Seminar: Efficient Triple-Energy Outlook and Practices to manage UK's 10-40 TWh of industrial waste heat

Organiser:Energy Institute (EI) North Eastern BranchSir Joseph Swan Centre for Energy ResearchDate:11th December, 2013

Time: 2:00 – 3:30pm

Venue: Old Library, Newcastle University, NE1 7RU, UK

Cogeneration of Cooling and Electricity by Low Grade Heat

Low grade heat driven adsorption-linear-expander cycle for cogeneration of power and refrigeration (EPSRC - LH Cogen)

Dr Yaodong Wang

School of

Mechanical&Systems

Engineering

Contents

Background of cogeneration (cooling and power)

Design and manufacture of LH Cogen system

Experimental studies and modelling analysis

Improvement and potential applications

Conclusions

3

4

1. Background

This research project is highly relevant to the priority areas of Energy and Environmental Change issues.

- In UK, the final energy consumption in 2011: 211.7 million tonnes of oil equivalent;
- > 18.5% of the final energy consumed by electricity generation industry
- their average thermal efficiency was 36.8%;
- 11.7% of the final energy consumption (24.75 million tonnes of oil equivalent) was wasted in the form of low grade heat.

LH Cogen system (Low grade heat driven adsorption-linearexpander cycle for cogeneration of power and refrigeration)

- In driven by low grade heat, avoiding primary energy consumption, increasing the energy utilisation efficiency;
- using ammonia as refrigerant (zero GWP and zero ODP), environmental friendly;
- cogeneration of refrigeration and electricity (*a variety of cooling levels*)
- Competitiveness with conventional power/cooling cogeneration technologies: Goswami cycle and APC cycle (absorption power/cooling combined cycle)

Absorption/Adsorption

- Thermally driven refrigeration: absorption/adsorption
- Refrigerant: ammonia (NH₃), water(H₂O), methanol (CH₄O), lithium bromide (LiBr)...
- Ammonia:
 - ✓ Zero ODP, zero GWP
 - ✓ the most cost effective and energy efficient method of processing and storing frozen and unfrozen foods
 - its distinctive smell is detectable at concentrations (5 ppm) well below those considered to be dangerous (35 ppm limitation for short term exposure about 15 minutes)
 - ✓ lighter than air
 - ✓ BREEAM, UNEP, ASHRAE etc. have given decent credits to ammonia

Goswami cogeneration cycle

absorption-basis cogeneration cycle)

- proposed by Goswami in 1995 based on Kalina cycle
- the binary mixture of ammonia and water
- Cooling effect extracted from the exhausted low temperature vapor of the turbine (sensible heat)
- Low or medium heat source from 80 to 200 °C: thermal efficiency of cooling (COP)
 0.01 ~ 0.06; thermal efficiency of power generation 0.05 ~ 0.10.
- So far no practical application

Drawbacks compared with LH Cogen cycle

- Require more complex parts, such as liquid pump or rectifier or separator)
- Limited range of heat source
- Low refrigeration COP : the working fluid at the exit of the turbine likely remained as wet vapour

APC cycle

Ammonia absorption power/cooling combined cycle (APC)

- an improved Goswami cycle, employing a throttle valve to ensure the sub-cooling state before vaporisation,
- Much more complex system
- Medium heat source from 200 °C to 450 °C: thermal efficiency of cooling and power was 0.06 and 0.21 with 450 °C heat source.
- So far no practical application

Drawbacks compared with LH Cogen cycle

- Require more complex parts, such as liquid pump or rectifier or separator, throttle valve
- the complex design compromises the compactness
- Low refrigeration COP

LH Cogen cycle

LH Cogen (adsorption-basis cogeneration cycle)

Inherits the merits of adsorption over absorption

- a wider range of thermal energy utilisation, 50 ~ 600 °C (NiCl₂/MnCl₂/BaCl₂/CaCl₂/MgCl₂/NaBr/SiCl₂.....)
- a much simpler construction requiring easier operation and maintenance
 (no liquid pump or rectifier or separator for refrigerant)
- Evaporation refrigeration (latent heat), ideal COP as 0.4 (Goswami and APC < 0.1), ideal thermal efficiency of p $^{0.02}$

Drawbacks compared others

- Natural Intermittence
- Relatively unstable reaction rate, impact on the expander performance.

2. Design and manufacture of LH Cogen system

Principle of LH Cogen system

Principle of LH Cogen system

two sets of adsorption cycle are working out-of-phase to overcome the intermittence of adsorption

Photos of adsorption chiller

Photos of adsorption chiller

3. Experimental studies and modelling analysis

Experimental setup

Adsorption chiller

Data collection devices

Cooling tower

Control panel of chiller

Integration with scroll expander

Light bulbs as load bank

Result: Adsorption chiller performance

		Cycle time (min)	Average heating temperature (°C)	Average refrigeration temperature (°C)	Average cooling power (W)	СОР
	MR	13	125	-2.50	3190	0.20
	Non- MR	13	126	-0.02	2090	0.14
	MR	26	124	-0.80	2410	0.14
				and	skills	

Result: Scroll expander performance

Result: Modelling simulation analysis

Strong mutual restricts between desorption and expansion

Result: Cogeneration performance

Prototype of linear (free-piston) generator test rig (2)

Schematic diagram of linear expander generator

Piston velocity as a function of piston position at steady running condition. (pressure 3.25 bar)

4. Improvement and potential application

Improved design

A possible solution may mitigate or even eliminate the mutual restricts between the decomposition in reaction bed and the expansion process in the expander

Potential reactive materials

Sa	alt complexes	Desorption	Desorption pressure	Reaction enthalpy ΔH	СОР	Exergy efficiency	
		temperature (°C)	(MPa)	(J/mol(NH ₃))		Power	Refrigeration
B	aCl ₂ (8-0 NH ₃)	85.2	2.4	37665	0.57	0.39	0.23
C	aCl ₂ (8-4 NH ₃)	106	2.4	41013	0.41	0.24	0.13
м	nCl ₂ (6-2 NH ₃)	174.8	2.4	47416	0.42	0.19	0.089
N	liCl ₂ (6-2 NH ₃)	255	2.4	56160	0.34	0.14	0.056

Potential applications

Biomass

Small scale household systems combined with biomass boiler / solar thermal units

Utilizing abundant waste heat in industries

5. Conclusions

- The adsorption cogeneration concept has been demonstrated and the viability has been preliminarily proven.
- The major challenge is the mutual restricts between the desorption process and the expansion process of the expander.
- Both linear expander and scroll expander are working driven by gases (air or ammonia).
- The contradiction between the mountain-shaped desorption rate and the stable inlet required by power generation.
- Better refrigeration capacity than absorption-basis cogeneration technologies.

Future Work

- Different complex salts may be considered for different refrigeration levels.
- An advanced system could be developed with a secondary condenser potentially can be used to mitigate the above problems.
- Due to the unsteady output, an energy storage unit may be added to the LH Cogen, using electricity storage devises such as batteries and supercapacitors.
- Further tests on linear expander using NH3 is necessary, when funding available to build a new unit using materials adaptable/suitable for NH3.
- Re-design, manufacture and optimise the LH Cogen system including the adsorption unit, the linear expander.

Further field tests using different low grade heat sources.

Acknowledgement

This research outcome is from the research projects funded by Engineering and Physical Sciences Research Council (**EPSRC**):

- <u>'LH Cogen</u>: Low grade heat driven adsorption-linearexpander cycle for cogeneration of power and refrigeration' (EP/I027904/1)
- 'GLOBAL Sustainable Energy through China-UK
 Research Engagement (SECURE)' (EP/K004689/1).

Thank You!

Dr Yaodong Wang

Dr Huashan BAO

Mr Constantinos Charalambous

Dr Lin CHEN

Mr Ian Douglass

