete all the

files in it first
tail Displays last few lines of a file (see head)
unalias Destroys a previously set alias (which see)
w (who) displays information about logged in

users (see finger)
whoami For those having an identity crisis
| This is a pipe and can be used to redirect the

output from one command into another command
head –100 myfile |
tail –10

This series of commands extracts the top 100
lines from ‘myfile’ and then extracts the last
10 lines from this output. The result is that
lines 90 to 100 are printed to the screen.

head –100 myfile |
tail –10 | more

Pipes the output to the program ‘more’

NOTE: You can use the autocomplete facility in UNIX by hitting the
<tab> key after typing a shorter version of a command. This only works
if the abbreviated version is unique to that command. e.g.:

$ clus<TAB>

produces

$ clustalw

Introductory Shell Scripting for Phylogenetics

 - 4 -

Redirect (>), Append (>>) and Pipe (|)
In UNIX, the output is usually directed, by default to the

screen. This is not necessarily always the most desirable place to put
the output. You may wish to redirect the output to a file, so that you
may look at the results at a later stage, or you may wish to use the
output from one program as the input to another program. List the
contents of a directory, but instead of putting the output to the
screen, redirect the output to a file:

$ ls /usr/local/bin > tmp

This puts the contents of the command ‘ls’ into a file called
“tmp”. Take a look at the contents of the file tmp, using the command
more.

$ more tmp

(more displays the contents of a file, one page at a time. You can use
the space bar to advance the display by one page and you can use the
‘q’ key to quit.)

You may append some information to the end of a file by using the
>> operator. This operator appends without overwriting.

$ ls /usr/bin >> tmp

This appends the contents of the directory “/usr/bin” to the file
“tmp”. However, if you wish to list the contents of a directory and
view the results one page at a time, then you can pipe the contents of
the ls command straight into the more command:

$ ls /usr/local/bin | more

The vertical bar is called a pipe and it can be used to redirect
output from one command so that it can be used by another command.

grep

The grep command is probably one of the most useful of the unix
commands. Grep stands for “General Regular Expression Parser” and it
is a UNIX command that is very useful for finding lines in a file that
contain a string of interest. The general format of a grep command is:

$ grep PATTERN file

So, for instance, if you have a file full of fasta-formatted
sequences and you just want to look at the names, you could use the
command:

$ grep “>” sequencefile.fas

Because the lines that contain the sequence names in a fasta-
formatted file have the unique identifier > it is possible to just look
at those lines.

Shell Scripts

The UNIX shell allows the user to compose files called shell
scripts. These files usually contain multiple commands that are
executed by the Operating System.

Introductory Shell Scripting for Phylogenetics

 - 5 -

A shell script is created using a text editor and then executed by the
operating system. We will use the ‘emacs’ text editor. You may start
this text editor by typing:

$ emacs

or

$ emacs script.sh

The first command starts an empty emacs session, the second
command starts an emacs session with a file called ‘script.sh’ (this
file will be created if it does not already exist). You may exit emacs
by typing a series of ‘escape’ keys. This key combination is:

<cntrl>x<cntrl>c

In other words, you hold down the control key and press x, then
hold down the control key and press c. The first line of the file
should contain the text:

!/bin/bash

This tells the operating system that this is a script and that it
should be executed using the bash shell.

Providing arguments to shell programs.
 The simplest and often the most effective way to use the UNIX
operating system is to write short scripts that perform repetitive
tasks. These shell scripts are part of the reason why UNIX is so
popular. When you have a variety of scripts assembled that perform
various tasks, then you will have the beginnings of a phylogenomics
infrastructure.

You may write a shell script for performing a general function
(for instance calling a multiple alignment program to align a file of
DNA sequences), but you may wish to provide the script with different
input values each time you run it (different sequence file name,
different gap opening penalties, etc). Therefore, it is necessary to
be able to pass arguments to the shell script. You can provide
arguments to a shell program by specifying them on the command line.
In other words, you type the name of the script, followed by a number
of input parameters. When you execute a shell script, shell variables
are automatically set to whatever is specified on the command line.
These variables are referred to as positional parameters.

Introductory Shell Scripting for Phylogenetics

 - 6 -

 The parameters $1, $2, $3, $4, $5 refer to the first, second,
third, fourth and fifth arguments passed to the script. The parameter
$0 refers to the name of the shell program. The parameter $# is the
number of arguments passed to the script.

cmd arg1 arg2 arg3 arg4 arg5
| | | | | |
$0 $1 $2 $3 $4 $5

So, for instance the following shell script (copy this into a file)
prints out the command line parameters to the screen.

echo $0
echo $1
echo $2
echo $3
echo $4
echo $5

If we call this script ShowArgs.sh and we execute this script, like
this:

$ sh ShowArgs.sh these are the arguments so there!

The output will be:

show_args
these
are
the
arguments
so

i.e. the output is the first six command-line parameters.

The ‘if’ command

A simple kind of script program allows conditional execution
depending on whether some question is true. In the shell, the if
operator provides simple program control through simple branching. The
general form of the if command is:

if command
 then command
fi

The command following the if is executed. If it completes
successfully, the command following the then is executed. The fi (if
spelled backwards) marks the end of the if structure. UNIX commands
provide an exit status when they complete. By default the return value
of true is zero, otherwise a nonzero return value is returned. In the
above example a zero return value for the if statement results in the
command after then being executed. You may write this script in a file
or type it on the command line (the hashes are just my comments):

Introductory Shell Scripting for Phylogenetics

 - 7 -

if
clustalw sequences.fas #if this is true (if it runs properly)
then echo YIPEE!!!! #then run this command
fi

Please note the behaviour of the operating system for this operation.

The ‘test’ command

Here we can test whether or not something is true. For instance
we can test whether or not a file exists:

if
test –f sequences.blah
then echo YIPEEE!
else echo AWWWWW!
fi

NOTE: use ‘man test’ to see what other options are available for test.

The ‘for’ command
 The for loop executes a command list once for each member of a
list. The basic format is

for i
 in list
do
 commands
done

What does this script do?

for i in 1 2 3 4 5 6 7 8 9
do
echo “Hello, World”
done

If you want to specify this kind of thing at the command line, you
might write a shell script like this:

for i in $*
do
echo $i
done

In English, this shell script is effectively saying “for every item
that you type at the command line (that is what the $* means), I will
echo its contents to the screen”. Therefore, if you write this script
and call it echoscript.sh and run the script using this command:

sh echoscript.sh CAT MoUsE human /k/hldu

Introductory Shell Scripting for Phylogenetics

 - 8 -

It will produce the output:

CAT
MoUsE
human
/k/hldu

Exercise

Background: Frequently, it is necessary to perform many different
operations on many different files. It is also necessary to create
‘pipelines’ in order to quickly and easily analyse data. These
exercises are designed to create tools that can be used to perform
large scale analyses without user intervention. We shall run some
datasets through three programs, however, we will not do it manually,
rather we shall write a script to do this automatically.

1. Write a simple shell script that prints out all the lines that

contain the sequence names. You know how to do this already.

2. Write a shell script that calls clustalw and aligns all the

sequences in every one of the fasta-formatted files. The
general command line parameter that you should use to call
clustalw is:

clustalw -infile=file.in -outfile=file.out -output=NEXUS

3. Finally, append the following text to the NEXUS-formatted file
(this text contains a “PAUP block” which can be read by the
PAUP program).

Begin paup;
 Set criterion=distance;
 Dset distance=logdet;
 Savedist file=$i.dist format=phylip;
 Nj;
 Savetrees file=$i.tre;
 Quit;
Endblock;

N.B.: when I have used the $i notation in part 3, I intend this to
be a variable that can change for each file.

HINT: Remember the echo command? You can use this to append text to
a file.

4. The shell script must then execute the PAUP program with this

completed file as the input for PAUP.
5. Print the distance matrices to the screen.
6. Next get P4 to print the resulting tree to the screen.

