IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Enhancing an Application Server to Support
Available Components

Achmad I. Kistijantoro, Graham Morgan, Santosh K. Shrivastava, and Mark C. Little

Abstract—Three-tier middleware architecture is commonly used for hosting enterprise distributed applications. Typically the
application is decomposed into three layers: front-end, middle tier and back-end. Front-end (‘Web server’) is responsible for
handling user interactions and acts as a client of the middle tier, while back-end provides storage facilities for applications.
Middle tier (‘Application server’) is usually the place where all computations are performed. One of the benefits of this
architecture is that it allows flexible management of a cluster of computers for performance and scalability; further, availability
measures, such as replication, can be introduced in each tier in an application specific manner. However, incorporation of
availability measures in a multi-tier system poses challenging system design problems of integrating open, non proprietary
solutions to transparent failover, exactly once execution of client requests, non-blocking transaction processing and an ability to
work with clusters. This paper describes how replication for availability can be incorporated within the middle and back-end tiers
meeting all these challenges. The paper develops an approach that requires enhancements to the middle tier only for
supporting replication of both the middleware backend tiers. The design, implementation and performance evaluation of such a
middle tier based replication scheme for multi-database transactions on a widely deployed open source application server

(JBoss) are presented.

Index Terms— Application servers, availability, Enterprise Java Beans, fault tolerance, middleware, replication, transactions.

1 INTRODUCTION

Modern client-server distributed computing systems
may be seen as implementations of N-tier architectures.
Typically, the first tier consists of client applications con-
taining browsers, with the remaining tiers deployed with-
in an enterprise representing the server side; the second
tier (Web tier) consists of web servers that receive re-
quests from clients and pass on the requests to specific
applications residing in the third tier (middle tier) consist-
ing of application servers where the computations imple-
menting the business logic are performed; the fourth tier
(database/backend tier) contains databases that maintain
persistent data for applications (see fig. 1).

@ Web

Tier

Middle -
— Tier Database
tier

Fig. 1: N-tier architecture

Applications in this architecture are typically struc-
tured as a set of interrelated components hosted by con-
tainers within an application server. Various services re-

o A. I Kistijantoro is a lecturer at the School of Electrical Engineering and
Informatics, Bandung Institute of Technology, Indonesia.

o G. Morgan and S. K. Shrivastava are with the School of Computing
Science, Newcastle University, UK.

o Mark Little is Senior Software Standards Engineer with RedHat.

quired by applications, such as transaction, persistence,
security, and concurrency control are provided via the
containers, and a developer can simply specify the servic-
es required by components in a declarative manner.

This architecture also allows flexible configuration us-
ing clustering for improved performance and scalability.
Availability measures, such as replication, can be intro-
duced in each tier in an application specific manner. In a
typical n-tier system, such as illustrated in fig. 1, the inte-
ractions between clients and the web tier are performed
across the Internet. The infrastructures supporting these
interactions are generally beyond the direct control of an
application service provider. The middle and the data-
base tiers are the most important, as it is on these tiers
that the computations are performed and persistency
provided. These two tiers are considered in this paper.

We investigate how software implemented fault toler-
ance techniques can be applied to support replication for
availability within the middle and back-end tiers. We take
the specific case of Enterprise Java Bean (EJB) components
of Java 2, Enterprise Edition (J2EE) middleware and con-
sider strict consistency (that requires that the states of all
available copies of replicas be kept mutually consistent).
We take EJBs as they are used extensively in industry
with open source implementations available for experi-
mentation. We believe that the ideas presented here are of
interest to the general case of component middleware.

Data as well as object replication techniques have been
studied extensively in the literature, so our task is not to
invent new replication techniques for components, but to
investigate how existing techniques can be migrated to
components. Component-oriented middleware infrastruc-
ture provides clear separation between components that

XXXX-XXxXx/0x/$xx.00 © 200x IEEE

have persistent state and those that do not. Therefore, it is
natural to divide the replication support for these compo-
nents into two categories: state replication and computa-
tion replication. State replication deals with masking data
store failures to make persistent data highly available to
components, while computation replication deals with
masking application server failures where the computa-
tions are performed. We examine how an application
server can be enhanced to support replication for availa-
bility so that components that are transparently using
persistence and transactions can also be made highly
available, enabling a transaction involving EJBs to commit
despite a finite number of failures involving application
servers and databases.

A well engineered solution should meet a number of
requirements stated below.
Exactly once execution: One important concept related to
availability measures is that of exactly once transaction or
exactly once execution [1]. The concept is particularly rele-
vant in web-based e-services where the system must
guarantee exactly once execution of user requests despite
intervening failures. Problems arise as the clients in such
systems are usually not transactional, thus they are not
part of the recovery guarantee provided by the underly-
ing transaction processing systems that support the web-
based e-services. When failures occur, clients often do not
know if their requests have been processed or not. Re-
submitting the requests may result in duplication. Repli-
cation should hide such problems from clients, masking
failures such that for each request submitted, a client rece-
ives exactly one response (safety) in a prompt manner
(liveness).
Clustering and transparent failover: A common practice is to
use application servers in a clustered configuration pri-
marily for improving the performance (through load ba-
lancing) and scalability (deal with a large number of
clients). Such a cluster system should provide transparent
failover whilst preserving exactly once execution seman-
tics allowing client requests to a failed server to be redi-
rected automatically to another available server.
Non-blocking multi-database transaction processing: Multi-
database transactions need to use the well-known two-
phase commit protocol to maintain ACID properties (AC-
ID: Atomicity, Consistency, Isolation, and Durability). In
a non-replicated system, a crash of the application server
that happens in the middle of the two phase commitment
protocol can cause one or more participating backend
databases to become blocked, waiting for the transaction
coordinator (which may be located at the crashed applica-
tion server) to be available again, so that they can find out
the outcome of the transaction. A replicated system
should prevent such blocking.
Modular design: Application server enhancements for rep-
lication should support (a) persistent state replication
(database replication) and (b) computation replication
(application server replication) in a modular fashion. By
this we mean that it should be possible to deploy replica-
tion in any configuration, namely, just (a) or just (b) or
both (a) and (b) with independently controlled replication
levels within each tier.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Open, transparent solution: A solution should be open
(non-propriety) and implementable using commodity
hardware and software components. Furthermore, a solu-
tion should be transparent to the component middleware.
The transparency requirement imposes the following
constraints: (i) no modifications to the API (Application
Programming Interface) between a client and a compo-
nent; (ii) no modifications to the API between an EJB and
the container hosting it; and no modification to databases.

We thus see that the introduction of availability meas-
ures in a multi-tier system poses challenging system de-
sign problems of integrating open, non proprietary solu-
tions to transparent failover, exactly once execution of
client requests, non-blocking transaction processing and
the ability to work with clusters. As we discuss later,
availability mechanisms of existing application servers
fall short of meeting these requirements. Existing clus-
tered application servers only support limited failover
capability that does not guarantee exactly once execution.

For this reason, there has been much recent research on
increasing availability of components hosted by common-
ly used application servers. However, we know of no re-
search as of yet that meets all the stated requirements. In
particular, experimental work reported so far for EJB
components has dealt with transactions that update a
single database only (as against multi-database transac-
tions).

In this paper we describe how a widely used applica-
tion server, JBoss [2] can be enhanced to support replica-
tion for availability that satisfy all the requirements stated
here. Our approach requires enhancements to the middle
tier only for supporting replication of both the tiers. The
paper discusses the technical issues involved and
presents design, implementation and performance evalu-
ation. The paper is a unified and extended version of two
earlier papers [3, 4].

We assume crash failures of application servers and
databases. A transaction manager exists on each applica-
tion server, controlling the transactions running on that
application server. Hence, whenever an application server
crashes, the associated transaction manager will also
crash. We note that if crash failures can be detected accu-
rately (synchronous environment), then a minimum of
f+1 replicas will be required in a given tier to tolerate f
replica failures; if accurate failure detection is not possible
(asynchronous environment), then a minimum of 2f+1
replicas will be required to mask up to f failure suspi-
cions, with the majority f+1 components not suspecting
each other. In a clustered environment, it is generally
possible to engineer a system with accurate failure detec-
tion. This is what we assume in our experimental setup
for performance evaluation, whenever two replicas are
used (f = 1) for a given tier. However, our design makes
use of a group communication system for replica man-
agement that works in both asynchronous and synchron-
ous environments.

The paper is structured as follows. Section two
presents related work and points out how our work dif-
fers. Section three presents background information on
EJBs and application servers. Section four presents de-

ACHMAD I. KISTIJANTORO ET AL.: ENHANCING AN APPLICATION SERVER TO SUPPORT AVAILABLE COMPONENTS

sign, implementation and performance evaluation of our
persistent state replication (database replication) scheme.
Here, persistent state of a component is stored on mul-
tiple databases; database (but not the application server)
failures can be masked, so a transaction will be able to
commit provided the application server can access a copy
of the state on a database. This scheme has been designed
to work transparently with whatever clustering scheme
the application server employs. Section five presents de-
sign, implementation and performance evaluation of our
computation replication (application server replication)
scheme over a cluster of machines; it can work indepen-
dently or in conjunction with the database replication
scheme. We describe how a backup transaction manager
within the cluster can complete two-phase commit for
transactions that would otherwise be blocked. Conclud-
ing remarks are presented in section six.

2. RELATED WORK

Group communications [5] plays a pivotal role in the evo-
lution of availability solutions we see in a number of rep-
lication management schemes. The classic text [6] dis-
cusses replicated data management techniques that go
hand in hand with transactions with the Arjuna system
demonstrating the use of transactions in the support of
replicated transactional objects [7, 8]. With the advent of
object-oriented standards for distributed computing, a
number of replication based solutions were developed,
specifically in the area of CORBA making extensive use of
group communications to ensure consistency of replicas
(e.g., [9,10, 11, 12]).

Recent works have seen transactions and group com-
munications applied to Web Services to aid recoverabili-
ty. For example, configurable durability to allow data
persistence to survive crash failure [13] and utilizing
group communications to provide replication schemes for
increased availability [14]. Although there are similar
techniques used in both approaches (as Web Services are
often implemented using n-tier environments), the focus
in this paper is an engineered solution for availability in
transactional n-tier systems.

In the rest of this section we will examine prior work
on availability measures for transactional data (objects) in
n-tier architectures, beginning with current industrial
practice for EJB application servers. We also describe how
our work differs from the relevant research work re-
ported so far.

2.1 Availability in current application servers

Commercial approaches make use of multiple applica-
tions servers deployed over a cluster of machines with
some specialist router hardware that acts as a load ba-
lancer. If any server were to fail for any reason, the sys-
tem is expected to continue to operate with the remaining
servers, with the load-balancer ensuring that the client
load is redistributed to the remaining servers, each of
which will henceforth process a proportionately slightly
higher percentage of the total load. Load balancing at the
database tier is commonly achieved in a similar manner,

using proprietary solutions offered by database vendors.
This allows an individual application server cluster
member’s requests to be distributed across databases.

Transparent failover (failures are masked from a client,
who minimally might need to retransmit the current re-
quest) is an ideal, but is rarely achievable with current
technology for the reasons to be outline below. However,
forward progress is possible and in less time than would
be the case if only a single machine was used.

Transparent failover is easy to achieve for stateless ses-
sions: any server in the cluster can service any request
and if a client makes multiple requests in succession each
may well be serviced by a different server. If a failure of
the server occurs while it is doing work for the client then
the client will get an exceptional response and will have
to retransmit the request. The situation is more compli-
cated for a stateful session, where the same server in-
stance must be used for requests from the client, so the
server failure will lead to loss of state. The approach
adopted in commercial systems to avoid loss of state is to
use the stateless session approach with a twist: the state-
ful session component is required to serialize its state to a
database at the end of each client request and for the sub-
sequent component instance in the other server to dese-
rialize the state before servicing the new request (ob-
viously the servers must have access to the same data-
base). The replication of the database is assumed to be the
domain of the database itself. This way, some of the func-
tionality available for stateless sessions can be regained.
However, a failure during serialization (which could re-
sult in the state being corrupted) is not addressed. Trans-
actions that were active on a failed server will be left in an
unresolved state unless the failed server can be re-started.
Resolving such transactions without restarting the server
will require manual intervention, but can be satisfied by
allowing another server to resolve such transactions (hot
failover of transaction manager). However, the hot failov-
er approach in existing application servers may still re-
quire manual intervention as the following example iden-
tifies.

Although industrial attempts at hot failover of transac-
tion managers may appear varied, they all follow the
same essential approach. We use IBM’s WebSphere to
exemplify how commercial systems attempt to achieve
transaction manager failover in application servers [15].
On detection of a failure (e.g., using timeouts associated
to heartbeat messages) a correct server in a cluster as-
sumes responsibility for attempting to resolve unfinished
transactions that originated from a failed server using
transaction logs created prior failure. However, no further
processing of ongoing client requests from the failed
server is achievable within the transaction. In addition,
this mechanism requires all servers to have access to the
same database. As databases recommended for use with
commercial solutions provide their own failover mechan-
isms then one may assume the problem to be solved.
However, this is not the case. We continue using WebS-
phere as our example to highlight the unresolved nature
of transaction manager failover when considered together
with database failover.

IBM’s WebSphere coupled with Oracle’s propriety
load balancing and failover exemplifies the difficulties in
allowing developers to make use of transactions across
multiple databases in current state-of-the art commercial
products [16]. Oracle can successfully load balance data-
base connection requests by directing application servers
to specific database nodes using its Real Application
Cluster (RAC) technology. This approach can result in a
transaction operating over multiple RAC nodes and may
result in indeterminate state during two-phase commit if
one or more RAC nodes fail. The following example, tak-
en from [16], highlights such a scenario. Assume a single
WebShpere node requests two database connections dur-
ing a single transaction, say T1, that are satisfied by two
different RAC nodes, say RAC1 and RAC2, resulting in
two transaction branches TB1 and TB2. If RACI fails after
prepare has been issued but before the issuing of commit
by the WebSphere transaction manager, the WebSphere
transaction manager will receive notice that RACI is un-
available. The WebSphere transaction manager will then
attempt to get a new RAC connection, and as failover is
provided by Oracle, will gain another connection and
attempt to finish TB1 by issuing commit. However, Oracle
may throw an exception indicating that the transaction
does not exist as RAC2 may be unaware of TB1. In this
scenario T1 will be unresolved, requiring manual inter-
vention to release any locks held. To avoid this, WebSh-
pere encourages developers to avoid multiple databases,
in reality this means not using Oracle’s load balancing
and failover in such circumstances and thus restricts a
developer to a single RAC node. In fact this problem is
common, and is frequently referred to as the unresolved
transaction problem in commercial products (such as SAP
J2EE [17] and WebLogic), which all advocate manual in-
tervention to resolve such issues.

In commercial systems the fact remains that failure of
database alone may lead to inconsistencies requiring ma-
nual intervention to alleviate unresolved transactions.
Turning off failover alleviates this problem, but only pro-
vides hot failover of transaction manager if database fai-
lover is not present.

Worth mentioning is JBoss’s attempt to achieve failov-
er within the application server cluster tier [18] by advo-
cating session replication to enable failover of a compo-
nent processing on one node to another. This approach
load balances across replicas, allowing each replica to
handle different client sessions. The state of a session is
propagated to a backup after the computation finishes.
When a server crashes, all sessions hosted on the crashed
server can be migrated and continued on another server,
regardless of the outcome of formerly active transactions
on the crashed server, which may lead to inconsistencies.

In summary, JBoss does attempt to make forward
progress with a session in the presence of application
server failure, but without handling unresolved transac-
tions.

2.2 Database availability

In transactional systems, strict consistency is also charac-
terized as ome-copy serializability (the replicated system

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

must appear to the client as a single copy). Many algo-
rithms satisfy this property by employing an eager replica-
tion scheme, i.e. by propagating state updates to all repli-
cas eagerly before transactions commit. In contrast, prop-
agating state update to replicas can also be done lazily, i.e.
after transactions commit (however, one-copy serializabil-
ity is typically not guaranteed in this approach).

Traditionally, for performance reasons, lazy replication
schemes have been favored by commercial products.
However, a classification of database replication tech-
niques has been presented that suggests group communi-
cation can be utilized in support of eager replication pro-
tocols [19]. Recent research results of employing group
communication for database replication identify eager
schemes as a viable choice [20]. A drawback of these ap-
proaches is the need to integrate a group communication
sub-system into the database architecture, a difficult task
with existing commercial databases.

To overcome this drawback, a middleware layer -
Middle-R - has been proposed that provides a way of in-
tegrating group communication based eager replication
schemes into existing commercial databases [21]. Howev-
er, there are two limitations: the approach as it stands
cannot be used for applications that require multi-
database transactions, as two phase commitment is not
supported; furthermore, it still requires some database
modifications to support the protocol (the database needs
to be modified to provide support for obtaining the write-
set of a transaction and for applying the write-set into the
database). The distributed versioning approach [22] over-
comes the need for database modifications by requiring
the middleware layer to perform its own concurrency
control, but the approach has not been investigated with-
in multi-database settings. = Furthermore, non-
modification of database comes at a scalability cost: Mid-
dle-R can implement optimizations in the database layer.

Distributed
Aspects Middle-R 1 r.l u © C-JDBC Our approach
versioning
J2EE support No No Yes Yes
Backend dlala- Modification Standard Standard‘ Standardl
base require- . database via database via
required database . .
ments JDBC driver JDBC driver
Multi-databases
transaction No No Yes yes
support
Clustering
Yes Yes No yes
support

TABLE 1: DATABASE REPLICATION

Clustered JDBC (C-JDBC) is middleware for database
clustering [23]. It provides transparency for clients to
access a set of replicated and partitioned databases via a
standard JDBC (Java DataBase Connectivity) driver. The
architecture consists of C-JDBC drivers that run as part of
a client’s process, a C-JDBC controller and backend data-
bases. The C-JDBC controller, via C-JDBC drivers, pro-
vides a virtual database to clients by relaying requests to
appropriate databases transparently. C-JDBC schedules
all requests from clients by sending read operations to

ACHMAD I. KISTIJANTORO ET AL.: ENHANCING AN APPLICATION SERVER TO SUPPORT AVAILABLE COMPONENTS

any single database and sending update, commit or abort
operations to all databases. Worth mentioning is phoe-
nix/ODBC [24], that provides a similar approach to C-
JDBC but for ODBC drivers and their associated databas-
es. However, phoenix/ODBC differs to C-JDBC in that
application interactions with the database are logged (us-
ing the database) and used at a later date (once database
has recovered) to instantiate the application session at the
state it was prior to failure. In essence, the approach of
phoenix/ODBC is to promote recoverability with mini-
mum disruption to a client application.

Our approach requires minimal modifications to an
application server and requires implementing a database
proxy that can be plugged into the application server as a
JDBC driver. This proxy intercepts all interaction between
an application server and an external database; hence it
can introduce state replication into the application server
smoothly, without any modification to other parts of the
application server. The proxy performs replication by
using ‘available copies’ approach to maintain replicas of
state on a set of databases [6]. For clustering configura-
tion, the proxies on different application servers coordi-
nate with each other to ensure the consistency of all repli-
cas despite multiple transactions running on different
application servers. This is done by ensuring that all prox-
ies use the same replica to satisfy requests for relevant
entity beans. This replica determines the ordering of con-
flicting transactions; hence preserving consistency. Our
state replication approach works well in multi-database
transaction settings, as it also handles all interactions be-
tween application servers and databases for committing
transactions with two-phase commit.

Of all the schemes described here, C-JDBC comes clos-
est to our work; developed independent to our work and
described in [3]. However, we go a step further by im-
plementing JDBC driver replication to allow application
server clustering. Table 1 summarizes the discussion.

2.3 Mid-tier availability

The key requirement here is to ensure exactly once execu-
tion of transactional requests. The interplay between rep-
lication and exactly once execution within the context of
multi-tier architectures is examined in [25], whilst [26]
describes how replication and transactions can be incor-
porated into three-tier CORBA architectures. The ap-
proach of using a backup transaction monitor to prevent
transaction blocking was implemented as early as 1980 in
the SDD-1 distributed database system [27]; another im-
plementation is reported in [28]. A replicated transaction
coordinator to provide a non-blocking commit service has
also been described in [29]. Our paper deals with the case
of replicating transaction managers in the context of stan-
dards compliant Java application servers (J2EE servers).
There are several studies that deal with replication of
application servers as a mechanism to improve availabili-
ty [1, 30, and 31]. In [1], the authors precisely describe the
concept of an exactly once transaction (e-transaction) and
develop server replication mechanisms; their model as-
sumes stateless application servers (no session state is main-
tained by servers) that can access multiple databases.

Their algorithm handles the transaction commitment
blocking problem by making the backup server take on
the role of transaction coordinator. As their model limits
the application servers to be stateless, the solution cannot
be directly implemented on stateful server architectures
such as J2EE.

The approach described in [31] specifically addressed
the replication of J2EE application servers, where compo-
nents may possess session state in addition to persistent
state stored on a single database ([31] implements the
framework described in [30], therefore we concentrate our
discussion on the implementation details of [31] only).
The approach assumes that an active transaction is al-
ways aborted by the database whenever an application
server crashes. Our approach assumes the more general
case of access to multiple databases; hence two phase
commitment (2PC) is necessary. Application server fail-
ures that occur during the 2PC process do not always
cause abortion of active transactions, since the backup
transaction manager can complete the commit process.

An approach for handling primary/backup style repli-
cation with the ability of backup application servers to
continue long running activities (as described in the Ac-
tivity Service specification for J2EE) in addition to regular
ACID transactions is presented in [32]. In this approach, a
long running activity is considered an open nested transac-
tion (ONT) with compensation of nested transactions al-
lowed (instead of rollback). Using checkpoint data, back-
ups may assume responsibility of continuing a long run-
ning activity; including committing or rolling back out-
standing transactions. This, in principle, is similar to our
approach when considering single transactions. However,
this approach considers a replica unit as an application
server and an associated database together; failure of da-
tabase results in failure of associated application server,
there is no database failover supported. In our approach
we provide database failover independently of applica-
tion server failover.

Exactly once transaction execution can also be imple-
mented by making the client transactional, and on web-
based e-services, this can be done by making the browser
a resource which can be controlled by the resource man-
ager from the server side, as shown in [33, 34]. One can
also employ transactional queues to gain a similar result
[35]. In this way, user requests are kept in a queue that
are protected by transactions, and clients submit requests
and retrieve results from the queue as separate transac-
tions. As a result, three transactions are required for
processing each client request and developers must con-
struct their application so that no state is kept in the ap-
plication servers between successive requests from
clients. The approach presented in [36] guarantees exactly
once execution on internet-based e-services by employing
message logging. The authors describe which messages
require logging, and how to do recovery on the applica-
tion servers. The approach addresses stateful application
servers with single database processing without replicat-
ing the application servers.

We use a primary copy replication approach. Session
state check-pointing is performed at the end of each client

request invocation. Therefore, client session can be con-
tinued on a backup only by repeating the last unfinished
invocation. Transaction failover is supported by including
transactional information (the transaction id, the informa-
tion of all resources involved in that transaction and the
transaction outcome decision) in the checkpoint. Modifi-
cation to the internals of the application server is un-
avoidable. These modifications include:

e Intercepting client invocations, before and after
they are processed by the application server.

e Retrieving the state of a session bean within an
application server, and installing it on another
server

e Intercepting the commitment process; i.e. right af-
ter the transaction monitor takes a decision about
the outcome of a transaction, prior to performing
the second phase of the two phase commitment
process.

e Retrieving the information about currently active
transactions within an invocation.

Fortunately, the platform used for implementing the
approach (JBoss) provides almost all the necessary hooks
for the above requirements. Table 2 summarizes the dif-
ferences between the various approaches described in this
section and our approach that was first reported in [4].

Transactional | Trans. Message e- Reference | Reference Our
Aspects
queue client logging | transaction [31] [32] approach
App. server
No No No Yes Yes Yes Yes
replication
Transactional Not Not Not Not Not
Not required | Required
client required | required required required required
Stateful Not
Supported | Supported | Supported Supported | Supported | Supported
server supported
Platform TP monitors Web Web Custom J2EE J2EE J2EE
Multi Not Not Not
Supported | Supported Supported Supported
database supported supported | Supported

TABLE 2: EXACTLY ONCE TRANSACTION SOLUTIONS

3 ENTERPRISE JAVA BEANS AND APPLICATION
SERVERS

Background information on EJB component middle-
ware is presented is this section. In the first two sub-
sections we describe the terminology and basic concepts
of transaction processing in Java 2, Enterprise Edition
(J2EE) middleware that should be sufficient for our pur-
poses.

3.1. Enterprise Java Beans

Three types of EJBs have been specified in J2EE: (1) Entity
beans represent and manipulate persistent data of an ap-
plication, providing an object-oriented view of data that is
usually stored in relational databases. (2) Session beans do
not use persistent data, and are instantiated on a per-
client basis with an instance of a session bean available

1 Our discussion does not take into account changes introduced in the
new release of Java components, EJB3, announced in 2006. EJB3 specifica-
tion is available at jcp.org/en/jsr/ detail?id=220

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

for use by only one client. A session bean may be stateless
(does not maintain conversational state) or stateful (main-
tains conversational state). Conversational state is needed
to share state information across multiple client requests.
(8) Message driven beans provide asynchronous processing
by acting as message listeners for the Java Messaging Ser-
vice (JMS).

A container is responsible for hosting components and
ensuring that middleware services are made available to
components at runtime. Containers mediate all
client/component interactions. An entity bean can either
manage its state explicitly on a persistent store (bean ma-
naged persistence) or delegate it to the container (container
managed persistence). All EJB types may participate in
transactions. Like persistence, transactions can be bean
managed or container managed.

EJBs present home and remote interfaces for use by
clients. The home interface provides lifecycle services
(e.g., create, destroy), and the remote interface allows
clients to access the application logic supported by an EJB
using method calls. Clients must first retrieve a reference
to the home interface of the EJB which they wish to
access. This is achieved via the Java naming and directory
interface (JNDI). The JNDI provides a naming service that
allows clients to gain access to the home interface of the
type of EJB they require. Once a reference to the home
interface is gained, a client may instantiate instances of an
EJB (gaining access to the remote interface).

Use of container managed persistence and transactions
are strongly recommended for entity beans. Below we
describe how this particular combination works, as we
will be assuming this combination for our replication
schemes.

3.2. Transactional Enterprise Java Beans
applications

The main elements required for supporting transac-
tional EJB applications deployed in an application server
are shown in figure 2. An application server usually man-
ages a few containers, with each container hosting many
(hundreds of) EJBs; only one container with three E]Bs is
shown in the figure. The application server is a multi-
threaded application that runs in a single process (sup-
ported by a single Java Virtual Machine). Of the many
middleware services provided by an application server to
its containers, we explicitly show just the transaction ser-
vice. A transaction manager is hosted by the application
server and assumes responsibility for enabling transac-
tional access to EJBs. The transaction manager does not
necessarily have to reside in the same address space as
the application server; however, this is frequently the
case. At least one resource manager (persistence store) is
required to maintain persistent state of the entity beans
supported by the application server; we show two in the
figure. In particular, we have shown relational database
management systems (RDBMS) as our resource managers
(bean X stores its state on RDMS, and bean Y does the
same on RDMSg). We assume that resource managers
support ACID transactions.

ACHMAD I. KISTIJANTORO ET AL.:

Application Server

container

Session

Transaction,
Manager

Fig. 2: EJB transactions.

Communications between an RDBMS and a container
is via a JDBC driver, referred in the J2EE specification as a
resource adaptor. A JDBC driver is primarily used for ac-
cessing relational databases via SQL statements. To ena-
ble a resource manager to participate in transactions ori-
ginated in EJBs, a further interface is required. In the J2EE
architecture this interface is referred to as the XAResource
interface (shown as XA in figure 2). A separation of con-
cerns between transaction management via XAResource
interface and resource manager read/write operations via
JDBC is clearly defined. In simple terms, the transaction
manager interoperates with the resource manager via the
XAResource interface and the application interoperates
with the resource manager via the JDBC driver.

We now describe, with the aid of figure 2, a sample
scenario of a single transaction involving three enterprise
beans and two resource managers. A session bean rece-
ives a client invocation. The receiving of the client invoca-
tion results in the session bean starting a transaction, say
T1, and issuing a number of invocations on two entity
beans (X and Y). When entity beans are required by the
session bean, first the session bean will have to ‘activate’
these beans via their home interfaces, which results in the
container retrieving their states from the appropriate re-
source managers for initializing the instance variables of
X and Y. The container is responsible for passing the
“transaction context’ of T1 to the JDBC drivers in all its
interactions, which in turn ensures that the resource man-
agers are kept informed of transaction starts and ends. In
particular: (i) retrieving the persistent state of X (Y) from
RDMS, (RDMSg) at the start of T1 will lead to that re-
source manager write locking the resource (the persistent
state, stored as a row in a table); this prevents other trans-
actions from accessing the resource until T1 ends (com-
mits or rolls back); and (ii) XA resources (XAa and XAg)
‘register’ themselves with the transaction manager, so
that they can take part in two-phase commit.

Once the session bean has indicated that T1 is at an
end, the transaction manager attempts to carry out two
phase commit to ensure all participants either commit or
rollback T1. In our example, the transaction manager will
poll RDBMS, and RDBMSg (via XAa and XAg respective-
ly) to ask if they are ready to commit. If a RDBMS, or
RDBMSp cannot commit, they inform the transaction
manager and rollback their own part of the transaction. If
the transaction manager receives a positive reply from
RDBMSa and RDBMSg it informs all participants to com-
mit the transaction and the modified states of X and Y
become persistent.

Client
invocation

£

ENHANCING AN APPLICATION SERVER TO SUPPORT AVAILABLE COMPONENTS

4 PERSISTENT STATE REPLICATION

We first describe our design for a single application serv-
er and then enhance it to work in a clustered environ-
ment. Our design can work with any load balancing
strategy. Performance measures under clustering pre-
sented here make use of the standard JBoss load balancer.
When we introduce mid-tier replication (section 5), we
will need to modify cluster management in order for it to
perform failover and load balancing whilst preserving
exactly once execution, but this will not affect the work-
ings of state replication.

4.1. Replication with a single server

By replicating state (resource managers) an application
server may continue to make forward progress as long as
a resource manager replica is correctly functioning and
reachable by the application server. We consider how
state replication may be incorporated into the scheme
shown in figure 2 and use ‘available copies” approach to
data replication (‘read from any, write to all’) [6].

Figure 3 depicts an approach to resource manager rep-
lication that leaves the container, transaction manager
interaction with resource managers, and the transaction
manager of the application server undisturbed. RDBMSs
A and B are now replicated (replicas A1, A2 and B1, B2).
Proxy resource adaptors (JDBC driver and XAResource
interface) have been introduced (identified by the letter P
appended to their labels in the diagram; note that for clar-
ity, not all arrowed lines indicating communication be-
tween proxy adaptors and their adaptors have been
shown). The proxy resource adaptors reissue the opera-
tions arriving from the transaction manager and the con-
tainer to all replica resource managers via their resource
adaptors.

<
—
Application Server DBCM /’ RDBMS,;
Client . (1DBCP J¢[XAn —
invocation m JDBCM > RDBMSS
.@ *o XAAZ
B —
Transactior JDBCB' —
Manager DBCBP <—>b‘ RDBMSg;
34 RDBMS;,

Fig. 3: An application server with state replication.

To ensure resource manager replicas remain mutually
consistent, the resource adaptor proxy maintains the re-
ceive ordering of operation invocations when redirecting
them to the appropriate resource adaptor replicas. This
guarantees that each resource adaptor replica receives
operations in the same order, thus guaranteeing consis-
tent locking of resources across resource manager repli-
cas.

Suppose during the execution of a transaction, say T1,
one of the resource manager replicas say RDBMS,; fails.
A failure would result in JDBCa; and/or XAa: throwing
an exception that is caught by JDBCaAP and/or XAxP. In
an unreplicated scheme, an exception would lead to the
transaction manager issuing a rollback for T1. However,
assuming RDBMS,; is correct then such exceptions will

not be propagated to the transaction manager, allowing
T1 to continue on RDBMSa,. In such a scenario the states
of the RDBMS4: and RDBMS4; may deviate if T1 commits
on RDBMSa,. Therefore, RDBMSa; must be removed
from the valid list of resource manager replicas until such
a time when the states of RDBMSa; and RDBMSa» may be
reconciled (possibly via administrative intervention dur-
ing periods of system inactivity). Such a list of valid re-
source managers may be maintained by XAaP (as is the
case for XAResources, XAAP is required to be persistent,
with crash recovery procedures as required by the com-
mit protocol).

4.2. Replication with clustered servers

In a clustered configuration, concurrent access to data by
application servers may break the serializable property of
the database. This problem is illustrated in the following
scenario. In figure 4 a cluster contains two application
servers (AS1 and AS2) that are accessing shared resource
manager replicas. To make the diagram simple, only the
resource adaptor proxies are shown.

Let us assume that transaction T1 is executing on AS1
and T2 is executing on AS2 and both T1 and T2 require
invocations to be issued on entity bean X (entity bean X’s
data is replicated across RDBMSa; and RDBMSa,). With-
out appropriate coordination, there is a possibility that
AS1 manages to obtain the state of X from RDBMSa;
while AS2 manages to obtain the state of X from
RDBMSa,. This is because the JDBC/XA proxies located
in each application server will operate independently of
each other and just by chance the requests for X (locking
X) may arrive at different resource manager replicas si-
multaneously, breaking the serializable property of trans-
actions. To overcome this problem, coordination of
JDBC/XA proxies across different application servers
must be introduced. We achieve this in the manner de-
scribed as follows.

A single resource manager replica that is the same for
all application servers should satisfy requests for relevant
entity beans (we call such a resource manager a primary
read resource manager). This will ensure all requests are
serialized, causing conflicting transactions to block until
locks are released. To ensure resource managers remain
mutually consistent the request is issued to all resource
manager replicas.

Application Server 1

Client O

. . Session,

invocation -
Application Server 2

Client

invocation

Fig. 4: Clustering and state replication.
Within a clustering configuration, resource adaptor

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

proxies from different application servers have to agree
on the primary read resource manager. This is done by
introducing a replica manager that is responsible for
propagating information about the primary and available
resource managers for each adaptor proxy amongst ap-
plication servers. A process group is used to manage cop-
ies of replica managers (see figure 5). We make use of
JGroups group communication (also used by JBoss for
cluster management [37]).

When an adaptor proxy detects failure of a resource
manager replica, the failure information is multicast to
other application servers by the replica manager. All re-
source adaptors on all application servers will then re-
move the failed resource manager replica from the list of
available resource managers. The list of available resource
managers is an ordered list with the primary read re-
source manager at the top. Therefore, when the primary
resource manager of a resource adaptor fails, all other
resource adaptors will choose the next available resource
manager on the list as the primary, which will be the
same for all resource adaptors. JGroups ensures that read
attempts are ordered with respect to the installation of
new views relating to identification of the primary read
resource manager. If this was not the case then false sus-
picion of primary read resource manager may result in
one or more primary read resource managers in existence
at the same time.

The identification of the primary read resource manag-
er needs to be available to an application server after a
restart. The restarted application server may retrieve the
list of available resource adapter proxies and the primary
from existing application servers, if there are any. Other-
wise, it should get the information from somewhere else,
i.e., from a persistent store. We assume the set of resource
managers are fixed, so that this information can be in-
serted as part of the application server’s configuration.

JDBC4P K
XAxP1

R Replica

*/ man;agl{r

JDBCyP1 H

XAgP1

Transaction
Manager

roA
I
P
P
P
P
.
:
Lo
|
:
.
T
Lo
L
:
\
\

JDBC,P.

'

-
Rephiéa
manager

JDBCgP2)

Transaction
Manager

Fig. 5: Replica manager for maintaining available resource manager infor-
mation.

4.3. Performance evaluation

Experiments were carried out to determine the perfor-
mance of our system over a single LAN. Four experi-
ments were carried out to determine the performance of

ACHMAD I. KISTIJANTORO ET AL.: ENHANCING AN APPLICATION SERVER TO SUPPORT AVAILABLE COMPONENTS

the clustered (using JBoss clustering) and non-clustered
approaches with and without state replication:

1) Single application server with no replication - To enable
comparative analysis of the performance figures, an
initial experiment was carried out to determine the
time required to satisfy a client request issued to the
application server using a single resource manager
without state replication.

2) Single application server with state replication - Expe-
riment 1 was repeated, with replica resource man-
agers accessed by our resource adaptor proxy.

3) Clustered application server with no replication - Two
application servers constituted the application serv-
er cluster with a single resource manager providing
persistent storage.

4) Clustered application server with state replication - We
repeated experiment 1 with replica resource man-
agers accessed by resource adaptor proxies from
each of the application servers.

The application server used was JBoss 3.2.0 with each
application server deployed on a Pentium III 1000 MHz
PC with 512MB of RAM running Redhat Linux 7.2. The
resource manager used was Oracle 9i release 2 (9.2.0.1.0) -
providing snapshot isolation - with each resource manag-
er deployed on a Pentium III 600 MHz PC with 512MB of
RAM running Windows 2000. The client was deployed on
a Pentium III 1000 MHz PC with 512MB of RAM running
Redhat Linux 7.2. The LAN used for the experiments was
a 100 Mbit Ethernet.

ECperf [37] was used as the demonstration application
in our experiments. ECperf is a benchmark application
provided by Sun Microsystems to enable vendors to
measure the performance of their J2EE products. ECperf
presents a demonstration application that provides a rea-
listic approximation to what may be expected in a real-
world scenario via a system that represents manufactur-
ing, supply chain and customer order management. The
system is deployed on a single application server. In sim-
ple terms, an order entry application manages customer
orders (e.g., accepting and changing orders) and a manu-
facturing application models the manufacturing of prod-
ucts associated to customer orders. The manufacturing
application may issue requests for stock items to a suppli-
er. The supplier is implemented as an emulator (deployed
in a java enabled web server). A machine runs the ECperf
driver to represent a number of clients and assumes re-
sponsibility for issuing appropriate requests to generate
transactions.

ECperf was configured to run each experiment with 9
different injection rates (1 though 9 inclusive). At each of
these increments a record of the overall throughput
(transactions per minute) for both order entry and manu-
facturing applications is taken. The injection rate relates
to the order entry and manufacturer requests generated
per second. Due to the complexity of the system the rela-
tionship between injection rate and resulted transactions
is not straightforward.

Figures 6, 7 and 8 present three graphs that describe

the throughput of the ECperf applications. On first in-
spection we can see that the introduction of replicated
resource managers lowers the throughput of clustered
and non-clustered configurations when injection rates rise
above 2. However, there is a difference when comparing
order entry and manufacturing applications. The manu-
facturing application does not suffer the same degree of
performance slowdown as the order entry application
when state replication is introduced. This observation is
particularly prominent when clustered application serv-
ers are used. The reason for this is not obvious. However,
such a difference may reflect the nature of the different
application types (manufacturing, ordering).

Order Entry Transaction Throughput

[XINFN
a S
3 3

—e— Single without replication

Now
a S
3 3

—=— Single with replication

PN
a o
3 s

—s— Clustered with
Replication

=)
=3

Transaction per Minute

a
3

o

12 3 4 56 7 8 9

Injection Rate

Fig. 6: Order Entry.

iring Tr ion Throughput

N
a
3

N
=3
S]

—e— Single without replication

—8— Single with replication

o
3

—&— Clustered without
replication

=)
S]

—— Clustered with replication

o
3

Transactions per minute

o

1.2 3 4 56 7 8 9

Injection rate

Fig. 7: Manufacturing.

Overall Throughput (Order Entry &
Manufacturing Transactions)

o N
3 o
3 38

—e— Single without replication

500

—8— Single with replication

—— Clustered with replication

Transactions per minute
w
8
3

123 4 56 7 89

Injection rate

Fig. 8: Overall systems.

The performance benefit associated with clustering is
shown by our experiments as higher injection rates result
in a lowering of transaction throughput for single applica-
tion server scenarios (indicating application server over-
load). The introduction of clustering prevents such a
slowdown. The slowdown experienced by the single
server is most visible in the manufacturing application
(where injection rates of over 5 reduce transaction
throughput significantly). However, when state replica-
tion is introduced the single server does not experience
such a slowdown in performance, indicating that satura-
tion of the system has not yet been reached. In fact, the

transaction throughput of the clustered approach with
replication is similar to that of a single application server
without state replication in the manufacturing application
when the injection rate is 9.

The experiments show that clustering of application
servers benefit systems that incorporate our state replica-
tion scheme. Clustering of application servers using state
replication outperform single application servers that use
state replication by approximately 25%. This is the most
important observation, as state replication does not ne-
gate the benefits of scalability associated to the clustered
approach to system deployment.

5 COMPUTATION REPLICATION

We next describe our mid-tier replication scheme. From
the mid-tier replication perspective, a replicated database
resource appears as a single entity, and all operations
issued by the transaction manager or containers from ei-
ther the primary or backups are translated by the proxy
adapters to database replicas. So, the scheme described
here can work seamlessly with the replication scheme of
the previous section.

5.1. Model

Our approach to component replication is based on a pas-
sive replication scheme, in that a primary services all
client requests with a backup assuming the responsibility
of servicing client requests when a primary fails. We as-
sume one-copy serializability (at database and application
server tiers) and crash failures of servers. There are two
different times within a client session when a primary
may fail: (1) during non-transactional invocation phase,
(2) during transactional phase.

Client Session Bean

Entity Bean X Entity Bean Y

[Begin Transaction
—

=
PEEEESSSS

==

l¢—————|End Transaction

Fig. 9: Interactions between beans and client.

As entity beans access and change persistent state, the
time taken to execute application logic via entity beans is
longer than enacting the same logic using session beans.
The reason for this is twofold: (1) the high cost of retriev-
ing state on entity bean activation and writing state on
entity bean deactivation; (2) the transactional manage-
ment associated to persistent state updates. The structur-
ing of an application to minimize the use of entity beans
(and transactions) to speed up execution times is com-
monplace. This approach to development leads to scena-
rios in which a client enacts a ‘session’ (a series of related
invocations) on an application server, with the majority of
invocations handled by session beans. Transactional ma-
nipulation of persistent state via entity beans is usually
left to the last steps of processing in a client’s session. The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

sequence diagram in figure 9 describes the style of inte-
raction our model assumes. We only show application
level logic invocations (as encoded in EJBs) in our dia-
gram, therefore, we do not show the transaction manager
and associated databases. The invocations that occur
within a transaction are shown in the shaded area. As
mentioned earlier, we assume a client is not part of the
transaction.

We assume a single stateful session bean is used to
present a single interface for a client during a session. The
creation and destruction of a stateful session bean by a
client delimits the start and end of a session. We assume
the existence of a single transaction during the handling
of the last client invocation and such a transaction is in-
itiated by the stateful session bean and involves one or
more entity beans. The transaction is container managed
and is scoped by this last method invocation.

Failure of the primary during a session will result in a
backup assuming responsibility for continuing the ses-
sion. This may require the replaying of the last invocation
sent by a client if state changes and return parameters
associated to the last invocation were not recorded at
backups. If state changes and parameters were recorded
then the backup will reply with the appropriate parame-
ters. During the transactional phase the transaction may
be completed at the backup if the commit stage had been
reached by the primary and computation has finished
between the entity beans. The backup will be required to
replay the transaction if failure occurs during transaction-
al computation.

5.2. JBoss Implementation

We use interceptors, management beans (MBeans), and
Java Management Extensions (JMX) technologies to inte-
grate our replication service into JBoss. This is the stan-
dard approach used when adding services to JBoss: inter-
ceptors intercept JBoss invocations while MBeans and
JMX combine to allow systems level deployment of ser-
vices that act upon intercepted invocations. This ap-
proach ensures that we do not disturb the functionality of
existing services. Figure 10 shows the interceptors and
associated services that implement our replication
scheme. The interceptors perform the following tasks:
retry interceptor - identifies if a client request is a duplicate
and handles duplicates appropriately; txinspector intercep-
tor - determines how to handle invocations that are asso-
ciated to transactions; txinterceptor - interacts with trans-
action manager to enable transactional invocations (unal-
tered existing interceptor shown for completeness); replica
interceptor - ensures state changes associated with a com-
pleted invocation are propagated to backups.

The txinterceptor together with the transaction manag-
er accommodates transactions within the application
server. The replication service supports inter-replica con-
sistency and consensus services via the use of JGroups
[38]. The replication service, retry interceptor, txinspector
interceptor and the replica interceptor, implements our
replication scheme.

ACHMAD I. KISTIJANTORO ET AL.: ENHANCING AN APPLICATION SERVER TO SUPPORT AVAILABLE COMPONENTS

/Application Server

HERS

Client
invocation

-
Replica interceptor

Transaction|
Manager

container

Replication
Service

Fig 10: Augmenting application server with replication service.

Replication logic at the server side makes use of four
in-memory logs that are maintained by the replication
service: (i) current primary and backup configuration
(group log), (ii) most recent state of session bean together
with the last parameters sent back as a reply to a client
invocation (bean log), (iii) invocation timestamp associated
to most recent session bean state (timestamp log), (iv) state
related to the progress of a transaction (transaction log).
The replication service uses a single group via JGroups to
ensure these logs are consistent across replicas.

5.2.1. Client side failure handling

To enable failover, instead of a single session bean refer-
ence being present in the client proxy interface, a list of
references is provided, representing primary and backups
(returned when client connects to the remote interface of
the desired bean). Client invocations are directed to the
primary. If the primary is non-responsive (proxy interface
timeouts primary) then the invocation is repeated using
each backup in turn until a backup acknowledges the
invocation. If a backup is not the primary, it responds to a
client invocation with a message indicating the current
view of primary/backup; the client re-issues its invoca-
tion to the primary (this is achieved transparently without
the application layer’s knowledge). This process is re-
peated until: (i) primary responds or; (ii) application
server becomes unreachable (no replies from all backups).
The proxy interface of the client also maintains a logical
clock which timestamps each invocation as it is received
from the client. After each timestamp is issued the clock is
incremented by one, uniquely identifying each invocation
emanating from a client. This information is used by the
application server to prevent duplicated processing of a
client invocation.

In the JBoss application server alterations were made
to enhance interface proxies for the client with the addi-
tional functionality required for our failover scheme. Al-
terations were also made on the invoker MBean at the
server to allow the server to determine if the receiving
bean is the primary or not (by checking local group log).

5.2.2. Session State Replication

The retry interceptor first identifies if this is a dupli-
cated invocation by comparing the timestamp on the in-
coming client invocation with that in the timestamp log. If
the invocation timestamp is the same as the timestamp in
the timestamp log then the parameters held in the bean
log are sent back to the client. If the invocation timestamp
is higher than the timestamp in the timestamp log then
the invocation is passed along the interceptor chain to-
wards the bean.

If the invocation is not a retry and the receiving bean is

the primary, then the invocation is executed by the bean.
After bean execution (i.e., when a reply to an invocation is
generated and progresses through the interceptor chain
towards the client) the replica interceptor informs the
replication service of the current snapshot of bean state,
the return parameters and the invocation timestamp.
Upon delivery confirmation received from the replication
service, the primary and backups update their bean and
timestamp logs appropriately. Once such an update has
occurred, the invocation reply is returned to the client.

5.2.3. Transaction failover management

We assume container managed transaction demarca-
tion. Via this approach to managing transactions the ap-
plication developer specifies the transaction demarcation
for each method via the transaction attribute in a bean
deployment descriptor. Using this attribute a container
decides how a transaction is to be handled. For example,
if a new transaction has to be created for an invocation, or
to process the invocation as part of an existing transaction
(i-e., the transaction was started earlier in the execution
chain). Based on this mechanism, a single invocation of a
method can be: a single transaction unit (a transaction
starts at the beginning of the invocation and ends at the
end of the invocation), a part of a transaction unit origi-
nated from other invocation, or non transactional (e.g. the
container can suspend a transaction prior to executing a
method, and resume the transaction afterwards). We as-
sume that the processing of an invocation may involve
one or more beans (both session beans and entity beans)
and may accesses one or more databases, requiring two
phase commitment.

Primary application server

Replication
Service
*

Backup application server

Container

Replication
Service

—|

T s tion
Manager

Fig 11: A typical interaction for a transaction processing in EJB

Figure 11 illustrates the execution of a typical transac-
tion (for brevity, we have not shown resource adaptors).
We shall use this example as a comparison to highlight
the enhancements we have provided to handle transac-
tion failover (this example represents the shaded area
shown in figure 9). SFSB stands for a stateful session bean
and EB stands for an entity bean. All methods on the
beans have a required tag as their transaction attribute,
indicating to the container that they must be executed
within a transaction. The invocation from the client in-
itially does not contain a transaction context. At (1), a
client invokes a method on a stateful session bean SFSB1.

The container (on JBoss application server it is the tx in-
terceptor that performs this task) determines that the in-
vocation requires a transaction and calls the transaction
manager to create a transaction T1 for this invocation (2).
The container proceeds to attach a transaction context for
T1 to the invocation. The execution of the method of
SFSB1 generates another invocation (3) on EB1 and also
an invocation (5) on EB2. At (3) and (5), the container de-
termines that although the invocations need to be ex-
ecuted within a transaction, it does not have to create a
new transaction for them as the invocation has already
been associated with a transaction context. The invocation
on EB1 requires access to a database DB1 (4) and at this
point, the container registers DB1 to the transaction man-
ager as a resource associated with T1. The same process
happens at (6) where the container registers DB2 to be
associated with T1. After the computation on SFSB1, EB1
and EB2 finishes, before returning the result to the client,
the container completes the transaction by instructing the
transaction manager to commit T1. The transaction man-
ager then performs two phase commit with all resources
associated with T1 (8) (not shown in detail here).

We now identify where in the transaction execution
described in figure 11 we accommodate for transaction
failover. A multicast of the state update of all involved
session beans together with the transaction id and infor-
mation on all resources involved at point (7) is made via
their replication service (7a), (7b). That is, when applica-
tion level logic has ceased we inform backup replicas of
the states of resources involved in the transaction (when
commit stage is about to commence). A multicast of the
decision taken by the transaction manager is made to all
backup replica transaction managers after the prepare
phase at point (8) via the replication service (8a) and (8b).
If the primary fails before reaching point (7), the transac-
tional invocation will not complete, and the client will
retry and the backup will execute the computation as a
new transactional invocation; but if the primary fails after
reaching point (7) the backup will already have the up-
dated state and it will attempt to finish the transaction by
continuing the two phase commitment process depend-
ing on whether the primary transaction manager has tak-
en a decision or not at point (8).

In order to implement the above logic, we must be able
to detect which invocation is to be executed as a single
transaction unit (e.g. (1)), and which invocation is part of
a transaction unit defined elsewhere (e.g. (3) and (5)). This
distinction is necessary as we only propagate the state
update at the end of an invocation that is executed as a
transaction unit.

Figure 12 displays the server side invocation handling,
with focus on the three interceptors involved in transac-
tion failover. On JBoss the tx interceptor is responsible for
inspecting the transaction context from the incoming in-
vocation, and replacing the transaction context when ne-
cessary with a new one. Interceptors that are located be-
fore the tx interceptor (on side A in figure 12) will see the
original transaction context of the invocation while the
interceptors that are located after the tx interceptor (on
side B in figure 12) will see the new transaction context as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

defined by the tx interceptor. Therefore, in order to de-
termine which invocation must be executed as a transac-
tion unit, our txinspector interceptor must be placed be-
fore the tx interceptor so that it can inspect the transaction
context from the incoming invocation and compare it
with the transaction attribute of the method being in-
voked. When the txinspector interceptor determines that
an invocation is a unit of a transaction, it flags that invo-
cation with a TRANSACTIONUNIT attribute so that the
replica interceptor knows that it has to propagate the
state and the transaction information after the computa-
tion has finished: end of method execution will result in
two phase commit. The txisnpector interceptor also flags
non-transactional invocations with a NONTRANSAC-
TIONAL attribute so that the replica interceptor knows
that it has to propagate the state without the transaction
information.

Invoker Container
MBean MBean

Interceptors’ ‘ L.

Client

Server side imocation handling A1 B

Fig 12: Server side invocation handling for transaction failover

The state update at (7a) includes all information neces-
sary to attempt the transaction at a backup replica (e.g.,
application logic state, resources associated with transac-
tion, transaction context). The replica interceptor does not
have to propagate the state of a session bean after a par-
tially executed transaction, as any failure that happens
during the transaction requires a backup replica to ex-
ecute the original transactional invocation from the be-
ginning (e.g., (1) in figure 11). This follows our initial as-
sumption regarding style of application execution where
transactions predominantly consist of a limited number of
executions that occur after non-transactional
client/application server interactions.

If application level execution has ceased within a trans-
action and two-phase commit is to be attempted, we can
complete a transaction at a backup replica if the primary
fails. At (8) the transaction manager performs two phase
commit by first sending a prepare message to all transac-
tion participants. After all replies have been received, the
transaction manager takes a decision on whether to commit
or abort a transaction. We had to modify the JBoss transac-
tion manager to ensure the decision is multicast (using the
replication service) to all backup replicas. The multicast
message contains the transaction id and the decision taken
by the transaction manager. Once delivery notification of
this multicast is received from backups by the transaction
manager then the decision is sent to transaction partici-
pants.

A number of other technical challenges needed to be
overcome to provide an engineered solution. For example,
handling differences in bean referencing from primary to
backup (local references for same bean types vary across
servers). However, for brevity we do not go into such tech-

ACHMAD I. KISTIJANTORO ET AL.: ENHANCING AN APPLICATION SERVER TO SUPPORT AVAILABLE COMPONENTS

nical details.

5.2.4. Load balancing

The scheme described so far assumes a single primary
that services all clients. To allow the scalability from clus-
tering while benefiting from mid-tier replication, our
scheme must be extendable to support load balancing for
processing client requests.

Extending our scheme to allow load balancing of client
requests across a cluster of servers is straightforward.
This is due to the nature of a session within J2EE: a ses-
sion describes a relationship between a single client and a
server, commonly denoted by the creation, usage and
then deletion of a stateful session bean (instances of ses-
sion beans are not shared by clients).

To support load balancing, a client is attached to a ses-
sion bean on a server. The choice of server is made in the
normal way by the load balancer. This server is the pri-
mary, with all other servers acting as backups.

The replication service maintains the mapping be-
tween session beans and their primaries, so that each
server knows for which sessions they are primary and
which they are acting as backup. What is actually hap-
pening is that sessions are replicated in a passive manner
as opposed to servers themselves.

5.2.5. Performance evaluation

We carried out our experiments on the following con-
figurations: (1) Single application server with no replica-
tion; (2) Two application server replicas with transaction
failover. Both configurations use two databases, as we
want to conduct experiments for distributed transaction
settings.

Two experiments are performed. First, we measure the
overhead our replication scheme introduces. The ECperf
driver was configured to run each experiment with 10
different injection rates (1 through 10 inclusive). At each
of these increments a record of the overall throughput
(transactions per minute) for both order entry and manu-
facturing applications is taken. The injection rate relates
to the order entry and manufacturer requests generated
per second. Due to the complexity of the system the rela-
tionship between injection rate and resulted transactions
is not straightforward.

The second experiment measures how our replication
scheme performs in the presence of failures. In this expe-
riment we ran the ECperf benchmark for 20 minutes, and
the throughput of the system every 30 seconds is record-
ed. After the first 12 minutes, we kill one of the servers to
force the system to failover to the backup server.

Figures 13 and 14 present graphs that describe the
throughput and response time of the ECperf applications
respectively. On first inspection we see that our replica-
tion scheme lowers the overall throughput of the system.
This is to be expected as additional processing resources
are required to maintain state consistency across compo-
nents on a backup server.

Figure 15 presents a graph that shows the throughput
of the replicated system and the standard implementa-
tion. After 720 seconds running (12 minutes), we crash a

server. When no replication is present the failure of the
server results in throughput of this server decreasing to
zero, as there is no backup to continue the computation.
When replication is present performance drops when
failure of a server is initiated. However, the backup as-
sumes the role of continuing the work of the failed server,
allowing for throughput to rise again. An interesting ob-
servation is that throughput on the sole surviving server
is higher than it was on the failed server prior to crash.
This may be partially explained by the fact that only one
server exists and no replication is taking place. However,
the fact that throughput is actually higher is because the
server continues with its own workload in addition to
that of the failed server. The initial peak in throughput
may be explained by the completion of transactions that
started on the failed server but finish on the continuing
server: an additional load above and beyond the regular
load generated by injection rates.

Order transaction throughput

—&— standard
—4— replicated server

1.2 3 4 5 6 7 8 9 1

throughput (tx/min)

o

Injection rate

Fig. 13: Throughput for order entry

Order transaction response time

2

0

13

o —a— standard
—a—replicated server

5

04

1 2 3 4 5 6 7 8 9 1

Response time
(sec)

Injection rate

Fig. 14: Response time for order entry

Failover throughput

—+—Replicated server
—=—Standard

Throughput (number of
per 30 sec)

[}
8

780
840
900
960
1020
1080
1140

Time (sec)

Fig 15: Performance figures with failure

Throughput for entry order application
throughput

400 e ———
350 —4—tx=5
300 /—\ ——tx=10
250

200 X\x\x—_x

150
100 [— -
50
0+

1 2

numberof servers * N

Fig 16: Throughput with varying server numbers

response Response time for entry order application

time

25 —a—ix=1

—A—tx=5

i x/"\x—)< —X— =10
s \//‘

1 2

number 3f servers 4 5

Fig 17: Response time with varying server numbers

Figures 16 and 17 present graphs that describe the per-
formance of the ECperf applications, with varying num-
bers of servers as backups. In this configuration, only one
server is the primary for all client requests, and the rest
are backups. For low transaction rate (tx=1), adding
backup servers does not incur much overhead, the
throughput and response time differences between two
server configuration and five server configuration are
negligible. However, for higher transaction rates, such as
tx=5 and tx=10, the differences become obvious and may
be related to an increase in server load when dealing with
replication overhead and sequential execution of state
updates.

Throughput for entry order application
throughput
1

160 e tx=1
140 A— =5

120 —»— tx=10

2 number gf servers 4

Fig 18: Throughput in load balancing configuration

Response time for entry order application
response

time
40

—m—tx=1
—A—tx=5

—>—tx=10
25
20
15

3
number of servers

Fig 19: Response time in load balancing configuration

Figures 18 and 19 present graphs that describe the
throughput and the response time of the ECperf applica-
tions, with varying number of servers in a load balancing
configuration. In this setup, client sessions are distributed
among available servers: each session has a primary with
remaining servers acting as backups. The new server for
each session is determined randomly. When an applica-
tion server fails, the remaining servers share the load.

When the transaction rate is low (tx = 1) throughput
remains the same irrelevant of the number of servers em-
ployed. This indicates that such a low rate is comfortably
handled by 2 servers. When transaction rates increase (tx
=5, 10), additional servers do afford a greater capacity for
throughput. However, when server numbers increase
beyond 2 (tx = 5) and 3 (tx = 10) there is a marked reduc-
tion of throughput. This indicates that the system, under
higher transaction rates with more backup servers, reach-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

es maximum capacity. This is reinforced by the observa-
tions of response times. This behavior is to be expected as
the increased cost of the replication scheme amongst ad-
ditional servers increases the burden on the overall sys-
tem.

This suggests that in a cluster of n machines, it is better
to have a configuration where each machine has just one
backup rather than n-1 backups.

6 CONCLUSION

The replication schemes developed in this paper are
based on a combination of several existing techniques that
have been published. The focus of this work has been to
combine existing techniques to provide a complete work-
ing solution on a real platform (J2EE application servers,
in our case). Our techniques for replicating the database
tier and that for replicating the middle tier are not depen-
dent on each other and can be used together or separately
without any difficulties.

There are a number of valuable lessons learned from
our work presented here: (i) providing replication in the
data store tier and the application server tier in a modular
fashion such that they can work independently or togeth-
er requires careful design; (ii) the interceptor based de-
sign of JBoss internals provide an ideal way of enhancing
services with additional value without hindrance to exist-
ing services; (iii) to handle transaction failover we had no
alternative but to alter the source code of the transaction
manager, which is made possible due to the software be-
ing open source.

ACKNOWLEDGMENT

The work has been funded in part by European Union
project TAPAS (IST-2001- 4069) and grants from the UK.
Kistijantoro’s work was funded by QUE Project Batch III,
Department of Informatics Engineering Institute of Technol-
ogy Bandung, Indonesia.

REFERENCES

[1] S. Frolund and R. Guerraoui, "e-transactions: End-to-end reli-
ability for three-tier architectures", IEEE Transactions on Soft-
ware Engineering 28(4): 378 - 395, April 2002

www jboss.org

A. I Kistijantoro, G. Morgan, S. K. Shrivastava and M.C. Little, “Com-

ponent Replication in Distributed Systems: a Case study using Enter-

prise Java Beans”, Proc. IEEE Symp. on Reliable Distrinbuted Systems

(SRDS), pp. 89 - 98, Florence, October 2003,

[4] A. I Kistijantoro, G. Morgan and S. K. Shrivastava, “Transac-
tion Manager Failover: A Case Study Using JBOSS Application
Server”, Proc. International Workshop on Reliability in Decen-
tralized Distributed systems (RDDS), pp. 1555 - 1564, Montpel-
lier, France, October 2006

[5] K. Birman, "The process group approach to reliable compu-
ting", CACM, 36(12), pp. 37 - 53, December 1993.

[6] P. A. Bernstein, V. Hadzilacos and Nathan Goodman, "Concur-
rency Control and Recovery in Database Systems", Addison-
Wesley, 1987.

[71 M. C. Little, D. McCue and S. K. Shrivastava, “Maintaining

—_——
WL N
—_ ==

ACHMAD I. KISTIJANTORO ET AL.: ENHANCING AN APPLICATION SERVER TO SUPPORT AVAILABLE COMPONENTS

information about persistent replicated objects in a distributed
system”, Proc Int. Conf. on Distributed Computing Systems
(ICDCS), pp. 491 - 498, Pittsburgh, May 1993

[8] M.C. Little and S K Shrivastava, “Implementing high availabili-
ty CORBA applications with Java”, Proc. IEEE Workshop on In-
ternet Applications (WIAPP “99), pp. 112 - 119, San Jose, July
1999

[9] P. Felber, R. Guerraoui, and A. Schiper, “The implementation of
a CORBA object group service”, Theory and Practice of Object
Systems, 4(2), pp. 93 - 105, April 1998

[10] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan, "Consis-
tent Object Replication in the Eternal System", Theory and Prac-
tice of Object Systems, 4(2), pp.81-92 April 1998

[11] R. Baldoni, C. Marchetti, “Three-tier replication for FT-CORBA
infrastructures”, Software Practice & Experience, 33(18), pp.
767 - 797, May 2003

[12] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan, "A Fault
Tolerance Framework for CORBA", Proc. of the IEEE Int. Symp.
on Fault-Tolerant Computing (FTCS), pp. 150 - 157, Madison,
USA, June 1999

[13] X. Zhang, M. Hiltunen, K. Marzullo, R. Schlichting, “Customiz-
able Service State Durability for Service Oriented Architec-
tures”, In Proc. of the Sixth European Dependable Computing
Conf. (EDCC), pp. 119 - 128, Coimbra, Portugal, October 2006

[14] Salas, J., Perez-Sorrosal, F., Patifio-Martinez, M., and Jiménez-
Peris, “WS-Replication: a Framework for Highly Available Web
Services”, In Proc. of the 15th Int. Conf. on World Wide Web
(WWW), pp. 357 - 366, Edinburgh, Scotland, May 2006

[15] B. Roehm., “WebSphere Application Server V6 Scalability and
Performance Handbook”, IBM Red Books, ibm.com/redbooks

[16] S. Barghouthi, D. Banerjee, “Building a High Availability Data-
base Environment using WebShpere Midddleware: Part 3:
Handling Two-Phase Commit in WebSphere Application Serv-

RAC”,
http:/ /www.ibm.com/ developerworks/websphere/ techjourn
al/0710_barghouthi/0710_barghouthi.html

[17] A. Wilson, “Distributed Transactions and Two-Phase Commit”,
SAP White SAP™ NetWeaver,
https:/ /www.sdn.sap.com/irj/sdn/ go/ portal / prtroot/ docs/li
brary/uuid/3732d690-0201-0010-a993-b92aab79701f

[18] S.Labourey and B.Burke, “ JBoss Clustering 2nd Edition”,
www jboss.org, 2002

[19] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso,
“Database Replication Techniques: a Three Parameter Classifi-
cation”, Proc. of the 19th IEEE Symp. on Reliable Distributed
Systems (SRDS), pp. 206 - 215, Niirnberg, October 2000

[20] B. Kemme and G. Alonso, “A New Approach to Developing

er Using Oracle

Paper

and Implementing Eager Database Replication Protocols”,
ACM Trans. on Database Systems (TODS), 25(3), pp. 333 - 379,
September 2000

[21] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme and G. Alon-
so, “Consistent Database Replication at the Middleware Level”,
ACM Trans. on Computer Systems (TOCS). 23(4) pp. 1 - 49,
November 2005

[22] C. Amza, A. L. Cox, W. Zwaenepoel, “Distributed versioning:
consistent replication for scaling back-end databases of dy-
namic content web sites”, Proc. Middleware 2003,
ACM/TFIP/USENIX Int. Middleware Conf., pp. 998 - 1008, Rio
de Janeiro, Brazil, June 2003

[23] E. Cecchet, M. Julie, and W. Zwaenepoel, “C-JDBC: Flexible

Database Clustering Middleware”, USENIX Annual Technical
Conf., pp. 89 - 102, Boston, June 2004

[24] R. S. Barga, D. B. Lomet, T. Baby, and S. Agrawal, “Persistent
Client-Server Database Sessions”, In Proc. of Advances in Da-
tabase Technology - EDBT 2000: 7th International Conference
on Extending Database Technology, pp. 462 - 477, Konstanz,
Germany, March 2000

[25] B. Kemme, R. Jimenez-Peris et al, “Exactly once Interaction in a
Multi-tier Architecture”, VLDB Conf. Trondheim, Norway.
Aug. 2005. Workshop on design, implementation, and deploy-
ment of database replication.

[26] W. Zhao, L. M. Moser and P. M. Melliar-Smith,” Unification of
Transactions and Replication in Three-tier Architectures Based
on CORBA”, IEEE Trans. on Dependable and Secure Comput-
ing (TDSC), Vol. 2, No. 1, pp. 20 - 33, January 2005

[27] M. Hammer and D. Shipman, "Reliability mechanisms for SDD-
1: A system for distributed databases" ACM Transactions on
Database Systems 5(4) (TODS): pp. 431 - 466, 1980

[28] P.K. Reddy and M. Kitsuregawa, “Reducing the blocking in
two-phase commit protocol employing backup sites”, Proc. of
Third IFCIS Conf. on Cooperative Information Systems
(CooplS'98), pp. 406 - 415, New York, August 1998

[29] R. Jiménez-Peris, M. Patifio-Martinez, G. Alonso, S. Arévalo “A
Low-Latency Non-blocking Commit Service”, 15th Int. Conf. on
Distributed Computing (DISC), pp. 93 - 107, October 2001

[30] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin,]. Vuckovic and
H. Wu, “A Framework for Prototyping J2EE Replication Algo-
rithms”, Int. Symp. on Distributed Objects and Applications
(DOA), pp. 1413 - 1426, Agia Napa, October 2004

[31] H. Wu, B. Kemme, V. Maverick, “Eager Replication for Stateful
J2EE Servers”, Int. Symp. on Distributed Objects and Applica-
tions (DOA), pp. 1376 - 1394, Agia Napa, Cyprus, October 2004

[32] F. Perez-Sorrosal, J. Vuckovic, M. Patino-Martinez, R. Jimenez-
Peris, “Highly Available Long Running Transactions and Actib-
ities for J2EE Applications”, In Proc. of the 26th IEEE Int. Conf.
on Distributed Computing Systems (ICDCS), Lisboa, Portugal,
July 2006

[33] M.C. Little and S K Shrivastava, “Integrating the Object Trans-
action Service with the Web”, Proc. Of IEEE/OMG Second En-
terprise Distributed Object Computing Workshop (EDOC), pp.
194 - 205, La Jolla, CA, November 1998

[34] M.C. Little and S K Shrivastava, “Java Transactions for the In-
ternet”, Distributed Systems Engineering, 5(4), pp. 156 - 167,
December 1998,

[35] P. A. Bernstein, Meichun Hsu, B. Mann, “Implementing recov-
erable requests using queues”, Proceedings of ACM SIGMOD
Int. Conf. on Management of Data, pp. 112 - 122, Atlantic City,
New Jersey, 1990

[36] R. Barga, D. Lomet, G. Shegalov, G. Weikum , "Recovery guar-
antees for Internet applications", ACM Trans. on Internet Tech.
4(3), pp. 289 - 328, August 2004

[37] http://java.sun.com/developer/earlyAccess/j2ee/ecperf/dow
nload.html

[38] http://www.jgroups.org

Graham Morgan
University of New-
Graham has been a
School of Computing
Whenever he gets
techniques to ease
tolerant applications,
virtual worlds, and
dleware.

Achmad Imam Kistijantoro received the BSc de-
gree in computer science from Institut Teknologi
Bandung in 1996, the MSc degree in computer
science from TU Delft in 1999, and the PhD degree
in computer science from Newcastle University in
2006. He is currently a lecturer in Informatics
Department of Institut Teknologi Bandung, Indo-
nesia. His research interests are in the area of dis-
tributed systems and wireless/mobile computing.

received his PhD from the
castle in 1999. Since 2000
faculty member in the
Science at Newcastle.
time he develops tools and
the development of fault-
multi-user interactive
inter-organizational mid-

Santosh Shrivastava received his Ph.D. from Cam-
bridge in 1975. He was appointed a Professor of
Computing Science, University of Newcastle upon
Tyne in 1986 where he leads the Distributed Sys-
tems Research Group. His research interests span
many areas of distributed computing including
middleware, transaction processing and fault toler-
ance. Current focus is on middleware for supporting
inter-organizational services where issues of trust,
security, fault tolerance and ensuring compliance to
service contracts are of great importance.

Dr Mark Little is Director of Standards and Engi-
neering Director for Red Hat, where he is in charge
of the SOA Platform. Prior to this Mark was Co-
Founder and Chief Architect at Arjuna Technolo-
gies, an HP spin-off, where he lead the transaction
teams. Mark was a Distinguished Engineer at HP
before starting Arjuna Technologies. He has written
many papers, several books and speaks regularly at
conferences and workshops.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

