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1 Modelling sequence change over time

How have gene and protein sequences evolved over
time? Of the many forms that mutations can take,

here we will focus on nucleotide or amino acid replace-
ments only, and not deal with such things as insertions,
deletions, and rearrangements. We will try to model those
replacements, that is to attempt to describe the important
aspects of the underlying process of evolution that might
have generated the sequences that we see.

A few decades ago when gene sequences started to ap-
pear, the scientific community was comfortable with the
idea of Darwinian evolution by random mutation followed
by selection of the fittest, and it was assumed that process
applied to molecular evolution as well. However, when
the genes were examined, there appeared to be more ran-
domness than the sort of selection that had been seen in
morphological evolution. One of the earliest observations
about sequence evolution was that there was a somewhat
linear relationship between evolutionary separation of the
organisms and the amount of sequence difference, the
“molecular clock” of Zuckerkandl and Pauling. It was an
easy extrapolation to imagine, or model, molecular change
as a random process, perhaps something like radioactive
decay. Soon a picture emerged of the large role of neu-
tral evolution and the small role of selection in molecular
evolution.

However, the process is not simple, as we have slow
genes and fast genes, and slow and fast sites within genes.
To explain these different rates we can recognize that dif-
ferent genes are more or less free to change, and different
sites within genes are more or less constrained. At one
extreme we have genes that are recognizably homologous
throughout the entire tree of life, and at the other extreme
we have pseudogenes that are no longer under selection,
that are quickly randomized to unrecognizability. Within
genes, some sites in proteins are absolutely essential and
never change, but third codon positions are free to change
rapidly.

2 Hidden mutations and parsimony

Phylogenetic reconstruction using parsimony is excel-
lent when divergences are small. If the divergences

are very small, it might even be difficult to fit a model
due to lack of variation in the data. However, model-based

methods such as ML (maximum likelihood) and Bayesian
analysis offer advantages when divergences are large.

How might sequences evolve? If we start with a bit of
DNA sequence, duplicate it as in a speciation, and allow
each copy to evolve, various things might happen to the
nucleotides.

T
T
C
A
A
G
A
C

T → C → A T multiple substitution
T T → C single substitution
C → T C → T parallel substitution
A A
A → G → C A → C convergent substitution
G → A → G G back substitution
A A
C C

AT
TC
TT
AA
CC
GG
AA
CC (From Yang, 2006)

At the end of our evolutionary period we have 2 sequences,
which we can recognize as being homologous, and we can
align them and perhaps try to infer their history. The 2
present-day sequences conceal much of the complexity of
their history.

The approach taken by a parsimony analysis is that the
history and underlying process of evolution is unknow-
able, and so we should not try to look for a common
mechanism. So, for example, if two sequences in an anal-
ysis differ at half of their sites, the parsimony approach
is to base conclusions only on these observed data at face
value. However, it is reasonable to suspect that if half the
sites differ, and mutations happen at random, then more
than likely some sites have been hit more than once, and to
say that the only changes that have occurred are the ones
that we can see would be an underestimate. This other
point of view carries the explicit assumption that there is
a common mechanism – that mutations happen randomly
– and makes inferences based on that, something that par-
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simony is not willing to do. Parsimony is not willing to
say what the mechanism of evolution is, but it is willing to
say that whatever it is, it is not random. Parsimony, disal-
lowing a common mechanism, instead makes the large set
of unstated assumptions that each site evolves under its
own unknown mechanism. Many people have pointed out
that this is not a very parsimonious explanation at all, and
allowing a single common mechanism is really the more
parsimonious explanation.

A prediction of parsimony is that a character that evolves
on a long branch will have the same expectation of change
as on a short branch. A prediction of a common mech-
anism of random change is that a character that evolves
on a long branch will have a greater probability of change
than on a short branch. Which prediction is borne out in
real molecular sequences?

2.1 Long branch attraction in parsimony

This is a well-known problem in phylogenetics, where un-
related long branches can end up being put together in a
parsimony analysis.

long1

short1
long2

short2

long1

long2

short1
short2

True Recovered

Imagine the evolution of one site on the tree shown be-
low. At the root of the tree, the character state is an A.
Over the short branches, to short1 and short2, it remains
an A. However, on the longer branches it has had time to
be hit by mutations. The ancestral state A will be preserved
in short1 and short2, but the character states will differ in
taxa long1 and long2. Four different patterns might arise
in the leaf taxa. Those patterns will be where character
states in long1 and long2 are —

1 both the same as short1 and short2
2 one the same and one different
3 both different and different from each other
4 both different but the same as each other

1 2 3 4
A A C G

A A A A

A G G G

A A A A

A

1 AAAA parsimony uninformative
2 AAGA parsimony uninformative
3 CAGA parsimony uninformative
4 GAGA parsimony misinformative

All the possible patterns are either uninformative or mis-
informative. A parsimony analysis will tend to group the
long branches together, and tend to do so more if you add
more data (this explanation after SOWH96, in Hillis ’96).

3 Simple likelihood calculations

In general, the likelihood is (proportional to) the proba-
bility of the data given the model. In phylogenetics, we

can say, loosely, that the tree is part of the model, and so
the likelihood is the probability of the data given the tree
and the model. We call it the likelihood rather than the
probability to emphasize that the model is the variable,
not the data.

The likelihood supplies a natural order of pref-
erences among the possibilities under considera-
tion.

-R.A. Fisher, 1956

Imagine flipping a coin, and getting a “head”. What is
the probability of that datum? The probability depends
on the model, and if you think it is a fair coin, then the
probability of a head is 0.5. However if you think it is a
double-headed coin then the probability will then be 1.0.
The model that you use can have a big effect on the likeli-
hood.

The models that we use in molecular phylogenetics take
into account a few attributes of the underlying process.
These include such “loaded dice” aspects as the equilib-
rium composition of the character states, and the rate of
change between character states, and the among-site rate
variation that reflects negative selection on the sequence.

We need to know the composition implied by the model.
An analogy is that of a busy car park in a city where there
are only 4 colours of cars. Cars park in the car park for
varying lengths of time and then leave, to be replaced im-
mediately by another car. Over time, the car park colour
composition will reflect the composition of the cars in the
city. If there are more red cars in the city than blue ones,
then that will happen in the car park as well. If for some
reason the car park colour composition started out differ-
ently, all blue cars for example, over time the car park car
colour composition would tend toward the city car colour
composition. If we want to model the process we need to
know the city car colour composition.

We also need to know the relative rates of change be-
tween character states. If we look at an alignment of se-
quences such as this,

A acgcaa

B acataa

C atgtca

D gcgtta

we can see that for this particular dataset transitions (a↔ g

and c ↔ t) appear to occur more often than transversions
(a or g ↔ c or t). We can have our model accommodate
that. Even better, we can have our particular data tell the
model how much transition-transversion bias to use.

In complex data the relative rates of change between nu-
cleotide pairs might all be different, and these parameters
can be estimated by ML.

The models that we use in molecular phylogenetics al-
low us to calculate the probability of the data. The simplest

2



ML and Bayesian Phylogenetics

model for DNA sequence evolution, is the one formulated
by Jukes and Cantor in 1969, and is known as the Jukes-
Cantor or JC model. It is not a biologically realistic model,
but it is a good place to start. In it, the model composition
is equal base frequencies, and the rates of change between
all bases are the same. We keep it simple and so have no
among-site rate variation — all sites are assumed to be able
to vary equally.

We can use this model to calculate probabilities of DNA
sequence data even without a tree, and without any evo-
lutionary changes. For example, lets do a first likelihood
calculation. The datum is “a”. Thats all — one sequence
with one nucleotide, and no tree. So we don’t even need
to know about the rates of change between bases in our
model, all we need is the composition part of the model.
Its an easy calculation – the likelihood of our a using the
JC model is 0.25.

The likelihood depends on the model that we use, and if
we had used another model with a different composition,
then we would have a different likelihood. If the model
had a composition of 100% a, then the likelihood would
have been 1. If the composition of the model was 100% c,
a model that does not fit our data well at all, the likelihood
would be zero.

We can do a second likelihood calculation, this time
where the data are ac — 1 sequence, 2 bases long. We as-
sume that the 2 events (bases) are independent, and so to
calculate the probability we multiply. Using the JC model,
that would be 1/4× 1/4 = 1/16. That is the likelihood of
ac under the JC model. Likelihoods under other models
will differ.

Now we will try to calculate the likelihood of a one-
branch tree. The data will be 2 sequences, each 1 base
long,

one a
two c

For this calculation we need the part of the model that
describes the rate of change between bases, as we need to
know how to calculate the probability of base a changing
to c. With the models that we use, the probability depends
on the branch length, ν. The branch length is measured
in mutations (“hits”) per site, averaged over the data. We
can describe this part of the JC model with 2 equations
as shown below, one for the probability of a base staying
the same at a given branch length, and the other for the
probability of a base changing to some other base at a given
branch length. For our data we will need the latter, as we
are looking at base a changing to c.

Psame(ν) =
1
4

+
3
4

e−
4
3 ν

Pdifferent(ν) =
1
4
− 1

4
e−

4
3 ν

These curves show that at a branch length of zero, the
probability of a base staying the same is 1, and the prob-
ability of changing to another base is zero, which seems
reasonable. As branch lengths get longer, the probability

of staying the same drops, and the probability of changing
to something else rises, which again seems reasonable. As
the branch length gets very long, the probability of both
of these approaches 0.25, so at very long branches there is
equal probability of any base changing to any other base,
or staying the same; this will randomize any sequence that
evolves under this model over very long branches. The
random sequence will have the model composition, in this
case all equal.

branch length, ν
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We need a branch length, so lets say that our branch
length ν = 1, and so Pdifferent(1) = 0.184. In that case, with
our one branch tree above, the probability of the base a by
itself is 0.25, and the probability of the change to c is 0.184,
and so the probability of the whole tree is 0.046. Had we
started with c the result would have been the same, as we
used a reversible model.

We can try to calculate the likelihood of another one-
branch tree, this time with more data. The data alignment
that we will use will be

one ccat
two ccgt

and again we will use a branch length of 1. For this calcu-
lation we need the probability of a base staying the same at
a branch length of 1, and that is Psame(1) = 0.448. We can
start with sequence one, and using the composition (often
notated as π, eg πc), the Psame, and the Pdifferent, we can
calculate the probability of the tree, as

= πc Pc→c πc Pc→c πa Pa→g πt Pt→t

= 0.25× 0.448× 0.25× 0.448

× 0.25× 0.184× 0.25× 0.448

= 0.0000645

Now we have a likelihood of our tree at a branch length
of 1 hit/site. Our data matrix has 3 out of 4 sites that are
constant, and only 1 out of 4 change, so a branch length of
1 seems long. We can calculate the likelihood of the tree at
various branch lengths and plot them.

branch length likelihood

0.0 0.0000000
0.2 0.0001281
0.4 0.0001326
0.6 0.0001088
0.8 0.0000840
1.0 0.0000645
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branch length, ν
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We can use numerical approximation to find the ML
branch length, which is at 0.304099 hits/site, at which the
likelihood is 0.000137. There was only 1 of the 4 posi-
tions that had an observable change, which would make
the branch length 0.25 if there were no hidden changes.
This model is telling us that the maximum likelihood is a
little more than 0.25, implying that it assumes that there
are hidden changes.

We can check that PAUP gets it right.

#NEXUS

begin data;
dimensions ntax=2 nchar=4;
format datatype=dna;
matrix
A ccat
B ccgt;

end;

begin paup;
set criterion=distance;
lset nst=1

basefreq = equal;
dset distance=ml;
showdist; [got 0.30410]

end;

We can find ML branch lengths described above, and
we can optimize other model parameters as well. In this
example, the ML estimate for κ is 2.11, at which the log
likelihood is -14376.37

κ
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In molecular phylogenetics in practise, the data are an
alignment of sequences. On every tree, we optimize model
parameters and branch lengths to get the maximum likeli-
hood. We are probably most interested in the ML topology,
but we need to deal with these extra “nuisance parame-
ters”. Each site has a likelihood, and the total likelihood is
the product of the site likelihoods. That is usually a very

small number! –too small for computers, and so we use
the sum of the log of the site likelihoods. The maximum
likelihood tree is the tree topology that gives the highest
(optimized) likelihood under the given model.

Here is an incomplete list of phylogenetics programs
that use ML –

• PAUP*

– $$, not open source, fast, well tested and de-
bugged, DNA only

• Phylip, especially proml
• puzzle, aka Tree-Puzzle. Uses quartet puzzling.
• Phyml, very fast, has a web server
• RAxML, very fast
• TreeFinder, very fast, not open source
• PAML
• p4
• Leaphy
• IQPNNI
• HyPhy

References
• Swofford, Olsen, Waddell, and Hillis, 1996. in Hillis et

al, Molecular Systematics.

• Felsenstein 2004. Inferring Phylogenies

4 Simple models of evolution

Amodel is an attempt to describe the important aspects
of the underlying process that might have generated

the data; a model is a mental picture of the way that you
think that things might work. For likelihood, we need
models that allow you to calculate the probability of data.
That would include models like JC, F81, GTR, and so on,
but it would not include LogDet distances. There is a way
to calculate a likelihood for parsimony, although this rarely
done, and so our list might rarely include parsimony.

We model sequence change as a continuous time Markov
process. For the sort of models that are used in the
common phylogenetic programs, models are described in
terms of the rate matrix, the composition, and the ASRV
(among-site rate variation).

For example, in PAUP, we might describe a model for
DNA as

lset nst=2 tratio=3.4 basefreq=empirical rates=equal;

which says to use a 2-parameter rate matrix, take the
composition of the model from the data, and assume that
all sites evolve at the same rate.

Rates of change between bases can be described with a
rate matrix. PAUP and MrBayes use nst, the number of
substitution types, to describe the type of rate matrix for
DNA. The number of parameters is nst minus 1. JC and
F81 models are nst=1, with no free rate matrix parameters;
it is assumed in JC and F81 that the rate of change among
bases is equal.

4



ML and Bayesian Phylogenetics

Assuming equal rates of change between bases is not
biologically realistic, and a better approach is to allow dif-
ferent rates in transitions and transversions. K2P and HKY
models are nst=2, with a kappa or tRatio. For example,
in PAUP you might say lset nst=2 tratio=5.7;, which
describes a 2-parameter rate matrix. You may come across
the F84 model; it is similar to the HKY85 model, and both
allow different base compositions with a 2-parameter rate
matrix.

The “general time-reversible” or GTR rate matrix al-
lows different rates of change between all bases. How-
ever, it is symmetrical, and that makes it time-reversible. In
PAUP and MrBayes, the GTR is nst=6, with 5 parameters.
In PAUP you might say lset nst=6 rmatrix=estimate;,
which tells the program to estimate the parameters of the
rate matrix. The GTR matrix, being symmetrical, can be
described with 6 numbers, (a to f below), but if you know
5 of those 6 then the 6th can be calculated, and so there are
really only 5 free parameters.

R =





− a b c
a − d e
b d − f
c e f −





Using this notation, we can imagine restrictions of the
GTR matrix that use fewer parameters. For example if a =
c = d = f and b = e, we really only have 2 parameters, and
only one free parameter, and it would describe the nst=2

2-parameter models such as K2P. There are many possible
restrictions of the GTR matrix, some of which have names,
and are tested in ModelTest. Only some programs, such
as PAUP, are able to use these restrictions.

Composition, the second aspect of how models are de-
scribed, can be described in several ways. The sim-
plest way is to say that the base frequencies are all
equal, 25% each for DNA. In PAUP you can say lset

basefreq=equal, which would be for the JC or K2P mod-
els. Another way to describe the composition, not often
used, is to specify it completely as a series of frequencies.
In PAUP you can say for example lset basefreq=(.1 .2

.3). The best way, but also the slowest, would be to use
ML values of the base frequencies, and in PAUP you can
specify this by saying lset basefreq=estimate. Using
empirical composition is fast, and is usually a good ap-
proximation of the ML composition. You can specify it in
PAUP with lset basefreq=empirical. You would most
often use empirical composition in your analyses, or ML if
you have the computational time.

The simplest DNA models that we have mentioned so
far with nst=1 and nst=2 can have equal composition, or
have unequal (usually free) composition. Their names are
tabulated below. For DNA, if the composition is free then
there are only 3 free parameters; this is because if you
know 3 of the 4 composition frequencies then the 4th can
be calculated.

Among-site rate variation, or ASRV, is the third aspect
of how models are described. ASRV can be described in
terms the of pInvar, gamma-distributed ASRV, or both.
Using pInvar, the proportion of invariant sites, notated as
eg GTR+I, allows a proportion of the constant sites in the

Table 1: Simple DNA models.

nst=1 nst=2

equal composition JC K2P
unequal composition F81 HKY/F84

alignment to be invariant. In PAUP it is set by, for example
lset pinvar=estimate;. Note that a site may be constant,
but not invariant, because it is potentially variable but has
not yet varied, and that the ML estimated pInvar will of-
ten be less than the proportion of constant sites. Discrete
gamma-distributed ASRV is notated as G, or Γ, eg HKY+G
or GTR+I+G. This allows the rates of different sites to be
modeled as a range of rates, and is described using only
one parameter, α, the shape parameter in PAUP, as lset

rates=gamma shape=estimate;.
Rate variation among data partitions is accommodated

by some programs. This is sometimes called site-specific
ASRV, but it might better be called among partition rate
variation. This would be useful for looking at separate
codon positions, or when using concatenated genes when
the genes are different enough to model them separately.
Each data partition can have a relative rate, eg third codon
positions are fast, second codon positions are slow. The av-
erage relative rate, over all partitions, is generally by defi-
nition unity. PAUP has what it calls a site-specific model,
but in PAUP other parameters (rMatrix etc) are homoge-
neous across all data partitions. The only thing that varies
is the partition rate. Other programs, (MrBayes and p4) are
more flexible with heterogeneous data, and allow different
datatypes, rMatrices, composition, and ASRV in different
partitions.

The most common models for amino acid data are em-
pirical protein models. As there are 20 amino acids, these
use a 20× 20 rate matrix. There are usually too few data
with which to reliably estimate the 189 rate matrix param-
eters needed for an ML rate matrix (and it would be too
slow!), so a reasonable compromise is to make an ML rate
matrix from a large data set once, and apply it to your data.
Such rate matrices include Dayhoff78, JTT, WAG, MTREV,
and several others. These models have an inherent compo-
sition from the large data set from which they were made,
and some programs (notably MrBayes) can only use that
composition. Often it is better to use empirical composi-
tion, based on your data, if that is allowed by the program
that you are using.

5 Gamma distributed among-site rate variation

Just as there are fast genes and slow genes, there are fast
sites and slow sites within genes. Sites differ in how

much they are free to vary. A site may be under strong
selection and highly constrained; other sites, such as third
codon positions, might be relatively unconstrained.

If we could reliably separate the fast sites from the slow
sites and analyse the two sets separately, ideally we would
get the same tree topology, but the branch lengths would

5
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Table 2: Number of free parameters for various model
components

rate matrix
JC, F81 none

K2P, HKY, F84 1
GTR 5

Restrictions of GTR 2 – 5
protein ignore

composition
equal none

ML or empirical DNA 3
Protein 19

ASRV
pInvar 1

GDASRV 1

be proportionally bigger in the fast sites. An example
might be to separate the first and second codon sites of
a protein-coding gene and analyse them separately from
the third codon position.

A

B C
D

E

FG

0.1

A

B
C

D

E

F
G

0.1

Tree made using Tree made using
slow sites only fast sites only

We could then analyse both sets of sites together in a
single analysis using a site-specific ASRV strategy. This
strategy is often used with separate codon positions, and
with different genes in an analysis with a few genes. It
generally forces the branch lengths in the partitions to be
proportional. The slow sites partition would have a slow
partition rate, and the fast partition would have a fast par-
tition rate. These partition rates can be found from the
data by ML. These partition rates can be thought of as
branch length multipliers, where the average of the mul-
tipliers is 1. Using this strategy gives a much better fit
of the model to the data; not using this strategy forces all
sites to be analysed with a one-size-fits-all branch length
that is a compromise between the slow and fast rates, and
fits neither one well.

The problem with this is that there is usually too much
uncertainty in the separation of the sites into slow and fast
categories. One very clever strategy that can be used here
is to apply a mixture model. In this sort of model we do not
separate the data into partitions, but instead we analyse
every site as if it was in each rate category, and average the
results.

If we look at the relative rates of sites in different genes
we can notice that for some genes there is extreme ASRV,
with many very slow sites, and a few sites that are very

site rate
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Figure 1: Gamma curves at various α values

fast. In other genes there is a smaller range, where all
the sites are more or less close to the average rate. To ac-
commodate this variation in ASRV, it has been proposed
that we model ASRV based on a gamma distribution. The
gamma (or Γ) distribution is usually described with 2 num-
bers, α and β, that define the shape and mean of the distri-
bution, but for our purposes we always want the mean to
be 1, and so we only need the shape parameter α. That
mean of 1 is the average branch length multiplier, and
the fast and slow sites are relative to it. The shape of the
gamma curve changes widely depending on α. For small
values of α the curve is “L”-shaped, and for larger values
it is a hill centered on 1. There is nothing compellingly bi-
ological about describing ASRV this way, but it does allow
a wide range of rate-shapes with only a single parameter.
That parameter is usually a free parameter in our mod-
els, and so it does not need to be provided, as it can be
estimated from the data by ML.

It is possible to do the analysis by integrating over the
site rates of the continuous gamma density, but it is just as
good and much faster to use a discrete approximation to
the continuous curve. These strategies were developed by
Ziheng Yang in the mid-1990’s. The idea is that we can ap-
proximate the continuous curve by dividing up the curve
into a number of discrete categories, and then we only
need to average over those categories rather than integrat-
ing over the continuous curve. Four categories is usually
considered to be sufficient.

Paup will tell you the borders and the means of the cate-
gories with the gammaplot command. For example, for the
gamma curve where α = 1, the output from gammaplot is

category lower upper rate (mean)
-------------------------------------------------

1 0.00000000 0.28768207 0.13695378
2 0.28768207 0.69314718 0.47675186
3 0.69314718 1.38629436 1.00000000
4 1.38629436 infinity 2.38629436

which we can plot as in Figure 2. The mean of the mean
rates is 1.0. We can show how the calculation works using
an example, which we can analyse using a JC+G model.

In the data in Figure 3, the last line shows the number
of different character states in the alignment column. This
should imperfectly reflect the site rate. If we analyse these
data on a particular tree with a JC model, the log likelihood

6
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site rate
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Figure 2: Discrete gamma divisions for α = 1

7 50
A ttctaacgggacagtgcgcccactcacgcacctggtcactgtatgcgagt
B tgcgaaggtgctattgcgagcattcacgcagatggtaactgtatgtgaga
C tgcgaaggtgttattgcccacattcgcgcggaaggtaacactatgtgaga
D tcccatagcgacatggcgcatactgactcctatggatactgtatgcgagt
E tgcgaaggcgacattgcgcacattcacgcatatggttactgtacgtgagt
F tgcgaaggcggcattgcgtccattcacccgcatggagactttatgtgaga
G tgcgaagtcgacattacgctcttttacgcacagggtcactttatgggaca

* *
13131232314212221234222132131332311241123112131122

Figure 3: Example data for GDASRV calculation

is -307.57; under the JC+G model, with a shape of α = 1, it
is -305.70, a slight improvement.

We will look at site 1 (all t) as an example of a slow
site, and site 11 (all 4 nt) as an example a fast site. With
no gamma model, these site likelihoods are 0.0848452 and
0.0000111865, respectively, and with the gamma model
they are 0.117246 and 0.0000150721.

site rate category site rate likelihood

1 1 0.137 0.215112
2 0.477 0.148608
3 1.000 0.084845
4 2.386 0.020420

mean 0.117246

11 1 0.137 0.0000000628
2 0.477 0.0000019392
3 1.000 0.0000111865
4 2.386 0.0000471000

mean 0.0000150721

Here we average over the states of our uncertainty, and es-
timate a site rate that gives a better fit of the model to the
data. The slow category contributes most to the slow site,
and the fast category contributes most to the fast site. This
strategy comes at a cost of 4 times the likelihood calcula-
tions, and 4 times the memory requirement.

6 A survey of some other models

6.1 Codon models

• For DNA sequences of codons of protein-coding genes

• Simplifications of 64× 64 matrix, so far fewer param-
eters to estimate

• We have two kinds of change

– Synonymous, where the aa does not change
– Non-synonymous, where the aa changes

6.2 Identifying selection using codon models

• dS is the number of synonymous substitutions per
synonymous site

• dN is the number of non-synonymous substitutions
per non-synonymous site

• ω = dN/dS measures selection at the protein level

ω = 1: neutral evolution
ω < 1: purifying (negative) selection
ω > 1: diversifying (positive) selection

6.3 Other mixture models

• Gamma ASRV is one kind of mixture model, made to
accommodate heterogeneity of rates among sites

• We can have other mixture models, to accommodate

– heterogeneity of composition among sites
– heterogeneity of the rate matrix among sites

• Note that you do not divide the data

– rather, for each site, you average over the possible
states

6.4 Covarion model

• A generalization of the pInvar model

• A site can change from invariable to variable, and back

• Biochemically realistic

• A site at a given node in the tree can be either on or
off

– We cannot know whether it is on or off, so we
evaluate assuming both

• Two parameters: off → on, and on → off

6.5 Tree-heterogeneous models

• Most models are homogeneous over the tree

• The process of evolution can and does differ over the
tree

– This is easy to see when homologous genes differ
in composition

• It can lead to recovery of erroneous trees if you use a
tree-homogeneous model (as most are)

• The heterogeneity over the tree can be modelled

– Better fit of the model to the data
– Better trees

7
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6.6 Recoding data

• Some parts of sequences become saturated faster than
others

• Saturated sequences are noisy and often biased and
difficult to model

• One approach is to recode the data

• RY-recoding: A & G → R, C & T → Y

– A 2-state model, transversions only

• Grouped aa’s: C, STPAG, NDEQ, HRK, MILV, FYW

– This allows a 6× 6 rate matrix with free parame-
ters

6.7 Modeling RNA stems

• We have A:U, G:C, and G:U stable pairs

• Also mismatches (A:G etc)

• Also reversals (eg A:U %= U:A)

• Recode into N-state models

– 16: all combinations
– 6: only stable pairs, ignore mismatches
– 7: mismatches are lumped together as one state

6.8 Clock models and molecular dating

• There is obviously some truth in a clock-like be-
haviour of evolutionary change

– Can we use that to date divergences?
– Calibrate it with fossils

• The strict molecular clock rarely applies

• Relaxed clock models work better

• Many sources of error

• Widely used, but there is vocal debate over its validity

7 Choosing a model

• Generally, don’t “assume” a model

• Rather, find a model that best fits your data.

7.1 Parameters

• Models differ in their free, ie adjustable, parameters

• More parameters are often necessary to better approx-
imate the reality of evolution

• The more free parameters, the better the fit (higher the
likelihood) of the model to the data. (Good!)

• The more free parameters, the higher the variance,
and the less power to discriminate among competing
hypotheses. (Bad!)

• We do not want to “over-fit” the model to the data

7.2 What is the best way to fit a line (a model)
through these points?

7.3 Choosing a phylogenetic model by ML

• Start with a reasonably good tree

– The neighbor-joining tree will do fine

• Evaluate the likelihood (ML for that tree) for all the
models that you want to test

• No tree search involved, so it is fast

• Choose the best model

– With enough parameters, but not too many
– This may be the ML model, or not

7.4 Choosing a model

• We want to choose a model that gives the highest like-
lihood, but penalized by the number of free parame-
ters

• This is formalized in the AIC, the Akaike Information
Criterion

– −2 log L + 2n
– where n is the number of free parameters in the

model

• We make a table of AIC values and the best choice of
model is the one with the lowest AIC value

• Informally, the AIC says that adding a useless param-
eter generally increases the log likelihood by about 1
unit.

– So if adding a parameter increases the log likeli-
hood by more than 1, it is not useless.

7.5 A table of AIC values
ln L n −2 ln L + 2n

JC -5211.7 0 10423.4
F81 -5166.6 3 10339.2
HKY85 -5125.0 4 10258.0
GTR -5092.5 8 10201.0
GTR+I -4946.1 9 9910.2
GTR+G -4937.8 9 9893.6 ⇐
GTR+IG -4937.2 10 9894.4

8
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• We penalize each likelihood by the number of free pa-
rameters

• By the AIC, GTR+G is the best model, even though
the GTR+IG had a higher likelihood

7.6 How many parameters?

rate matrix composition ASRV total
Model parameters parameters parameters parameters

JC69 0 0 0 0
F81 0 3 0 3
HKY+G 1 3 1 5
TN93 2 3 0 5
GTR+IG 5 3 2 10
JTT+F 0 19 0 19
WAG+IG 0 0 2 2

7.7 Modeltest

D. Posada and K. A. Crandall 1998. “MODELTEST: testing
the model of DNA substitution” Bioinformatics 14: 817-818.

• Automates the process of choosing a model

• Uses PAUP to do the likelihood calculations

• Uses the AIC and the likelihood ratio test

• Site-specific rate variation and clock models are not
covered

• See also Prottest and Modelgenerator

7.8 Does the model fit?

Imagine that we have some complex data, but all we
have available are two models – linear and quadratic. We
can choose the quadratic model as the better of the two
available, but even though it is the best it does not fit well.
What is really needed is a better model. In the case of this
scatterplot it is easy to see the inadequacy, but it would be
less obvious with phylogenetic data. When you choose a
model, you often “max out” and choose the most com-
plex model available – often the GTR+IG model. That
should make you suspect that you might have chosen a
better model had one been available.

We should apply statistical methods such as posterior pre-
dictive simulation to assess the fit of the model to the data.
However, the question of whether the data fits is rarely
even asked, let alone answered.

8 Simulating evolution

A model is your idea of the way that you think that
things work. Armed with this it is possible to simu-

late sequences and evolve those on a tree to simulate evo-
lution. This can be useful to test the methods and models.
When you simulate data you simulate on a given model
and on a given tree, and since you know these you can use
the simulated data to test methods. You can also use simu-
lations to test models; if you simulate data on a model that
you are using for your real data and the simulated data are
not similar to the original data, you can conclude that the
model does not fit.

Simulation can help us to visualize evolutionary ideas.
For example we can look a the problem of sequence satu-
ration. Saturation is loss of phylogenetic signal due to su-
perimposed mutations. When sequences become saturated
phylogenetic signal has been randomized and trees that
are made from those data are not reliable. One way to visu-
alize saturation is to plot p-distances vs model-based sim-
ulation or inferred distances between all sequence pairs.
P-distances are the simple face-value differences between
sequences, calculated by the number sequence differences
divided by the sequence length. With the JC model, the
maximum p-distances will be 0.75, which we will see if
we compare two random sequences with equal base fre-
quencies. It is 0.75 and not 1.0 because even in random
sequences 1/4 of the bases will happen to be the same in
both sequences compared.

If we make random sequences and evolve those se-
quences based on the JC model for ever increasing dis-
tances, the p-distances between the original and the
evolved sequences increase at first, but eventually level off
when the sequences become saturated, and the p-distances
can no longer increase. With the JC model saturation hap-
pens when the sequences have been mutated by about 2.5
or 3 hits per site.

If we evolve the sequences under a JC+G model, that is
with among-site rate variation, the onset of saturation is
delayed. Here the mutations are being concentrated in the
fast sites, and they would become well saturated early on,
but the slow sites are relatively untouched.

You can visualize saturation in real data in the same way,
by plotting pairwise p-distances vs model-based distances
(such as the sum of the branch lengths on the tree path
between the taxon pairs in a ML tree). If the plot shows
the tell-tale plateau then you have saturation.
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9 Bayesian phylogenetic analysis

Phylogenetic analysis using a Bayesian approach has
become very widely used in the few years since its in-

troduction. It has a acceptable speed, and can handle big
datasets with parameter-rich models. Here we will look at
differences between ML and Bayesian approaches in gen-
eral, and in the next section we will look at Bayesian phy-
logenetic methods in practice.

One of the main ways that the Bayesian approach dif-
fers from ML is that the Bayesian approach deals with un-
certainty in a more explicit way. For example, nuisance
parameters such as branch lengths and model parameters
will each have some uncertainty associated with them. The
ML approach is to find the ML values for all of those nui-
sance parameters, but the Bayesian approach is to retain
that uncertainty in the result. This means that the result
of a Bayesian analysis is usually not a single point, but
rather is a probability density or distribution. Being a dis-
tribution might mean that it is awkward to summarize the
result to pick out the message that you want to get from
it, but even so it can be considered an advantage over ML.
While in ML a picture of the uncertainty involved is often
done after the analysis, often laboriously, as in for example
the bootstrap, in a Bayesian analysis the uncertainty is part
of the initial result.

Another difference is that Bayesian analysis explicitly re-
lies on prior probabilities. The prior probability might be
known with confidence, but for many problems we have
only a vague idea of what the prior probabilities are, and
since a Bayesian analysis forces us to be explicit about them
we may have to make something up. Requiring a prior
probability can be considered both a strength and a weak-
ness, and is certainly controversial.

Of course the implementation details differ between
Bayesian and ML analysis. ML uses hill-climbing algo-
rithms to get the result to any required precision, while
Bayesian analyses generally require an approximating al-
gorithm such as the MCMC. From a computational point
of view, the Bayesian MCMC can handle more parameters
than ML, which means that you can solve bigger problems
with more realistic models.

While ML expresses itself in terms of the probability of
the data given the model, the Bayesian approach expresses
the result as the probability of the model given the data.
The probability of the model, or hypothesis, is more likely
what the investigator wants, and this directness is one of
the main attractions of Bayesian analysis.

9.1 Rare diseases and imperfect tests

Lets say that we are testing for a disease – Bad Spelling
Disease, or BSD, and we know that 1% of the population
suffer from it. We have a test for BSD that is fairly accurate
– if you suffer from BSD then the test will tell you so 90%
of the time. The test sometimes gives false positives – if
you do not suffer from the disease, the test will tell you
that you do suffer from it 10% of the time. Lets say that
one of your patients tests positive for BSD. What is the
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probability that they actually have the disease?

It is perhaps easiest to explain it if we imagine giving
the test to 1000 people. Of those, 10 will have the disease,
and 9 will test positive. The remaining 990 do not have the
disease, but 99 of them will test positive anyway. So after
testing 1000 people we get 108 positives, but we know we
only have 9 true BSD sufferers in those 108 people. So the
probability of having BSD if you test positive is only 9/108,
about 8%. Thats all!

The surprisingly low probability depends mostly on the
low background frequency of BSD in the population. That
is the prior probability of BSD, that is the probability that
you would expect somebody to have BSD before you see
the result of the test. The probability of somebody having
BSD if they test positive, 8%, is the probability after you
see the test result – it is the posterior probability. We have a
prior opinion, and we modify our opinion in the light of
new information. Our prior opinion is a major player in
the calculation; we cannot base our calculation only on the
test results. Our prior opinion is not replaced by the new
information provided by the test, rather it is adjusted by it.

This is formalized in Bayes’ Theorem. Bayes’ Theorem
says that the relative belief that you have in some hypoth-
esis given some data is the support that the data provide
for the hypothesis times the prior belief in the hypothesis,
divided by the support times the prior for all hypotheses.

Before you give a test to somebody, you think that they
might have BSD with a probability of 1%. If they test pos-
itive, you use that information to adjust your estimate to
8%. But you want to be more sure, so you give them an-
other spelling test. Then, starting from your current esti-
mate of 8%, you incorporate the result of the new test to
adjust your estimate up or down. If they test positive on
that second test, then you will be somewhat more sure that
they are a BSD sufferer, but you still won’t be completely
sure based on the results of only 2 imperfect tests.

As you do more tests on your patient, the accumulated
test results tend to overwhelm the original prior of 1%. If
you have a lot of test results then even if your original prior
had been somewhat wrong it will not matter much. If you
do not have many data then the result may be noticeably
influenced by the prior, but if you have a lot of data then
the result will be mostly data-driven.

10



ML and Bayesian Phylogenetics

P(BSD|⊕) =
P(⊕|BSD)P(BSD)

P(⊕)
=

0.009
0.108

= The posterior probability of having BSD
given a positive test.

P(⊕|BSD) = The likelihood. The probability of a posi-
tive test if you have BSD. The probability
of true positive tests, 0.9

P(BSD) = The prior probability of BSD, 0.01

P(⊕) = The marginal likelihood. The probability of
getting the data, a positive test, under all
circumstances. That would include true
positives and false positives.

= P(⊕|BSD)P(BSD)+
P(⊕|healthy)P(healthy)

= (0.9× 0.01) + (0.1× 0.99)

= 0.108

P(⊕|healthy) = The probability of a positive test if you are
healthy. The probability of a false positive,
0.1

P(healthy) = The prior probability of not having BSD,
1− P(BSD) = 0.99

9.2 Prior distributions and nuisance parameters

In the analysis above, lets say that we are not really sure
about our point estimate of the incidence of BSD in the
population. While most studies place the incidence of BSD
at 1–2%, one study places it at 5%, while another contro-
versial study places it at over 10%. We should expect some
uncertainty in those estimates — after all, those estimates
are based on spelling tests like ours, and we know they are
imperfect. So our prior probability is no longer a single
point at 1% — it now becomes a prior distribution. To do
the calculations we need to be explicit about it, and de-
scribe the distribution completely. This may mean choos-
ing a uniform range, or perhaps, if it seems more suitable,
a curve such as the beta distribution. If we do that, then
when we calculate the posterior probability it will also be a
distribution. Now if you were a doctor and one of your pa-
tients tested positive for BSD, what would you tell them?
The complete answer, the whole posterior probability dis-
tribution, might be not be welcome by the patient, who re-
ally just wants a simple answer. You might instead choose
to give your answer as a range or an average taken from
the distribution.

If you are not sure of the prior, you might think that to
be fair and objective you should assume a uniform prior
probability from 0 – 100%. However, that might not be
satisfactory, as then the posterior distribution will also be
from 0 – 100%. If you then choose to state the posterior as
a range, you might find yourself telling your patient that
based on their positive test they have a 0 – 100% probability
of having BSD — hardly a satisfactory answer.

The test for BSD might involve nuisance parameters such
as the age or background of the patient that might affect
their ability to spell, and we can formulate a model involv-
ing these parameters to allow us to calculate the likelihood

of the data in the BSD test under various conditions. The
probability of the data given the model is the likelihood,
and it will be a multidimensional distribution. The nui-
sance parameters will all have prior distributions, and so
the prior probability will be a multidimensional distribu-
tion as well.

10 Bayesian phylogenetic analysis in practice

Phylogenetic applications of a Bayesian approach will
use complex models and have many parameters, and

are too big to calculate analytically. The likelihoods and
the prior probabilities at various points in the distribution
are relatively easy to calculate, but the marginal likelihood
of these multidimensional distribution problems becomes
complex and intractable. Fortunately there are ways to
approximate the posterior distribution that do not require
calculation of the marginal likelihood, and the most com-
mon way uses a Markov chain Monte Carlo (MCMC) ap-
proach using the Metropolis-Hastings algorithm. This ap-
proach depends only on making posterior probability ra-
tios, and so while the likelihoods and priors need to be
calculated, the marginal likelihoods in the ratio cancel out,
and need not be calculated.

The MCMC is a computational machine that takes sam-
ples from the posterior distribution. The more samples you
let it take, the better it’s approximation, like pixels build-
ing up a picture until you can recognize it. It is able to
handle complex models and lots of parameters, and so we
can make our models realistic. The result of an MCMC
is a large number of samples, and that leaves us with the
easily surmountable problem of how to digest and sum-
marize those samples to extract some meaning. A bigger
and more difficult problem is to find out whether it has
run well, and whether it has run long enough.

We can interpret the results in a very direct way. For
example, the highest posterior probability tree is the one
that gets sampled most often, and the posterior probability
of a split is simply its frequency in the samples.

As with any Bayesian analysis, we absolutely need to
have prior probabilities for all our parameters. However,
usually we have so much data that the prior gets over-
whelmed by the likelihood – so generally we don’t need to
worry about priors much. Rarely, if the data are few or not
decisive, then the prior may have an influence and we may
need to pay closer attention to it.

10.1 Reference

Mark Holder and Paul O. Lewis. 2003. Phylogeny esti-
mation: Traditional and Bayesian approaches. Nature Re-
views Genetics 4: 275–284.

10.2 History of Bayesian analysis in phylogenetics

• The first papers and demonstration programs for phy-
logenetics were in the mid-1990’s

• The first practical program was BAMBE, by Larget
and Simon, in 1999
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• In 2000 MrBayes was released, a program by John
Huelsenbeck and Fredrik Ronquist

• p4, BEAST, BayesPhylogenies, Phycas, PhyloBayes

10.3 Bayesian analysis in practice

• It is practically impossible to do Bayesian calculations
analytically

• Rather, the posterior probability density is approx-
imated by the Markov chain Monte Carlo (MCMC)
method

10.4 Markov chain Monte Carlo

• After the chain equilibrates, it visits tree space and pa-
rameter space in proportion to the posterior probability
of the hypotheses, ie the tree and parameters.

• We let the chain run for many thousands of cycles so
that it builds up a picture of the most probable trees
and parameters

• We sample the chain as it runs and save the tree and
parameters to a file

• The result of the MCMC is a sampled representation
of the parameters and tree topologies

• The samples mostly come from regions of highest pos-
terior probability

10.5 How the MCMC works

• Start somewhere

– with defined model, topology, branch lengths
– That “somewhere” will have a likelihood and a

prior
– Not the optimized, maximum likelihood

• Randomly propose a new state

– Maybe adjust one of the branch lengths
– If the new state has a better likelihood × prior,

the chain goes there

10.6 If the proposed state has a worse probability

• Calculate the posterior probability ratio between the
current and the proposed states. That ratio will be
between 0 and 1.

• Choose a random number between 0 and 1. If the
random number is less than the the likelihood ratio of
the two states, then the proposed state is accepted.

• If the likelihood of the proposed state is only a little
worse, it will sometimes be accepted

• This means that the chain can cross likelihood valleys

10.7 State→ state→ state→ . . .

• Proposals are made, sometimes accepted, often re-
jected

• Branch lengths, topology, and model parameters
change

• We save samples to digest later
• The start of the chain is random and poor, so the first

proposals tend to make the probability much better
quickly.

10.8 MCMC likelihood plot
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10.9 MCMC burn-in

• The chain only works properly after it has converged
or equilibrated

• The first samples (100? 1000?) are discarded as “burn-
in”

• You can plot the likelihood of the chain to see if it has
reached a plateau

– Only use the samples from the plateau
– This is a widely-used but unreliable way of as-

sessing convergence

10.10 MCMC result

• Sampled trees are written to a file during the chain
• We can summarize those samples

12



ML and Bayesian Phylogenetics

– Trees in the file can be analyzed for tree parti-
tions, from which a consensus tree can be made
∗ The proportion of a given tree partition in

the trees is the posterior probability of that
partition

– The proportion of a given tree topology (after
burn-in) in these trees is the posterior probability
of that tree topology

• Other parameters are written to a different file
• These continuous parameters may be averaged, and

the variance calculated

10.11 Splits, aka tree bipartitions

• We can represent trees as splits, in ‘dot-star’ notation.
ABCDEF
..****
..***.
..**..

• By convention the first position is always a dot
• Terminal branches may or may not be included

ABCDEF
.*****
..*...

10.12 Splits⇔ trees

ABCDEF
..****
..***.
..**..

⇔

A

B

C
D

E

F

10.13 Making a consensus tree from splits

⇒

ABCDE
.**** 3
.*... 3
..*.. 3
...*. 3
....* 3
..*** 2
...** 2
.*.** 1
.*.*. 1

⇒

C
D
E
B
A

A
B

C
D
E

C
A
B
D

E

E
A
B

C
D

10.14 Thinning the chain

• Often proposed states are not accepted, so the chain
does not move

• This is not good for getting a good picture of the dis-
tribution

• Or perhaps the proposals are too near the current
state, causing autocorrelation, which decreases the ef-
fective sample size

• Rather than sampling the chain at every generation,
the chain is sampled more rarely, eg every 10 or every
100 generations.

• These sampled states will more likely be different
from each other, and so be more useful.

10.15 Assessing convergence

• Commonly:

– plot the likelihood
– plot other parameters
– Can be an unreliable indicator of convergence

• Do multiple runs, starting from different random trees
and assess agreement

– PSRF, potential scale reduction factor
– ASDOSS, averaged standard deviation of split

support (or split frequency)

10.16 Two runs

support support standard
split I II deviation

..**** 0.90 0.95 0.035

...*** 0.85 0.80 0.035

....** 0.60 0.80 0.141

..**.* 0.30 0.20 0.071

..*.** 0.15 0.01 0.099

.*.*** 0.10 0.15 0.035

.**..* 0.07 0.06 0.007

.*.*.. 0.06 0.07 0.007

.***.. 0.05 0.04 0.007

average standard deviation = 0.049

split support I
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1

The average standard deviation in split support (split
frequency) (ASDOSS) summarizes the topological agree-
ment between 2 runs in the form of a single number.

10.17 ASDOSS

• MrBayes now does 2 separate runs by default to en-
courage this strategy

• The cumulative average standard deviation of the dif-
ference in split supports (or split frequencies) (AS-
DOSS) between the two runs is calculated periodically
and printed out.

• This is a good topology convergence diagnostic. But
how low is low enough?

• Where it stabilizes depends on the data
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10.18 Prset

• The prior probability should usually be a distribution

– Uniform
– Exponential

• Can also be fixed to single values

– Generally not a good idea
– Generally we fix the rate matrix for proteins, eg
prset aamodelpr=fixed(wag)

10.19 Acceptance rates
Acceptance rates for the moves in the "cold" chain of run 1:

With prob. Chain accepted changes to

53.40 % param. 1 (revmat) with Dirichlet proposal

8.42 % param. 2 (state frequencies) with Dirichlet proposal

97.94 % param. 4 (prop. invar. sites) with sliding window

84.28 % param. 5 (rate multiplier) with Dirichlet proposal

26.85 % param. 6 (topology and branch lengths) with extending TBR

18.15 % param. 6 (topology and branch lengths) with LOCAL

Acceptance rates for the moves in the "cold" chain of run 2:

With prob. Chain accepted changes to

54.08 % param. 1 (revmat) with Dirichlet proposal

7.12 % param. 2 (state frequencies) with Dirichlet proposal

98.07 % param. 4 (prop. invar. sites) with sliding window

84.12 % param. 5 (rate multiplier) with Dirichlet proposal

28.47 % param. 6 (topology and branch lengths) with extending TBR

17.33 % param. 6 (topology and branch lengths) with LOCAL

• We want good mixing
• Proposals that take baby steps that are too close to the

current state will tend to have high acceptances
• Proposals that take giant steps that are too far from

the current state will tend to have low acceptances
• Rule of thumb— aim for 10% – 70% acceptance for

mixing.
• Can change tuning parameters in MrBayes with props

10.20 MCMCMC

• MrBayes introduced Metropolis-coupled MCMC
• Several chains are run in parallel
• All but one is “heated”

– Increases the acceptance probabilities
– Allows easier crossing of likelihood valleys
– Heated chains act as “scouts” for the cold chain

(thanks to Paul Lewis for this analogy)

• Chains are allowed to swap with each other
• Only the cold chain is sampled

11 Bayes factors

11.1 Bayes’ theorem

P(BSD|⊕) =
P(⊕|BSD)P(BSD)

P(⊕|BSD)P(BSD) + P(⊕|healthy)P(healthy)

posterior =
likelihood× prior

normalizing constant

posterior =
likelihood× prior

marginal likelihood

11.2 Bayes Factor

Bayes factor =
marginal likelihood A
marginal likelihood B

But marginal likelihoods are difficult to compute. They
need to be estimated.

11.3 The harmonic mean estimator

• The HME is a reasonable, easily computed, somewhat
controversial way of estimating the marginal likeli-
hood.

• The harmonic mean is

mh =
1

[ 1
x1

+ 1
x2

+ 1
x3

+ . . . + 1
xn

]× 1
n

• eg the harmonic mean of 2 and 4 is

1
[1/2 + 1/4]× 1/2

=
1

3/8
=

8
3

11.4 The harmonic mean estimator

• HME is the harmonic mean of likelihoods sampled
from the posterior distribution.

– likelihoods, not log likelihoods

• Then converted to log form

• Tricky to calculate because of numerical overflow

• MrBayes and p4 will calculate it

11.5 Using Bayes factors

• Bayes factor (B10) is ratio of marginal likelihoods

• Log Bayes factor is difference of log marginal likeli-
hoods

2 loge(B10) loge(B10) Evidence against H0

0 to 2 0 to 1 Not worth more than
a bare mention

2 to 6 1 to 3 Positive
6 to 10 3 to 5 Strong
>10 >5 Very strong

• Use this to compare models in a Bayesian framework

12 Model fit

12.1 How to assess whether the model fits?

• Composition – often easy to show that the model does
not fit

• Other aspects – can use simulation

14
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12.2 Composition fit

• We ask whether the composition part of the model fits
the data

• Eg the chi-square test in the basefreq command in
PAUP

– Read in some data

– basefreq

– Does a chi-square test for homogeneity of com-
position in the sequences

– This test assumes that the sequences are not re-
lated

– suffers from a high probability of Type-II error.

12.3 Composition fit

paup> basefreq

Base frequencies:

Taxon A C G T # sites
--------------------------------------------------------------
A 0.11000 0.21500 0.25500 0.42000 200
B 0.11000 0.22500 0.28000 0.38500 200
C 0.11000 0.22000 0.27000 0.40000 200
D 0.15000 0.21500 0.26000 0.37500 200
E 0.12500 0.23500 0.27000 0.37000 200
F 0.12500 0.21500 0.29000 0.37000 200
G 0.12500 0.22500 0.26000 0.39000 200
H 0.13000 0.23000 0.25500 0.38500 200
--------------------------------------------------------------
Mean 0.12312 0.22250 0.26750 0.38688 200.00

Chi-square test of homogeneity of base frequencies across taxa:

Taxon A C G T
------------------------------------------------------
A O 22 43 51 84

E 24.62 44.50 53.50 77.38
B O 22 45 56 77

E 24.62 44.50 53.50 77.38
C O 22 44 54 80

E 24.62 44.50 53.50 77.38
D O 30 43 52 75

E 24.62 44.50 53.50 77.38
E O 25 47 54 74

E 24.62 44.50 53.50 77.38
F O 25 43 58 74

E 24.62 44.50 53.50 77.38
G O 25 45 52 78

E 24.62 44.50 53.50 77.38
H O 26 46 51 77

E 24.62 44.50 53.50 77.38

Chi-square = 4.320890 (df=21), P = 0.99996131
Warning: This test ignores correlation due to phylogenetic structure.

12.4 Fit of other aspects of the model

• You can use simulations

• Pick some aspect of your data that you measure

– in your original data

– in your simulations

• Ask whether the original data point fits in the range
generated by the simulations

12.5 Using simulations to assess model fit
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