
Later Validation/Earlier Write: Concurrency Control for Resource-Constrained 
Systems with Real-Time Properties 

Kamal Solaiman, Graham Morgan 
School of Computing Science 

Newcastle University 
Newcastle-upon-Tyne, UK 

{Kamal.Solaiman, Graham.Morgan}@ncl.ac.uk 
 
 

Abstract— We describe an algorithm for optimistic 
concurrency control suitable for governing transactions 
operating on databases residing on resource constraint devices. 
We are concerned with real-time applications that utilize such 
devices in a computationally demanding manner (e.g., gaming). 
Therefore, increasing energy efficiency and reducing latency 
are primary goals for our algorithm to afford higher overall 
performance and longevity of battery life. We attempt to 
improve energy efficiency by reducing persistent store access 
and satisfy real-time requirements via transaction scheduling 
that affords greater determinism.  

Keywords-component; transaction; serializability; real-time 
database system; optimistic concurrency control 

I.  INTRODUCTION 
Concurrency control is a mechanism for coordinating 

simultaneous access to shared data. In databases such access 
occurs when more than one transaction at a time reads or 
writes to the same data. In such a setting, the main goal of a 
concurrency control algorithm is the creation of an ordered 
read/write schedule that ensures database correctness 
(atomicity, consistency, isolation, durability - ACID). Two 
approaches have been investigated in the literature: (i) 
pessimistic [1]; (ii) optimistic [2]. 

In a pessimistic approach transactions are blocked (via 
the mutual exclusion/locking of data) until such a time that 
there is no possibility that an incorrect schedule may be 
created. In optimistic concurrency control blocking is 
reduced; transactions are allowed to proceed but there is a 
possibility that one or more transactions are rolled back to 
satisfy correctness (correcting errors in the schedule via pre-
commit validation). To allow the optimistic approach, writes 
are held local to the transaction until the schedule is deemed 
correct and a transaction can commit. 

Optimistic approaches have the potential to provide 
greater performance than pessimistic approaches. This 
occurs when the locking incurred in pessimistic approaches 
inhibits transaction progression more than the cost of rolling 
back only those transactions that violate correctness. As a 
general rule, the lower the contention for shared data the 
more appropriate the optimistic approach becomes.  

The rollback and restart of transactions is not usually 
viewed as a great cost to a system’s resources if the only 
other option is a worse performing pessimistic approach (i.e., 
more waiting/blocking). However, if limiting persistent state 

access is considered important then this may negate these 
performance gains. Such a situation may occur if power 
consumption is at a premium (as persistent access is usually 
more expensive than local memory access). This is a 
common occurrence for mobile devices. 

In this paper we present an algorithm that affords the 
benefit of optimistic concurrency control while limiting 
persistent state access that is a result of transaction rollback. 
Considering platforms with limited power and high 
persistent store latencies inspires our work. More 
specifically, gaming devices with hardware update cycles 
measured by the decade. Classic examples are gaming 
devices such as the Sony PSP, and Nintendo DS. In such 
systems any advantage that can be gained in terms of 
performance is desirable. In addition, applications that run on 
such devices are typically real-time in nature and exhaust all 
available resources if possible (e.g., if graphics detail can be 
increased it will be increased). This adds another constraint, 
that of determinism in the run-time schedule that we wish to 
consider. 

 

II. BACKGROUND AND RELATED WORK 
In this section we provide a brief description of basic 

optimistic concurrency control to allow the reader to 
understand our algorithm. This basic description continues 
with advancements that have been made in the validation 
process for optimistic concurrency control. We then 
describe how the technique of re-running aborted 
transactions from in-memory values has afforded increases 
in overall system performance. Finally, we identify the 
contribution of our algorithm by utilizing the described 
techniques in such a manner as to satisfy our own 
requirements of increased determinism coupled with 
limiting access to persistent store. 

 

A. Optimistic Concurrency Control 
Kung and Robinson proposed the optimistic approach via 

a three phased transaction execution (shown in figure 1) [2].  
 
 
 
 
 



 
 
 
 

Figure 1. OCC algorithms phases 
  

During the read phase transactions access data without 
restriction and make their own private copies of such data. 
All computation that is carried out by a transaction occurs on 
the private copy. When a write is requested it is enacted on 
the private copy. During the validation phase a resolution 
policy is enacted. In principle, other executing transactions 
are considered to determine if the write requests can be 
satisfied without invalidating the correctness of the overall 
read/write schedule. If the writes are valid, the write phase is 
enacted that commits the changes to persistent storage. 
Alternatively, the transaction may abort if a valid schedule is 
not possible and tries again later. If a transaction has no 
writes, then the write phase is not required, with commit 
being enacted to bring the transaction to a logical end. 

 

B. Forward and Backward Validation 
Harder proposes two schemes [3]: Backward Oriented 

Optimistic Concurrency Control (BOCC) and Forward 
Oriented Optimistic Concurrency Control (FOCC): 

 
• BOCC – intersection between the read set of a 

validating transaction is compared with the 
write sets of currently executing transactions. 
An assumption is made that these other 
transactions finished their read phases before the 
validating transaction.  

• FOCC – intersection between write set of 
validating transaction and the read sets of 
currently executing transactions that have yet to 
finish they’re read phase are compared. 

 
In BOCC intersections will require the validating 

transaction to abort. In FOCC there is a degree of flexibility 
in that a number of strategies are possible [3]: 

 
• Delay the validating transaction and restart the 

validation phase later. 
• Abort all conflicted transactions and commit 

validating transaction. 
• Abort validating transaction only. 

 
FOCC has found popularity with researchers due to the 

flexibility it affords in terms of resolution policies. For 
example, in real-time databases conflicts could be resolved 
based on a transaction’s priority (e.g., [4], [5], [6] [7]).  
 

C. Virtual Execution 
Virtual execution allows those transactions that have 

been aborted to re-execute using in-memory values as 
opposed to reading directly from persistent store. Cached 

values from the write sets of committed transactions 
together with read sets from currently executing transactions 
populate a buffer local to the transaction management 
system. This can improve performance if overheads 
associated to persistent store access are significant. 
Therefore, distributed data stores [12] and real-time 
databases [8] have made use of such techniques.  

Analysis has shown that virtual execution approaches that 
utilize optimistic concurrency control perform better if 
transactions are allowed to reach the end of their read phase 
before being aborted [9] [10]. This is intuitive, as 
transactions that have been aborted early would not have 
retrieved all the required data to be ready locally for the 
rerun phase. 

 

D. Contribution 
Considering the related work, our first thought was that 

the combination of FOCC together with virtual execution 
would provision an appropriate solution for our 
requirements. For example, the OCC with Broadcast Rerun 
described in [9] provides a reasonable starting point for an 
implementation. However, when considering the details of 
such an approach within the context of our own 
requirements (real-time, limited resources) the two 
following observations led us to consider the algorithm 
presented in this paper: 

 
1. Transactions that enter rerun execute quicker than 

those in their initial run (as there is no persistent 
store access). 

2. The validation phase presents a degree of non-
determinism with respect to how long it will take. 
 

As reruns are much quicker they can be achieved 
multiple times with minimum performance overhead. 
Therefore, it would be better to keep transactions in rerun 
until we can deterministically say that when transactions 
leave rerun they will complete, irrelevant of the delay 
imposed by the validation step. This would allow 
prioritization of rerun transactions without concern for non-
deterministic latency in the validation phase. The novel 
approach advocated by our algorithm to overcome this is the 
contribution in this paper. 

 

III. ALGORITHM 
We now describe our algorithm by first identifying its 

novelty and then providing a brief overview of how the 
algorithm works. Pseudo code is presented to allow others to 
replicate our work with ease. 

 

A. A Different Approach 
Our algorithm fundamentally changes the order of the 

traditional read/validation/write phases. Write now follows 

Read phase Validation 
Phase 

Write 
Phase 



read with validation occurring after write. This is shown in 
figure 2. 

 
 

 
 
 

Figure 2. Algorithm phases 
 

 
In addition to the reordering of the phases the algorithm 

makes use of a rerun policy. Those transactions that are 
rolled back are then rerun using in-memory data derived 
from retaining a buffer that records the writes of committing 
transactions and the reads of uncommitted transactions. 

By moving the validation phase we hope to encourage 
the following: 

 
• Ensure the nearest to expiring transaction (reaching 

their deadline) is afforded priority to commit. 
• No need to block transactions during the write and 

validation phases to promote real-time efficiencies 
and allow greater determinism. 
 

B. Description 
Transactions that reach the end of the read phase join a 

pre-commit set. Members of the pre-commit set may be 
elected to proceed to the write phase by a scheduler 
(assuming no conflict) or be rerun (conflict). The scheduler 
operates a priority approach as described in [11].  

Before transactions reach the write phase they may be 
aborted and rerun. Transactions that are in their initial run 
(i.e., reading directly from persistent store) are allowed to 
proceed to the end of the read phase and join the pre-commit 
set, irrelevant of conflicts. In a traditional optimistic 
approach without rerun such transactions may be aborted. 
However, our desire is to gain improved performance by 
retrieving persistent store data only once (as described in 
[9]). Therefore, only transactions in the pre-commit set, 
rerunning or waiting, may be aborted and rerun.  

Validation is achieved by identifying the intersection 
between the committed transaction’s write set WS(Tc) and 
every read set of all running transactions RS(Ti): 

 
WS(Tc) ∩ RS(Ti) ¬= φ 

 
If the above holds true (i.e., there is intersection), then the 

resolution strategy is as follows: 
 
• If transaction is in initial run then let it proceed but 

mark it for rerun (to prevent it from progressing to 
write phase). 

• If transaction is in rerun then abort. Ensure that the 
read sets of all aborted transactions are updated to 
reflect the write set of the validating transaction. 

 
The write and validation phases are collectively 

considered a single critical section, only allowing one 
transaction at a time to enter these phases. New transactions 
may start the read phase at any time as: 

 
• If a transaction starts during another transactions 

write phase and reads outdated persistent store then 
this will be captured during the later validation 
phase. 

• If a transaction starts during another transactions 
validation phase then it will read updated writes 
from this transaction directly from the database (as 
validation occurs after write). 
 

The above two properties help a great deal in that we 
don’t delay (via blocking) transactions reading from 
persistent store (which is expensive). But we do retain the 
correctness schedule associated to the concurrency control 
algorithm. 

Finally, after the validation phase is completed the write 
set associated to the transaction within the critical section is 
discarded. 

Read-only transactions are treated slightly differently in 
that if they are validated as appropriate to proceed to the 
write phase they simply commit.  

The algorithm is described thus (WS = write set; RS = 
read set; CS = conflicted items set; Tc = committed 
transaction, Ti = distinct transaction): 

 
commit WS(Tc) ; 
validate Ti  

foreach Ti (i=1,2,…,n) in active TS  
{ 

CS := WS(Tc) ∩ RS(Ti); 
IF CS ¬= ∅  THEN 

           foreach Oj  (j=1,2,...,m) in CS  
           {read CS(Oj) from WS(Tc);} 

    update( RS(Ti), CS); 
} 

discard WS(Tc); 
update( RS(Ti), CS)  
{ 

if Ti = first run then 
              wait till the end of read phase(); 

foreach Oj  (j=1,2,...,m) in CS  
   {update RS(Oj)from CS;} 

rerun Ti; 
} 
 

The algorithm described creates schedules that are 
serializable (which enforces the ACID properties of 
databases).  

If there is a complete failure of the system then on re-start 
all transactions that have not committed start again and read 
from the database directly (as if it were the first run). Any 
validation that was occurring during failure would be lost. 
However, as the transaction initiating validation has already 
written to the database their writes will be available on 
restart. 

Read phase Validation 
Phase 

Write 
Phase 



 

IV.  CONCLUSIONS AND FUTURE WORK 
We have presented an algorithm provisioning 

serializability that utilizes reruns to limit repeated persistent 
store access of restarted transactions. We primarily do this 
to conserve energy on resource-constrained devices and 
reduce latency associated with such access. We have 
tailored the OCC Broadcast During Rerun as described in 
[9] by moving the validation phase to after the write phase. 
This affords more determinism in the execution as 
transactions can enter the read phase at any time without 
delaying a write due to extended validation times. 
Compared to research in real-time databases (e.g., [13, 14, 
15]), our approach to inverting the validation and write 
phases is novel.  

This paper provisions only the algorithm and, therefore, 
our initial research into concurrency control on constrained 
devices with real-time requirements. However, the 
contribution of the algorithm is significant alone due to its 
unique nature of allowing writes to occur before validation. 
In our case this allows a greater degree of determinism to be 
applied at the application level. This is because whichever 
transaction is elected to proceed from the read phase will 
write without delay and the write time can be known (or at 
least determined with some accuracy). 

The algorithm does have limitations, but these reflect the 
context of the work (resource-constrained hand held 
devices). One limitation is that the transaction system must 
be co-located on the same device as the transactional clients 
to ensure the efficient management of reruns. Another 
limitation is that a transaction rerun must not deviate from 
the read/write set of previous runs.  

Our future work will concentrate on validation, 
experimentation and implementation. We work with hand 
held gaming devices so we will deploy our approach on 
such devices to determine its effectiveness. In addition, we 
would like to explore how our algorithm may be applied in a 
distributed setting. Having the write phase before validation 
may seem unintuitive, but could have some interesting 
applications in distributed systems.  
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