
Interest Management Middleware for Networked Games
Graham Morgan, Fengyun Lu, Kier Storey

School of Computing Science, University of Newcastle, UK

Abstract

In this paper we present an implementation of an interest
management scheme using standard message oriented middleware
(MOM) technologies to provide scalable message dissemination
for networked games. The aim of all interest management
schemes is to identify when objects that inhabit a virtual world
should be interacting and to enable such interaction via message
passing while preventing objects that should not be interacting
from exchanging messages. The time taken by existing interest
management schemes to resolve which objects influence each
other may be too large to enable the desired interaction to occur.
Furthermore, existing interest management implementations tend
to be proprietary and are built directly on top of networking
protocols. In this paper we present an approach to interest
management based on the predicted movement of objects. Our
approach determines the frequency of message exchange between
objects on the likelihood that such objects will influence each
other in the near future. We then demonstrate, via implementation
and experimentation, how existing middleware standards provide
a suitable platform for the deployment of our interest management
scheme.

Keywords: middleware, games, networking

CCS: D.2.12 Interoperability - Distributed objects, I.3.2 Graphics
Systems - Distributed/network graphics, C.2.4 Distributed
Systems - Distributed applications

1 Introduction

Networked games allow a geographically dispersed set of players
to participate in a shared gaming environment. A gaming
environment may provide a virtual world that presents some
geographic model populated with moving objects with game play
achieved by players influencing the state of the virtual world.
Typically, a player’s console holds a sub-set of game state with
players informing each other of their actions via the exchange of
state update messages between consoles (either directly or
indirectly via some intermediary server). The ability to allow
players to maintain a mutually consistent view of the virtual world
and still allow players to influence the virtual world in a timely
manner are requirements that need to be satisfied to ensure
players receive an appropriate gaming experience [Singhal and
Zydra 1999]. A game may be played out in real-time, requiring

player directed changes of the virtual world to be propagated to
other players in real-time. In early versions of such games
[Sweany 1999], the number of players that could participate in a
virtual world was limited to relatively low numbers (e.g., less than
16) with the geographic placement of players restricted to the
same LAN to guarantee the most satisfying gaming experience.
Recently, higher bandwidth, lower latency networks to the home
have allowed one or two hundred geographically distributed
players to participate in games of this genre (e.g., [Sony 2004]).
However, this is still viewed as limiting as the desire of players to
participate in large, complex, virtual spaces with thousands of
other players have provided a substantial demand for large scale
networked games.

The scalability issues presented by a networked game relate,
primarily, to the number of players and the complexity of the
game (e.g., number of objects populating the virtual world). An
increase in the number of players may lead to an increase in
network traffic as a player’s console attempts to propagate local
game state updates to other players. If an attempt is not made to
identify appropriate message recipients and so inhibit the sending
and processing of unnecessary messages, then providing
participation for many hundreds or thousands of players will not
be possible. The process of identifying appropriate message
recipients, referred to as interest management, introduces further
computation and must be successfully completed in a timely
manner to ensure the real-time and consistency requirements of a
networked game are satisfied.

At present, networked games are built on standard protocols
provided by existing network infrastructures (e.g., TCP/IP for the
Internet) to ensure they are widely available for public use and so
commercially viable. This approach results in enabling
technologies that are proprietary and tend not to be suited to
heterogeneous environments (i.e., deployment across varying
platforms). Furthermore, programming distributed applications in
this manner is a time consuming, non-trivial exercise. Therefore,
middleware standards have been proposed (e.g., [OMG 2003])
that provide standard interfaces to services (e.g., location and
discovery, security, inter-process communication) that ease the
development of distributed applications. However, even the most
recent networked games tend to be built directly above network
layer protocols and do not benefit from the interoperability
provided by existing middleware technologies.

This paper describes our approach to satisfying the following
requirements:

• Provide a scalable interest management scheme suitable
for networked games.

• Provide an implementation of our interest management
scheme using standard middleware technology.

In the next section we describe existing approaches to interest
management and the suitability of existing middleware

technologies for networked game development. In section 3 we
describe our approach to interest management and in section 4 we
describe our interest management implementation. Performance
figures of our system are presented in section 5 with conclusions
drawn from our work presented in section 6.

2 Background and Related Work

In this section we describe existing approaches to interest
management and the common message dissemination approaches
found in existing middleware.

2.1 Interest Management

Interest management is the term commonly used to describe
restricted message dissemination between objects using virtual
space division. Interest management schemes may be classified
into two broad categories:

• Regions: In the region based approach [Miller and
Thorpe 1995] the virtual world is divided into well
defined regions that are static in nature (i.e., defined at
virtual world creation time). The recipient of a message
is limited to only interested participants (i.e., reside
within the same, or neighbouring, region as the sender).
An important consideration in a region based approach
is the size of the regions. A region must be of sufficient
size as to ensure objects have the ability to purposely
disseminate messages in one region before entering
another region. When an object traverses a region
boundary region membership must be updated (identify
a region an object belongs to). Determining a region
size that is suitable for all objects in a virtual world may
not be possible. For example, if region size is decided
when considering the top speed of a fighter aircraft then
the presence of soldiers traveling on foot may give rise
to unnecessary message exchange between foot soldier
objects that are separated by a distance too great for
such objects to influence each other. If region size is
more suited to foot soldier objects then a fighter aircraft
may traverse region boundaries with such frequency
that region membership may not be resolved in a timely
fashion (object may traverse a region in less time than it
takes to realize regional membership changes resulting
in an inability for such an object to disseminate
messages effectively).

• Auras: In the aura based approach each object is
associated with an aura that defines an area of the
virtual world over which an object may exert influence.
An aura may be simply modeled as a sphere that shares
its centre with the positional vector of the object it is
associated with. An object may potentially
communicate their actions only to objects that fall
within their aura. This approach is illustrated by the
Model, Architecture and System for Spatial Interaction
in Virtual Environments projects (MASSIVE)
[Greenhalgh and Benford 1995]. In the aura approach
there is no need to regionalize a virtual world. However,
there is a requirement for all objects to exchange
positional update information in order to identify when
aura collisions occur (we assume objects may influence
each other when their auras overlap). The frequency of
these message exchanges must be sufficient to ensure

that aura collision may be determined in a timely
fashion to allow objects to purposely disseminate
messages as and when aura collision occurs. There is
the possibility that aura collision may occur but objects
are unaware of this as such a collision may not last for a
sufficient amount of time to enable appropriate message
recipients to be identified before objects move away
from each other (aura collision no longer exists).

We describe the problem of resolving interest management in a
timely manner to enable meaningful message dissemination
between objects as the missed interaction problem.

2.2 Middleware

Middleware eases the development of distributed applications by
providing a supporting software infrastructure. Popular open
standards associated with such technologies are CORBA [OMG
2003] and Java RMI [Sun 1999]. However, the client/server
model they provide is not well suited to networked games where
the communication is asynchronous and message oriented in
nature.

An approach to communications known as message oriented
middleware (MOM) has been developed that may be more
appropriate than the client/server model of communications for
satisfying the messaging requirements of networked games.
MOM decouples communications between sender and receiver
(supplier and consumer), allowing one or more suppliers to issue
messages for one or more consumers. MOM has been identified
as suitable for providing the basis for message exchange for
building distributed multimedia applications [Gore et al. 2001].
Furthermore, the approach appears well suited to providing a
platform on which to build networked games. Mercury [Bharambe
et al. 2002] is a message dissemination system based on MOM
which, although proprietary, provides a positive assessment
regarding the practicalities for supporting networked games via
MOM. The Java Messaging Service (JMS) [Sun 2002] and the
CORBA Notification Service (CORBA NS) [OMG 2000] are two
popular MOM standards:

• JMS – Provides a standard API that allows Java
developers to integrate MOM into their applications.
The JMS specification does not indicate how the
underlying system implementation is achieved (e.g.,
architecture) resulting in a number of varying solutions
available from different vendors. JMS supports point-to-
point and publish/subscribe models of interaction.
Point-to-point is based on the notion of queues, with a
queue identified as an asynchronous mechanism for
passing messages from suppliers to consumers. A client
may get all its messages delivered to a queue, allowing
a queue to contain a variety of different message types.
Publish/subscribe is based on topics, with clients
publishing and subscribing to well defined topics. The
topic acts as a mechanism for gathering and distributing
related messages (as perceived by an application) to
clients (publishers and subscribers).

• CORBA NS – Provides a standard API that extends the
CORBA Event Service to include message filtering and
a quality of service framework. The central element of
the CORBA NS is a notification channel that assumes
the role of propagating events from suppliers to

consumers. The basic function is to propagate all events
to all consumers. However, the notification channel has
the ability to filter events to provide more customizable
message delivery for consumers. In addition to filtering,
a number of quality of service parameters can be
manipulated to tailor the behavior of a notification
channel. CORBA NS is ideally suited to deployment in
heterogeneous environments as the specification is
based on the CORBA architecture (allowing
applications to be written in a variety of languages and
deployed on different platforms to interoperate).

JMS and CORBA NS both provide appropriate messaging
services on which to deploy an interest management scheme.
Only the identity of a topic (JMS) or notification channel
(CORBA NS) is required by clients (suppliers and consumers) to
enact message passing (the identity of consumers need not be
known to suppliers). This provides benefits for large scale
applications (such as networked games) as reconfiguration of
existing suppliers/consumers is not required to introduce new
suppliers/consumers. Furthermore, a JMS or CORBA NS
implementation may be enhanced with scalable message
dissemination that may be suitable for one-to-many message
passing (e.g., [Deering 1989]) without alteration to their standard
specifications.

When implementing our interest management scheme we chose
CORBA NS over JMS. The main reason for this was the ability of
CORBA NS to support applications other than those written in
Java. Networked games (and most commercial games) are written
in C or C++, often using proprietary game engine technologies.
Even though our interest management scheme is implemented in
Java (see section 4), we may support applications written in other
languages that the OMG have defined language mappings to
CORBA (including C++).

3 Predictive Interest Management

In this section we describe an interest management scheme based
on the aura approach that attempts to overcome the missed
interaction problem by using a three step approach to message
exchange: (i) low frequency message exchange used for object
discovery; (ii) variable message exchange, with frequency of
messages between objects related to the probability of interaction
of such objects in the future; (iii) high frequency message
exchange between interacting objects. We present here only a
brief overview of the technique to enable a reader to gain the
basic underlying theory of the work.

3.1 Identifying Scope of Interest

The aura of an object describes an area of the virtual world
enclosed by a sphere (Figure 1). The radius of an aura is specified
on a per object basis and is fixed at object creation time. Objects
have the ability to influence each other when their auras collide
via the exchange of messages.

Obj

Aura at time tclt

Aura at time tclt+ft

Distance travelled
between tclt and tclt+ft

Predicted area
of influence

Figure 1: Defining Predicted Area of Influence (PAI).

A predicted area of influence (PAI) identifies the extent of an
object’s aura over a period of time given the distance an object
may travel in a straight line in any direction (figure 1). The period
of time used to identify a PAI is bounded by the current time, say
tclt, and some future time (tclt+ft, where ft is a positive number and
is defined system wide). By this method the distance an object,
say obj1, travels in a straight line identifies the radius of a sphere
that encloses all the areas of a virtual space reachable by obj1
between tclt and tclt+ft with the position vector of obj1 at time tclt
defining the centre of this sphere. Extending this radius by the
radius of obj1’s aura defines a sphere that describes the PAI for
obj1. When determining a PAI we assume an object is traveling at
its highest speed (defined on a per object basis) in a straight line at
time tclt and continues at this speed and direction until tclt+ft. This
presents a PAI that is guaranteed to contain all possible auras of
an object between tclt and tclt+ft irrelevant of an object’s velocity.
Assuming the highest speed remains constant for an object
throughout its lifetime allows a PAI to be calculated and fixed at
object creation time.

When the PAIs of two objects collide, but not their auras, there is
a possibility that such objects may influence each other and
subsequently exchange messages at some point in the near future.
A period of time (window of collision) may be defined within
which the auras of such objects may collide. Using collision
detection techniques based on the intersection of spheres we may
identify the separating distance between two objects as sd. If a
collision window exists between two objects then sd may be used
to determine an approximate upper bound value (AUBV)
indicating the time taken for the auras of these objects to collide
assuming they are traveling towards each other at their respective
full speeds. AUBV provides a basis for determining frequency of
message exchange between two objects within the same collision
window.

3.2 Message Exchange

An object is responsible for sending a positional update message
(PUM), identifying its position vector. PUMs are sent frequently
and form the basic mechanism for message exchange between
objects that are influencing each other. To determine if PAIs
overlap objects must send an admin PUM (APUM) containing
aura radius, PAI radius and vector position information. APUMs
are sent less frequently than PUMs and form the basic mechanism
for identifying when objects should exchange PUMs.

We assume the existence of a communications sub-system
capable of providing reliable FIFO channels that may facilitate

inter-object communications via the sending and receiving of
PUMs and APUMs:

• Admin: Used to disseminate APUMs to all objects.

• Local: Created on a per object basis to provide
mechanism for passing APUMs and PUMs between
objects without the need to send messages to all objects.

Three local timers, associated on a per object basis, are
responsible for regulating the frequency of publishing APUMs on
the admin channel (ta), APUMs on a local channel (tal) and
PUMs on a local channel (tp) respectively. The value of ta should
be set to a value that ensures APUMs may be received and
processed by all objects in time to determine potential aura
overlaps. The time interval tal used to define the frequency an
object publishes APUMs on the local event channel is determined
by AUBV. The time interval tp is defined on a per object basis at a
developer’s discretion (message exchange associated with
interacting objects).

The modeling of variable frequency message exchange via admin
and local channels is achieved as follows:

• Low frequency – all objects periodically send APUMs
to all other objects via the admin channel at a frequency
determined by ta.

• Variable frequency – an object, say Oi, sends APUMs
to another object, say Oj, using Oi’s local channel at a
frequency determined by tal if Oj determines that
interaction between Oi and Oj may occur in the near
future.

• High frequency – an object, say Oi, sends PUMs to
another object, say Oj, using Oi’s local channel at a
frequency determined by tp if Oj determines that
interaction between Oi and Oj is occurring now.

An object decides on subscription and APUM frequency based
only on local information (derived from PUMs and APUMs).
Therefore, it may be possible for an object, say Oi, to subscribe to
another object’s, say Oj’s, local channel without Oj subscribing to
Oi’s local channel. However, if such objects are moving closer to
each other then we may assume that Oj will receive the
appropriate APUM on the admin channel and subscribe to Oi’s
local channel before PUM message exchange is required. If
objects are moving apart then it may be that Oi will remove its
subscription from Oj’s local channel with Oj never subscribing to
Oi’s local channel. This is acceptable behaviour and an overhead
which is a result of attempting to prevent missed interactions.

4 A Distributed Implementation

We now describe an implementation using Java, the OpenFusion
CORBA NS [Prism 2004] and JacORB [Brose and Noffke 2002]
that realizes the conceptual model described in the previous
section.

4.1 System Architecture
A network of messaging servers is responsible for implementing
our interest management scheme on behalf of one or more local
clients with a client associated with a single messaging server.

Clients do not have to make calculations based on APUMs as this
is the responsibility of the messaging server network. The
scalability of our approach is reflected in the selective nature in
which APUMs and PUMs are propagated between messaging
servers, with local messaging servers acting as filters when
determining which clients should be the recipients of PUMs.
Scalability is further promoted as clients are unaware, at the
network level, of other clients. Clients may communicate with a
messaging server via a number of communication primitives
(CORBA RPC, TCP and UDP). The use of CORBA allows
clients to take advantage of CORBA services (e.g., security,
transactions, location and discovery). We include TCP and UDP
as they are commonly used, via socket programming, in current
network game development. For brevity, we consider only clients
using CORBA RPC in the remainder of this paper. Inter-
messaging server communication is achieved via the CORBA NS.
PUMs and APUMs published by a messaging server may be
required by multiple recipients (messaging servers). A multicast
mechanism may be employed below the CORBA NS for optimum
message dissemination. However, discussion on the
appropriateness of such a mechanism is beyond the scope of this
paper as we assume this optimisation is associated with the
CORBA NS implementation. In the OpenFusion CORBA NS
implementation, suppliers and consumers are connected directly
(without intermediary servers) over best effort (TCP) connections.

The two different message types associated with a local event
channel (PUM & APUM) are accommodated for by a messaging
server using two different interfaces to connect to the same event
channel. This provides the subscription semantics as described in
3.2. To accommodate message passing between messaging
servers, rather than have local channels created on a per object
basis, local channels are created on a per server basis.
Periodically, individual APUMs are combined into single
messages and distributed on a per-server basis using local
channels. Similarly, APUMs from a server destined for the admin
channel are combined into a single message. For clarity, we
continue describing local and admin channels as mentioned in
section 3 and refrain from discussing message aggregation
policies.

4.2 High Frequency Message Exchange

Figure 2 describes the flow of PUMs within a messaging server
and associated event channels. A client may only issue PUMs
associated with objects that are already registered with the local
messaging server. Registration is by a method call invoked on the
local messaging server by a client via the sending of a CORBA
sequence with each element of the sequence identifying individual
object properties (as a client may register more than one object at
a time). The return value of such a method call is a CORBA
sequence of identifiers that enables each object to be uniquely
identified within the virtual world. Clients must use such an
identifier when informing the local messaging server of changes
to an object’s state (e.g., position update, deletion from virtual
world). An object’s identifier is constructed from a client’s IOR
(interoperable object identifier – unique identifier used by
CORBA) coupled with a timestamp that is derived from a logical
clock that is incremented by a messaging server each time an
object is registered (irrelevant of client). This logical clock has a
maximum value that relates to the value an administrator deems
appropriate for the maximum number of objects a server may
manage. This approach provides a clear distinction between the
application level object identification from that used by interest

management. Considering that the client application may be
heterogeneous in nature (e.g., different naming conventions for
objects), the naming conventions for objects may not be
interoperable at the application level and so this distinction
between application and interest management identification is
necessary.

Once registration has occurred a client may issue PUMs to their
local server. This is achieved via a method invoked by a client on
the local messaging server consisting of a parameter containing a
CORBA sequence with each element of the sequence associated
with a single PUM. This allows a client to send multiple PUMs at
the same time (as a client may be hosting multiple objects). The
frequency of sending a PUM is decided by a client and relates to
the high frequency message exchange expected between clients. A
thread pool in the messaging server is responsible for accepting
PUMs from clients and depositing PUMs into the appropriate
inward message buffers held in the server.

C1

C2

C1

Publication
Channels

Subscribed
Channels

CORBA Notification
Service

Predictive
Interest

Management
Service
(PIMS)

Local Channel

Local Channel

Local Channel

Local Channel

Individual client
object updates &
initial registration

details

Object updates
from all clients

Inward Message Buffer - C1

Inward Message Buffer – C2

Inward Message Buffer – C3

Outward Message Buffer - C1

Outward Message Buffer – C2

Outward Message Buffer – C3

CORBA
Interface

CORBA
Interface

Publish

Consume

Figure 2: High fidelity message management.

An inward message buffer is present on a per-client basis with
each element of an inward message buffer representing the last
known position of an object. When a PUM is received the
appropriate inward message buffer elements are updated with new
object positional information. Periodically the Predictive Interest
Management Service (PIMS) retrieves information from all
message buffer elements that have been updated with new object
positional information. The PIMS implements predictive interest
management. There may be a possibility that the PIMS may not
retrieve object information as quickly as PUMs refresh the inward
message buffers. Therefore, an object’s positional update
information may be lost. However, this loss is acceptable as it is
assumed that an application places primary importance on the
most recent position of an object. The ability to overwrite inward
message buffer information in this manner minimizes the need to
introduce flow control at the client side.

On receiving PUMs from inward message buffers, the PIMS
places PUMs on the appropriate local event channel. The action of
publishing PUMs on local event channels allows subscribers
(other messaging servers) to consume PUMs and so enables
servers to forward PUMs to their own clients.

Messages consumed by the PIMS from local event channels
belonging to other messaging servers are placed in the appropriate
outward message buffers. These outward message buffers act in a
similar way to the inward message buffers with regard to client
association. A thread pool is responsible for periodically
consuming object information from the elements of the outward
message buffers and uses the reply parameters in a client call to
return PUMs to clients. A messaging server may send PUMs to

clients that have not sent PUMs for a substantial length of time
(i.e., due to object inactivity – timeout determined by client).

4.3 Variable Frequency Message Exchange

Figure 3 describes the components of our system that are
responsible for managing APUM message exchange between
servers. On registration of an object by a client the object
registration and deregistration service (ORDS) registers an
object’s details in a database. Once registered, these details are
used by the PIMS when determining local event channel
subscriptions. This indicates that aura and PAI radii are static
throughout an object’s lifetime. If this is not the case then a client
may reflect changes in aura and/or PAI radii by deregistering an
object and registering the object again with different aura and/or
PAI radii. The ORDS is also responsible for amending the
structure of inward message buffers to ensure any recently
introduced objects have an element associated with them for
recording incoming PUMs. The object database may be
implemented using existing database technologies and be
persistent. For our purposes we used mySQL [Widenius and
Amark 2002].

C1

C2

C1

Publication
Channels

Subscribed
Channels

CORBA Notification
Service

Predictive
Interest

Management
Service
(PIMS)

Admin Channel

Admin Channel

Admin Channel

Individual client
object initial

registration details
CORBA
Interface

CORBA
Interface

Database

Object
Registration

and
Deregistration

Service
(ORDS)

Update Object
details

Object
details

Inward Message
Buffers

Outward
Message Buffers

Amend Buffers

Amend Buffers

Local Channel

Local Channel

Publish

Consume

Subscribe/
Unsubscribe

Figure 3: Variable frequency message management.

At a frequency determined by an administrator (denoted by timer
ta in section 3.2), the PIMS will construct an APUM for
publication on the admin event channel using information
retrieved from the inward message buffers and associated object
details from the database. Due to the variable frequency on which
APUMs are published on the local event channels, the PIMS
reuses information gained when constructing the last PUM
together with information gained from the database when
publishing APUMs on the local event channel.

On receiving APUMs (irrelevant if they arrive on local or admin
event channels) the PIMS carries out the calculations described in
3.2 and determines appropriate frequency of APUM publication
for each local event channel and ensures such a frequency is
realized via the setting of the appropriate timeouts. The receiving
of an APUM also requires the PIMS to instruct the messaging
server to maintain the appropriate local event channel
subscriptions.

5 Experiments and Results

This section describes the experiments carried out to assess the
benefit of our approach to interest management. The primary
reason for our experiments is to deduce if our approach is
scalable. Ideally, we would like the addition of messaging servers
to allow an increased number of clients to be serviced
successfully.

There are two performance measures that are of interest: (i)
throughput; (ii) successful message delivery. When considering
throughput, we record the number of messages sent and the
number of messages received by clients during a single run of the
system. That is, when measuring throughput we only consider the
PUM message exchange that occurs between clients and their
local messaging servers, we do not count message exchange
between messaging servers (event channel traffic). In this manner
we derive performance of our overall system as perceived by
clients. In order to identify the success rate of message delivery
we record the number of messages lost due to buffer overwrites in
the messaging servers during a single run of the system. Due to
the quality of sevice provided by the OpenFusion CORBA NS, we
assume no messages are lost in transit across admin and local
event channels (which is what happened during our experiments).

In all our experiments we use messaging servers located on nodes
in different LAN segments. Clients are co-located on different
nodes with their local messaging server (same LAN segment),
with 10 nodes used for creating synthetic client traffic. Each client
hosts ten objects. Client numbers are increased using increments
of 500 from 500 to 6000, with measurements taken at each
increment. Clients are distributed as evenly as possible between
servers. Each experiment is repeated for 1 server through to 10
servers (inclusive). The frequency at which PUMs are sent by all
clients is set at approximately 3 per second. As the network
environment is shared with regular traffic, the experiments were
repeated a number of times throughout a day and the appropriate
mean values for the measurements recorded. Experiments were
conducted on Pentium 3GHz PCs with 512MB RAM running Red
Hat Linux 7.2 connected via 100 Mbits fast Ethernet.

An attempt is made to provide realistic movement of objects
within the virtual world. A number of targets (T) are positioned
within the virtual world that objects (O) travel towards. Each
target has the ability to relocate during the execution of an
experiment. Relocation of targets is determined after the elapse of
some random time (between Tmin and Tmax) from the time the
previous relocation event occurred. Furthermore, objects may
change their targets in the same manner (random time between
Ot

min and Ot
max). Given that the number of targets is less than the

number of objects and Tmin, Tmax, Ot
min and Ot

max are set
appropriately, objects will cluster and disperse throughout the
experiment. This provides a realistic movement of objects in a
virtual world.

Objects are uniform in size and their sizes do not change
throughout the experiment. Objects may move freely in any
direction. The auras of objects are varied and are chosen at
random (between 10 and 100 meters) and their maximum speeds
are also chosen at random (between 5 and 100 meters per second)
at initialization time. The value for determining PAI is standard
for all objects and is determined by how far an object may travel
at full speed in 20 seconds. The experiments were carried out with
a 5% level of coverage of object auras. That is, assuming no
object auras overlap then 5% of the virtual world will be covered
by object auras.

Before we discuss the figures we must state that the requirement
that a client sends 3 messages a second could not be satisfied in
some instances. Such instances occur when client numbers are
high and server numbers are fewer in number (messaging server
becomes overloaded). This is because synchronous calls are made
by a client to the messaging servers. A client may not issue the

next call until a previous call returns. Therefore, in some instances
clients could only submit at most 1 call a second. Another item to
note is that we are measuring PUM exchange, not message
exchange (as a single message may contain multiple PUMs).

Throughput

0

5000

10000

15000

20000

25000

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

Number of clients

N
um

be
r

of
 P

U
M

s
se

nt
/r

ec
ei

ve
d

a
se

co
nd 1 Server

2 Servers
3 Servers
4 Servers
5 Servers
6 Servers
7 Servers
8 Servers
9 Servers
10 Servers

Figure 4: Throughput.

Figure 4 shows the graph that identifies the throughput of our
system with rising client numbers for 1 through 10 server
configurations. The first observation to be made is that the
addition of servers allows greater throughput to be achieved. This
is more noticeable when client numbers are high, indicating that
the addition of servers provides more scalability in terms of client
numbers. For each server increment there is a noticeable
maximum throughput. That is, after a certain number of clients
have been reached there is a drop in throughput. This “client
threshold” is greater given more servers. For example, when 3
servers are present the client threshold appears to be around 1500
clients whereas when 7 servers are present this threshold has risen
to around 4500 clients. For higher server numbers, the drop off
rate after client threshold is noticeably less than that experienced
by lower server numbers. From our observations we may assume
our system is scalable in the context of our experiments as the
addition of servers result in: (i) higher peak throughput; (ii) less
pronounced drop off rate for throughput.

Messages Dropped by Buffers

0
5

10
15
20
25
30
35
40
45
50

500
1000

1500
2000

2500
3000

3500
4000

4500
5000

5500
6000

Number of clients

Pe
rc

en
ta

ge
 o

f m
es

sa
ge

s
dr

op
pe

d

1 Server
2 Servers
3 Servers
4 Servers
5 Servers
6 Servers
7 Servers
8 Servers
9 Servers
10 Servers

Figure 5: Messages dropped.

Figure 5 shows the graph that identifies the percentage of
messages dropped by our system given rising client numbers for 1
through 10 server configurations. The graph clearly shows that

increasing server numbers results in fewer dropped messages for
the same number of clients. Furthermore, the rate of increase of
dropped messages when client numbers are increasing is less
given additional servers.

From our observations we may assume our system is scalable in
the context of our experiments as the addition of servers result in:
(i) percentage of messages dropped decreases; (ii) decline in the
rate of messages dropped when client numbers increase.

6 Conclusion and Future Work

We have presented an approach to interest management suitable
for networked games that, we believe, will alleviate the problem
of missed interaction common in existing interest management
schemes. Only standard middleware technologies have been used
in our interest management scheme implementation, promoting
code reuse and benefiting from the interoperability provided by
existing middleware standards making our system suitable for
deployment in heterogeneous environments.

Our initial experiments identify that our approach is scalable as
the addition of servers improves the performance of our system
when satisfying increasing client numbers. We have successfully
demonstrated that standard middleware, in particular MOM, may
be incorporated into a scalable messaging dissemination scheme
for networked games and still achieve performance that is
acceptable for many game types.

Future work will enhance our interest management scheme to
allow the modeling of object influences that are not only based on
an object’s position but also on message and object types. As an
object may interact within a virtual world in a number of ways,
there may be many different types of influence an object may
exert. Furthermore, objects may exhibit varying degrees of
susceptibility to different types of influences. For example, with
the aid of a radio transmitter a soldier may communicate
information to all other soldiers holding a radio receiver within a
two kilometer radius of a radio transmission mast. In this instance
a soldier transmitting radio signals exerts influence on a radio
mast that, in turn, exerts influence on a subset of soldiers (those
holding radio receivers). Modeling such interaction requires
identification of message recipients not only on their location, but
on the message type (radio transmission) and object type (capable
of receiving radio transmission).

In addition to enhancements to our interest management scheme,
we will investigate applying quality of service parameters on a
per-message basis. For example, a type of message must be
reliably sent to all recipients whereas other types of messages may
be able to suffer a percentage of non-delivery. Furthermore, we
aim to apply quality of service guarantees to other key aspects of
our system (e.g., collision detection [Storey et al. 2004]).

Acknowledgements

This work is funded by the UK EPSRC under grant
GR/S04529/01: “Middleware Services for Scalable Networked
Virtual Environments”.

References

BHARAMBE, A., RAO, S., SESHAN, S. 2002. Mercury: A Scalable Publish-
Subscribe System for Internet Games, In Proceedings of the 1st
workshop on Network and system support for games, ACM Press, 3 - 9

BROSE, G., NOFFKE, N., 2002. JacORB 1.4 Programming Guide,
http://www.jacorb.org/docs/ProgrammingGuide_1_4_1.pdf, as viewed
October 2004

DEERING, S. 1989. Host Extensions for IP Multicasting. RFC 1112, IETF
Network Working Group

GORE, P., CYTRON, R., SCHMIDT, D., O’RYAN, C. 2001. Designing and
Optimizing a Scalable CORBA Notification Service. In Proceedings of
the ACM SIGPLAN workshop on languages compilers and tools for
embedded systems, ACM, 196 – 204

GREENHALGH, C., BENFORD, S. 1995. MASSIVE: A Distributed Virtual
Reality System Incorporating Spatial Trading. In proceedings 15th
International Conference on distributed computing systems (DCS 95),
IEEE Computer Society, 27 - 35

MILLER D., THORPE J. A. 1995. SIMNET: The advent of simulator
networking, In Proceedings of the IEEE 83(8), IEEE, 1114 - 1123

OMG 2000, Notification Service Specification, OMG (Object
Management Group) TC Document telecom/99/07/01

OMG 2003. The Common Object Request Broker: Architecture and
Specification, 2.4 ed.

SINGHAL S,. AND ZYDRA M. 1999. Networked Virtual Environments,
Design and Implementation, Addison Wesley

SONY ENTERTAINMENT 2004. Planet Side web Site,
http://planetside.station.sony.com, as viewed March 2004

STOREY, K., LU, F., MORGAN, G. 2004. Determining Collisions Between
Moving Spheres for Distributed Virtual Environments. In Proceedings
of Computer Graphics International, IEEE Computer Society, 140-147

SUN (SUN MICROSYSTEMS) 2002. Java Message Service Specification –
Version 1.1. http://java.sun.com/products/jms/docs.html, as viewed
October 2004

SUN (SUN MICROSYSTEMS CORPORATION) 1999. Java RMI Specification,
ftp://ftp.javasoft.com, as viewed October 2004

SWEENEY T. 1997, Unreal Networking Architecture.
http://unreal.epicgames.com/Network.htm, as viewed October 2004

PRISM TECHNOLOGIES. 2004. OpenFusion CORBA Notification Service.
http://www.prismtechnologies.com, as viewed October 2004.

WIDENIUS, M., AXMARK, D., 2002. MySQL Reference Manual, O'Reilly &
Associates

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

