
Later Validation/Earlier Write: Concurrency Control for Resource-Constrained
Systems with Real-Time Properties

Kamal Solaiman, Graham Morgan
School of Computing Science

Newcastle University
Newcastle-upon-Tyne, UK

{Kamal.Solaiman, Graham.Morgan}@ncl.ac.uk

Abstract— We describe an algorithm for optimistic
concurrency control suitable for governing transactions
operating on databases residing on resource constraint devices.
We are concerned with real-time applications that utilize such
devices in a computationally demanding manner (e.g., gaming).
Therefore, increasing energy efficiency and reducing latency
are primary goals for our algorithm to afford higher overall
performance and longevity of battery life. We attempt to
improve energy efficiency by reducing persistent store access
and satisfy real-time requirements via transaction scheduling
that affords greater determinism.

Keywords-component; transaction; serializability; real-time
database system; optimistic concurrency control

I. INTRODUCTION
Concurrency control is a mechanism for coordinating

simultaneous access to shared data. In databases such access
occurs when more than one transaction at a time reads or
writes to the same data. In such a setting, the main goal of a
concurrency control algorithm is the creation of an ordered
read/write schedule that ensures database correctness
(atomicity, consistency, isolation, durability - ACID). Two
approaches have been investigated in the literature: (i)
pessimistic [1]; (ii) optimistic [2].

In a pessimistic approach transactions are blocked (via
the mutual exclusion/locking of data) until such a time that
there is no possibility that an incorrect schedule may be
created. In optimistic concurrency control blocking is
reduced; transactions are allowed to proceed but there is a
possibility that one or more transactions are rolled back to
satisfy correctness (correcting errors in the schedule via pre-
commit validation). To allow the optimistic approach, writes
are held local to the transaction until the schedule is deemed
correct and a transaction can commit.

Optimistic approaches have the potential to provide
greater performance than pessimistic approaches. This
occurs when the locking incurred in pessimistic approaches
inhibits transaction progression more than the cost of rolling
back only those transactions that violate correctness. As a
general rule, the lower the contention for shared data the
more appropriate the optimistic approach becomes.

The rollback and restart of transactions is not usually
viewed as a great cost to a system’s resources if the only
other option is a worse performing pessimistic approach (i.e.,
more waiting/blocking). However, if limiting persistent state

access is considered important then this may negate these
performance gains. Such a situation may occur if power
consumption is at a premium (as persistent access is usually
more expensive than local memory access). This is a
common occurrence for mobile devices.

In this paper we present an algorithm that affords the
benefit of optimistic concurrency control while limiting
persistent state access that is a result of transaction rollback.
Considering platforms with limited power and high
persistent store latencies inspires our work. More
specifically, gaming devices with hardware update cycles
measured by the decade. Classic examples are gaming
devices such as the Sony PSP, and Nintendo DS. In such
systems any advantage that can be gained in terms of
performance is desirable. In addition, applications that run on
such devices are typically real-time in nature and exhaust all
available resources if possible (e.g., if graphics detail can be
increased it will be increased). This adds another constraint,
that of determinism in the run-time schedule that we wish to
consider.

II. BACKGROUND AND RELATED WORK
In this section we provide a brief description of basic

optimistic concurrency control to allow the reader to
understand our algorithm. This basic description continues
with advancements that have been made in the validation
process for optimistic concurrency control. We then
describe how the technique of re-running aborted
transactions from in-memory values has afforded increases
in overall system performance. Finally, we identify the
contribution of our algorithm by utilizing the described
techniques in such a manner as to satisfy our own
requirements of increased determinism coupled with
limiting access to persistent store.

A. Optimistic Concurrency Control
Kung and Robinson proposed the optimistic approach via

a three phased transaction execution (shown in figure 1) [2].

Figure 1. OCC algorithms phases

During the read phase transactions access data without
restriction and make their own private copies of such data.
All computation that is carried out by a transaction occurs on
the private copy. When a write is requested it is enacted on
the private copy. During the validation phase a resolution
policy is enacted. In principle, other executing transactions
are considered to determine if the write requests can be
satisfied without invalidating the correctness of the overall
read/write schedule. If the writes are valid, the write phase is
enacted that commits the changes to persistent storage.
Alternatively, the transaction may abort if a valid schedule is
not possible and tries again later. If a transaction has no
writes, then the write phase is not required, with commit
being enacted to bring the transaction to a logical end.

B. Forward and Backward Validation
Harder proposes two schemes [3]: Backward Oriented

Optimistic Concurrency Control (BOCC) and Forward
Oriented Optimistic Concurrency Control (FOCC):

• BOCC – intersection between the read set of a

validating transaction is compared with the
write sets of currently executing transactions.
An assumption is made that these other
transactions finished their read phases before the
validating transaction.

• FOCC – intersection between write set of
validating transaction and the read sets of
currently executing transactions that have yet to
finish they’re read phase are compared.

In BOCC intersections will require the validating

transaction to abort. In FOCC there is a degree of flexibility
in that a number of strategies are possible [3]:

• Delay the validating transaction and restart the

validation phase later.
• Abort all conflicted transactions and commit

validating transaction.
• Abort validating transaction only.

FOCC has found popularity with researchers due to the

flexibility it affords in terms of resolution policies. For
example, in real-time databases conflicts could be resolved
based on a transaction’s priority (e.g., [4], [5], [6] [7]).

C. Virtual Execution
Virtual execution allows those transactions that have

been aborted to re-execute using in-memory values as
opposed to reading directly from persistent store. Cached

values from the write sets of committed transactions
together with read sets from currently executing transactions
populate a buffer local to the transaction management
system. This can improve performance if overheads
associated to persistent store access are significant.
Therefore, distributed data stores [12] and real-time
databases [8] have made use of such techniques.

Analysis has shown that virtual execution approaches that
utilize optimistic concurrency control perform better if
transactions are allowed to reach the end of their read phase
before being aborted [9] [10]. This is intuitive, as
transactions that have been aborted early would not have
retrieved all the required data to be ready locally for the
rerun phase.

D. Contribution
Considering the related work, our first thought was that

the combination of FOCC together with virtual execution
would provision an appropriate solution for our
requirements. For example, the OCC with Broadcast Rerun
described in [9] provides a reasonable starting point for an
implementation. However, when considering the details of
such an approach within the context of our own
requirements (real-time, limited resources) the two
following observations led us to consider the algorithm
presented in this paper:

1. Transactions that enter rerun execute quicker than

those in their initial run (as there is no persistent
store access).

2. The validation phase presents a degree of non-
determinism with respect to how long it will take.

As reruns are much quicker they can be achieved
multiple times with minimum performance overhead.
Therefore, it would be better to keep transactions in rerun
until we can deterministically say that when transactions
leave rerun they will complete, irrelevant of the delay
imposed by the validation step. This would allow
prioritization of rerun transactions without concern for non-
deterministic latency in the validation phase. The novel
approach advocated by our algorithm to overcome this is the
contribution in this paper.

III. ALGORITHM
We now describe our algorithm by first identifying its

novelty and then providing a brief overview of how the
algorithm works. Pseudo code is presented to allow others to
replicate our work with ease.

A. A Different Approach
Our algorithm fundamentally changes the order of the

traditional read/validation/write phases. Write now follows

Read phase Validation
Phase

Write
Phase

read with validation occurring after write. This is shown in
figure 2.

Figure 2. Algorithm phases

In addition to the reordering of the phases the algorithm

makes use of a rerun policy. Those transactions that are
rolled back are then rerun using in-memory data derived
from retaining a buffer that records the writes of committing
transactions and the reads of uncommitted transactions.

By moving the validation phase we hope to encourage
the following:

• Ensure the nearest to expiring transaction (reaching

their deadline) is afforded priority to commit.
• No need to block transactions during the write and

validation phases to promote real-time efficiencies
and allow greater determinism.

B. Description
Transactions that reach the end of the read phase join a

pre-commit set. Members of the pre-commit set may be
elected to proceed to the write phase by a scheduler
(assuming no conflict) or be rerun (conflict). The scheduler
operates a priority approach as described in [11].

Before transactions reach the write phase they may be
aborted and rerun. Transactions that are in their initial run
(i.e., reading directly from persistent store) are allowed to
proceed to the end of the read phase and join the pre-commit
set, irrelevant of conflicts. In a traditional optimistic
approach without rerun such transactions may be aborted.
However, our desire is to gain improved performance by
retrieving persistent store data only once (as described in
[9]). Therefore, only transactions in the pre-commit set,
rerunning or waiting, may be aborted and rerun.

Validation is achieved by identifying the intersection
between the committed transaction’s write set WS(Tc) and
every read set of all running transactions RS(Ti):

WS(Tc) ∩ RS(Ti) ¬= φ

If the above holds true (i.e., there is intersection), then the

resolution strategy is as follows:

• If transaction is in initial run then let it proceed but

mark it for rerun (to prevent it from progressing to
write phase).

• If transaction is in rerun then abort. Ensure that the
read sets of all aborted transactions are updated to
reflect the write set of the validating transaction.

The write and validation phases are collectively

considered a single critical section, only allowing one
transaction at a time to enter these phases. New transactions
may start the read phase at any time as:

• If a transaction starts during another transactions

write phase and reads outdated persistent store then
this will be captured during the later validation
phase.

• If a transaction starts during another transactions
validation phase then it will read updated writes
from this transaction directly from the database (as
validation occurs after write).

The above two properties help a great deal in that we
don’t delay (via blocking) transactions reading from
persistent store (which is expensive). But we do retain the
correctness schedule associated to the concurrency control
algorithm.

Finally, after the validation phase is completed the write
set associated to the transaction within the critical section is
discarded.

Read-only transactions are treated slightly differently in
that if they are validated as appropriate to proceed to the
write phase they simply commit.

The algorithm is described thus (WS = write set; RS =
read set; CS = conflicted items set; Tc = committed
transaction, Ti = distinct transaction):

commit WS(Tc) ;
validate Ti

foreach Ti (i=1,2,…,n) in active TS
{

CS := WS(Tc) ∩ RS(Ti);
IF CS ¬= ∅ THEN

 foreach Oj (j=1,2,...,m) in CS
 {read CS(Oj) from WS(Tc);}

 update(RS(Ti), CS);
}

discard WS(Tc);
update(RS(Ti), CS)
{

if Ti = first run then
 wait till the end of read phase();

foreach Oj (j=1,2,...,m) in CS
 {update RS(Oj)from CS;}

rerun Ti;
}

The algorithm described creates schedules that are
serializable (which enforces the ACID properties of
databases).

If there is a complete failure of the system then on re-start
all transactions that have not committed start again and read
from the database directly (as if it were the first run). Any
validation that was occurring during failure would be lost.
However, as the transaction initiating validation has already
written to the database their writes will be available on
restart.

Read phase Validation
Phase

Write
Phase

IV. CONCLUSIONS AND FUTURE WORK
We have presented an algorithm provisioning

serializability that utilizes reruns to limit repeated persistent
store access of restarted transactions. We primarily do this
to conserve energy on resource-constrained devices and
reduce latency associated with such access. We have
tailored the OCC Broadcast During Rerun as described in
[9] by moving the validation phase to after the write phase.
This affords more determinism in the execution as
transactions can enter the read phase at any time without
delaying a write due to extended validation times.
Compared to research in real-time databases (e.g., [13, 14,
15]), our approach to inverting the validation and write
phases is novel.

This paper provisions only the algorithm and, therefore,
our initial research into concurrency control on constrained
devices with real-time requirements. However, the
contribution of the algorithm is significant alone due to its
unique nature of allowing writes to occur before validation.
In our case this allows a greater degree of determinism to be
applied at the application level. This is because whichever
transaction is elected to proceed from the read phase will
write without delay and the write time can be known (or at
least determined with some accuracy).

The algorithm does have limitations, but these reflect the
context of the work (resource-constrained hand held
devices). One limitation is that the transaction system must
be co-located on the same device as the transactional clients
to ensure the efficient management of reruns. Another
limitation is that a transaction rerun must not deviate from
the read/write set of previous runs.

Our future work will concentrate on validation,
experimentation and implementation. We work with hand
held gaming devices so we will deploy our approach on
such devices to determine its effectiveness. In addition, we
would like to explore how our algorithm may be applied in a
distributed setting. Having the write phase before validation
may seem unintuitive, but could have some interesting
applications in distributed systems.

ACKNOWLEDGMENT
We would like to thank Fahren Bukhari for his insightful

discussions regarding the development of this algorithm.

V. REFERENCES
[1] Eswaran, K., P., Gray, J., N., Lorie, R., A., and Traiger, I., L.

The notions of consistency and predicate locks in a database
system, in Commun. ACM. p. 624-633. 1976.

[2] Kung, H., T. and Robinson, T., John, On optimistic methods
for concurrency control. ACM Trans. Database Syst, 6, 2: p.
213-226. 1981.

[3] Härder†, T., Observation on Optimistic Concurrency Control
Schemes. Inform. Systems, 9(2): p. 111-120, 1984.

[4] Huang, J., Stankovic, A., J., Ramamritham, K., Towsley,
D., Experimental Evaluation of Real-Time Optimistic
Concurrency Control Schemes, in Proc. 17th Conf. Very
Large Databases. 1991. p. 35-46.

[5] Lee J., Precise serialization for optimistic concurrency
control, in Elsevier Science B.V. 1999: The Netherlands. p.
163-179.

[6] Lee, J., Son, H., S., Using Dynamic Adjustment of
Serialization Order for Real-time Database Systems, in 14th
IEEE Real-time Systems Symposium. 1993.

[7] Lindstrom, J., Integrated and adaptive optimistic concurrency
control method for real-time databases, in International
Conference on Real-Time Computing Systems and
Application. 2002.

[8] Franaszek, A., P., Robinson T., J., Thomasian A., Access
invariance and its use in high contention environments, in
Proc. Int. Conf. on Data Engineering. 1990. p. 47-55.

[9] Yu s. P., Dias, M., D., Analysis of hybrid concurrency
control schemes for a high data contention environment, in
IEEE Trans. Software Eng. 1992. p. 118-129.

[10] Yu s. P., Dias, M., D., Performance analysis of optimistic
concurrency control schemes with different rerun policies, in
Proceedings of the Fifteenth Annual International 1991:
Japan p. 294 – 300

[11] Haritsa, R., J., Livny, M., Carey, J., M., Earliest deadline
scheduling for real-time database systems, in Proc. 12th
Real-Time System Symp. 1991.

[12] Thomasian, A., Distributed optimistic concurrency control
methods for high-performance transaction processing.
Knowledge and Data Engineering, IEEE Transactions on,
1998. 10(1): p. 173-189.

[13] Wang Y., W.Q., Wang H., Dai G. Dynamic adjustment of
execution order in real-time database. in In Proceedings of
18th International Parallel and Distributed Processing
Symposium. 2004.

[14] Lindström J., R.K., Using real-time serializability and
optimitic concurrency control in firm real-time database. , in
in proceedings of the 4th IEEE International Baltic
Workshop on DB and IS Baltic DB IS' 2000. p. 25-37.

[15] Bai T., L.Y., Hu Y., Timestamp vector based optimistic
concurrency control protocol for real-time databases, in in
Wireless Communications, Networking and Mobile
Computing 2008. WiCOM ’08. 4th International Conference.
p. 1-4.

