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Abstract 
Distributed applications should be able to make use 

of an object group service in a number of application 
specific ways. Three main modes of interactions can be 
identified: (i) request-reply: a client issues a request to 
multiple servers and waits for their replies; this 
represents a commonly occurring scenario when a 
service is replicated; (ii) group-to-group request-reply: 
a generalisation of the previous case, where clients are 
themselves groups; and (iii) Peer Participation: here 
all the members are regularly multicasting messages 
(asynchronous invocation); this represents a commonly 
occurring scenario when the purpose of an application 
is to share information between members, (e.g., a 
teleconferencing application). Customisation within 
each class of interaction is frequently required for 
obtaining better performance. This paper describes the 
design and implementation of a flexible CORBA object 
group service that supports the three types of 
interactions and enables application specific 
customisation. Performance figures collected over low 
latency LAN and high latency WAN are presented to 
support the case for flexibility. 

 

1. Introduction 
Distributed applications are increasingly being 

designed and implemented using CORBA middleware 
services.  In the context of fault tolerant systems, the 
provision of an object group service is considered 
highly desirable, as many fault-tolerant distributed 
applications can be structured as one or more groups of 
objects that cooperate by multicasting invocations on 
member objects. A group is defined as a collection of 
distributed entities (objects, processes) in which a 
member entity communicates with other members by 
multicasting to the full membership of the group. The 
building of group based applications is considerably 
simplified if the members of a group can multicast 
reliably and have a mutually consistent view of the 
order in which events (such as invocations, 
membership changes) have taken place. In particular, 
we require the property that a given multicast be 
atomic: either all the functioning members are 
delivered the message or none; an additional property 

of interest is guaranteeing total order: all the 
functioning members are delivered messages in 
causality preserving identical order. Management of 
replicated data for high availability is a good example 
of the application of groups; here each member process 
manages a copy of the data, and given atomic delivery 
and order, it is relatively easy to ensure that copies of 
data do not diverge. Another example is a collaborative 
application (e.g., a conference) where members of the 
group (conference participants) require delivery of 
messages in causality preserving identical order. 
Design and development of process groups with the 
accompanying membership service has been an active 
area of research [e.g., 1-6]. In the world of distributed 
objects, process group ideas can be mapped to object 
groups, and there have been many recent research 
efforts to enrich CORBA with an object group service 
[7-14].  

Distributed applications should be able to make use 
of an object group service in a number of application 
specific ways. Three main modes of interactions can be 
identified:  (i) request-reply: a client issues a request to 
multiple servers and waits for their replies; this 
represents a commonly occurring scenario when a 
service is replicated, fig. 1(i); (ii) group-to-group 
request-reply: a generalisation of the previous case, 
where clients are themselves groups; and (iii) Peer 
Participation: here all the members are regularly 
multicasting messages (asynchronous invocation); this 
represents a commonly occurring scenario when the 
purpose of an application is to share information 
between members, (e.g., a teleconferencing 
application), fig.1(ii). 

 
 

(i) (ii)  

Figure 1: Request/Reply and peer participation 
Customisation within each class of interaction is 

frequently required for obtaining better performance. 
Consider request-reply interaction between a client and 
an actively replicated service (in active replication all 



correctly functioning replicas perform processing). If 
the client and servers are all connected by high-speed, 
low latency network, then an efficient way of invoking 
the replicas would be for the client to multicast to the 
replicas directly using the underlying total order 
multicast service (in effect, the client acts as a member 
of the server group). On the other hand, if the client is 
separated from servers by a high latency 
communication path (e.g., WAN, Internet), then this 
method would be unattractive, and an alternative 
method that enabled a client to avoid directly 
multicasting to the replicas would be desirable. 
Different kinds of customisation might be needed for 
invoking passively replicated services (in passive 
replication, a single copy, the primary, performs 
processing, the remaining members act as backups). 
Another aspect of customisation is choice of the total 
order protocol. There are basically two ways of 
enforcing total order. In the asymmetric version, one of 
the members of the group assumes the responsibility 
for the ordering of messages within the group. Such a 
member is commonly termed a sequencer. In the 
symmetric version, all the members use a deterministic 
algorithm for message ordering: this requires the 
members to exchange, periodically, protocol specific 
messages amongst themselves to enable message 
ordering. It has been shown that symmetric protocols 
tend to be more attractive in situations where all the 
members are lively, and multicasting regularly (e.g., a 
conferencing application), so the need for periodically 
exchanging protocol specific messages just for ordering 
is eliminated, whereas asymmetric protocols are better 
in other situations [15]. An application should therefore 
be able to choose between the two. 

In this paper we describe the design and 
implementation of a CORBA object group service that 
enables distributed applications to deploy and make use 
of object groups in a flexible manner as hinted above. 
We present performance figures collected over low 
latency LAN and high latency WAN to support the 
case for flexibility. We have taken a modular approach 
in the design of the service called the NewTop object 
group service. First we have implemented a CORBA 
group communication service that supports overlapping 
groups (objects can simultaneously belong to many 
groups) and symmetric and asymmetric total order 
protocols [13]. Then we have implemented an object 
invocation layer that uses the multicast service to 
provide the three specific ways of interacting with 
object groups mentioned above, together with 
application specific customisation. As we argue in the 
next section (related work), existing CORBA object 
group services do not support all of the functionality or 
the flexibility provided by our system. In this respect 
our system represents an advance. 

In the next section we describe our layered design 
and relate our work to existing work on object groups. 
Section three presents the overview of the NewTop 

service. Section four describes the design of the 
invocation layer. Performance figures of our system 
taken in LAN and Internet settings are presented in 
section five; these figures illustrate the need for the 
type of functionality and customisation supported by 
our system. 

 

2. Approach and Related Work 
2.1. Approach 

The architecture of our system is depicted in fig. 2. 
The function of the invocation layer is to use the group 
communication service to support the three types of 
object group interactions, namely, request-reply, group-
to-group request-reply and peer participation, each one 
of which can be customised in a specific manner for 
better performance as indicated earlier and to be 
discussed further here. The fig. shows how a request-
reply interaction between a client and a server group is 
handled (only a single server is shown). The client 
application makes its request to the NewTop service; 
internal to the service, the request is handled by the 
invocation layer which then uses the group 
communication service to send NewTop specific 
message to servers; the message then travels up and 
down the protocol stack on the server side. The 
invocation layer employs open and closed groups (see 
below) to implement request-reply and group-to-group 
request-reply interactions to enable clients to obtain 
good performance in high latency as well as low 
latency networks. 
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Figure 2: System architecture 
Closed group - A client is considered a member of 

the server group and multicasts requests to each 
member of the server group directly. Closed groups are 
appropriate when clients and servers are connected by 
low latency communication paths (e.g., a LAN).     

Open group - A client is not considered a member 
of the server group and issues requests to just a single 
member of the server group (that then multicasts the 
request within the group). Unlike the closed group, 
clients do not participate in group communication 
protocols as members of the server group. This makes 
the open group approach more suitable for use in cases 
where clients are separated from servers by high 
latency networks (e.g., a WAN).  

The invocation layer achieves open and closed 
group approaches to client/server group interactions via 
overlapping of groups. A single group containing 
members that support some service is identified as a 



server group. Clients wishing to access the service 
provided by a server group create a group containing 
themselves that overlaps with (shares membership of) 
the server group. A group that contains clients and 
servers is termed a client/server group. To satisfy open 
and closed groups, the overlapping of client/server and 
server groups may be achieved thus: closed group - 
client/server group contains the client and all the 
members of the server group (fig. 3 (i)); open group - 
client/server group contains the client and only one 
member of the server group (fig.3(ii)). 
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Figure 3: Achieving closed and open groups 
Note that in the open group approach, a failure of 

the server within a client/server group (or the server’s 
disconnection from the client due to some 
communication failure) will cause the  binding between 
the client and the server to be broken, with the 
client/server group disbanded. A client can then rebind 
to some other server within the server group, by 
creating a new client/server group. In our current 
design, such actions are handled at the application level 
in some application specific manner. For example, a 
client application can be provided with a ‘smart proxy’ 
for the server that automatically does the rebinding as 
suggested here. Rebinding can also be performed at the 
ORB level, as discussed in section 2.2. In contrast, in 
the closed group approach, server failures can be 
automatically masked, without any need for rebinding; 
this is of course the advantage of making a client and 
all the servers members of a group.  

There is no limit to the number of client/server 
groups a client may form. Nor is there any limit to the 
number of client/server groups the members of a server 
group may participate in. A given group can be 
configured to use either symmetric or asymmetric total 
ordering protocol. Furthermore, the open and closed 
group approaches may be used simultaneously by both 
clients and members of a server group. This permits 
implementation of group-to-group request-reply 
invocations (this will be discussed in a subsequent 
section).  

In contrast to request-reply interactions, peer 
participation interaction is straightforward to 
implement (no overlapping groups are required); here 
the invocation layer simply provides ‘one way send’ 
invocation facility. In all, the invocation layer supports 
the following types of invocation primitives: 

One way send - A request requires no reply. The 
issuer of such a request does not wait for replies and 
may continue processing;  

Wait for first - Only wait for a reply from a single 
member of the server group;  

Wait for majority - Wait for replies from a majority 
of the server group;  

Wait for all - Wait for replies from all members of 
the server group.  

Replies generated from a request are sent to the 
client directly (closed group approach) or indirectly via 
a member of the server group (open group approach). 

The underlying group communication service has 
been designed to be suitable for a wide variety of group 
based applications; objects can simultaneously belong 
to many groups, group size could be large, and objects 
could be geographically widely separated. The service 
can provide causality preserving total order delivery to 
members of a group, ensuring that total order delivery 
is preserved even for multi-group objects. Both 
symmetric and asymmetric total order protocols are 
supported, permitting a member to use say symmetric 
version in one group and asymmetric version in another 
group simultaneously [5]. 

2.2. Related Work 
Enriching CORBA with an object group service has 

been an active area of research [7-14]. Three ways of 
incorporating object groups in CORBA have been 
identified [7,8]. The integration approach takes an 
existing group communication system and replaces the 
transport service of the ORB by the group service [9]. 
Although this is a very efficient way of incorporating 
group functionality in an ORB, this approach is not 
CORBA compliant, lacking in interoperability.  

The second approach called the interceptor 
approach also makes use of an existing group 
communication system; here messages issued by an 
ORB are intercepted and mapped on to calls of the 
group communication system. Well known examples of 
this approach are the Eternal [10,11] and AQuA [12] 
systems; Eternal uses the Totem group communication 
system [6], whereas AQuA uses the Ensemble group 
communication system [3]. Both Eternal and AQuA 
make use of group communication for supporting 
object replication only (and not for other uses of group 
communication, such as collaborative applications). 
They do so by using the closed group approach, and 
have been engineered for use in high speed LAN 
environments, rather than over the Internet. Ignoring 
for the moment that our system does not use the 
interception approach (it uses the service approach 
discussed below), the architecture of our system is 
different: rather than providing an integrated set of 
mechanisms for implementing a specific system 
function suitable in a specific setting (e.g., replication 
within LAN environments), we have enriched the 
group communication service with a set of high level 



invocation and group management primitives that can 
be used for supporting a wide variety of group based 
applications, with scope for optimisation based on 
knowledge of application behaviour and network 
latency. Naturally, our object group service will need to 
be used in conjunction with additional subsystems that 
provide specific functions; for example, in order to 
support passive replication, some form of state transfer 
facility would have to be implemented. We have shown 
elsewhere how a subsystem for replication of 
transactional objects (that itself uses the CORBA 
transaction service) can make use of the object group 
service [16]. 

The third approach is the service approach: it does 
not make use of any existing group communication 
system; rather the group communication system is 
implemented as a CORBA service from scratch. In 
addition to being CORBA compliant, the advantage 
here is that the service is directly available to 
application builders so can be used for a variety of 
purposes. This approach was first developed in the 
Object Group Service (OGS) [7,8], and has been taken 
in the NewTop service. The NewTop service offers a 
more comprehensive set of group management 
facilities than OGS. In particular, OGS does not 
support overlapping groups or group to group 
invocations.  

NewTop can be adapted to exploit forthcoming 
enhancements to ORBs. As part of the ongoing 
development of CORBA, the OMG have recently 
adopted interceptors, messaging, and fault-tolerance 
specifications. Availability of ORBs with interceptors 
will enable the use of NewTop as a multicast transport 
service as demonstrated by the Eternal system. 
Exploitation of the messaging service will enable more 
efficient implementation of multicasting than is 
possible now. Since at present ORBs only provide one 
to one communication, multicasting has been 
implemented by making synchronous invocations in 
turn to all the members. Multiple threads of execution 
are used to obtain parallelism and prevent client 
blocking. Such a measure to prevent blocking will not 
be required if the ORB supported asynchronous 
invocation provided by the messaging service. 

The forthcoming fault tolerance standard extends 
the Interoperable Object Reference (IOR) to handle 
object groups (IOGR - Interoperable Object Group 
Reference). This is achieved by embedding the IORs of 
group members within a single IOGR. NewTop can 
exploit this feature in a number of ways: in open 
groups, if the client ORB is unable to invoke one of the 
members of the object group (one IOR is identified as 
primary and will be chosen first by the ORB), an 
attempt may be made to invoke another member that is 
present in the IOGR. As this is executed at the ORB 
level (possibly with the aid of interceptors), the process 
is transparent to the client. In a closed group, a 

multicast may be initiated by the client ORB, sending 
an invocation to all members present in the IOGR. 

Although not a CORBA service, the system 
described in [17] is worth mentioning. The paper 
describes a client access protocol for invoking object 
replicas, without the need for the client to use 
multicasts. We obtain the same functionality by making 
use of open groups. 

 

3. Overview of the NewTop Object Group 
Service 

The failure assumptions made by the NewTop 
service are the same as made in other group services 
referred to in this paper. It is assumed that 
processes/objects fail only by crashing, i.e., by stopping 
to function. The communication environment is 
modelled as asynchronous, where message 
transmission times cannot be accurately estimated, and 
the underlying network may well get partitioned, 
preventing functioning members from communicating 
with each other. The actual protocols used in the 
NewTop service will not be described here, as these 
details are not directly relevant to this paper; the 
interested reader is referred to [5].   

The NewTop service is a distributed service and 
achieves distribution with the aid of the NewTop 
service object (NSO). In the following description, a 
group member will also be referred to as a client of the 
NewTop service. Each client is allocated an NSO. 
Group related communication required by a client is 
handled by its NSO. Referring to fig. 2 of section 2, the 
shaded box is an NSO. Only one NSO is required by a 
client, irrespective of how many groups the client 
participates in. Communication between a client and its 
NSO is handled by the ORB. Therefore, the NSO may 
reside within the same address space, in a different 
address space, or on a different node in the network to 
the group member associated with it. The most efficient 
configuration would be the client and its NSO within 
the same address space. 

Internally, the NewTop service itself has been 
composed of a group communication subsystem that 
handles membership and reliable multicasts and the 
invocation subsystem. The group communication 
system provides clients with create, delete and leave 
group operations and causal and total order multicasts. 
In addition, it maintains the membership information 
(group view) and ensures that this information is kept 
mutually consistent at each member. This is achieved 
with the help of a failure suspector that initiates 
membership agreement as soon as a member is 
suspected to have failed. The client can obtain the 
current membership information by invoking 
‘groupDetails’ operation. View updates are atomic with 
respect to message deliveries, as in virtually 
synchronous communication [2]. Message delivery is 
atomic with two types of ordering guarantees (causal 



and causality preserving total order) and in case of total 
order, two types of ordering techniques, symmetric and 
asymmetric, are supported. In the asymmetric version, 
one of the members of the group assumes the 
responsibility for the ordering of messages within the 
group. Such a member is commonly termed a 
sequencer. Electing a new sequencer, in case the 
original one departs from the group, is straightforward 
as the underlying membership service maintains 
consistent group views; so any deterministic algorithm 
can be used. In the symmetric version, all the members 
use a deterministic algorithm for message ordering. 

In a group communication system a member is 
often required to stay lively within a group to avoid 
being suspected by other members. This usually takes 
the form of a member periodically sending “I am alive” 
or “NULL” messages during periods it has no 
application level messages to send. In NewTop, after a 
member has neglected to send a message for a period 
of time, the NewTop time-silence mechanism will send 
a “I am alive” message. A client of the NewTop service 
creating a group may decide if the group is to be lively 
or event driven: 

· Lively – time-silence mechanism and failure 
suspicion is active throughout the lifetime of a group; 
the duration of the time-silence period is specified at 
the creation time. Such a configuration would be most 
appropriate in peer group settings. 

· Event – The time-silence mechanism is only active 
when application dependent messages exist within the 
NewTop service environment. Once all these messages 
are delivered to group members the failure suspicion 
and time-silence mechanisms are shutdown. The 
appearance of further application dependent messages 
wakes up these mechanisms. Such a configuration 
would be most appropriate in request-reply group 
settings. 

 

4. Flexible Object Group Invocation 
In this section we describe how the invocation layer 

implements one way send, wait for first, wait for 
majority, and wait for all for a client invoking a group 
of servers. Replies generated from servers are sent to a 
client directly (closed group approach) or indirectly via 
a member of a server group (open group approach). 
Implementation using the closed group approach (fig. 
3(i)) is relatively straightforward and will not be 
described here. Instead we will concentrate on the 
implementation using the open group approach; for a 
more detailed description, see [18]. 

 4.1. Open group approach 
The client forms a client/server group containing 

itself and only one member of the server group. As 
client requests are directed at only a single server, a 
mechanism that will propagate such messages 

throughout the server group and collect replies ready 
for returning to the client is necessary. This mechanism 
is described, with reference to fig. 4, where all the 
requests/replies are causality preserving total order 
multicasts. 

(i) Receiving client request - A request sent 
within a client/server group is received by the server. 
This server is considered to be the request manager for 
this particular client (fig. 4(i)). 

(ii) Distributing client request - The request 
manager multicasts the request within the server group 
(fig. 4(ii)). This is achieved by the request manager 
acting as a client and issuing the incoming invocation 
as a new invocation (of the same type, e.g., wait for 
first, wait for all). 

(iii) Receiving server replies - Each member of the 
server group multicasts replies within the group (fig. 
4(iii)). This would be the case when each member is 
generating replies, as in active replication. A variation 
on this behaviour is when only one member generates 
the reply; this will be discussed in the next subsection.    

(iv) Returning server replies to client - Server 
replies are gathered by the request manager (one, 
majority or all) and returned to the client (fig. 4(iv)). 
No reply is sent when the client invocation is of type 
one way. 
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Figure 4:  Client invocations in open groups 

As observed earlier, a failure of the request 
manager will cause the  binding between the client and 
the server to be broken, with the client/server group 
disbanded. A client can rebind to some other server 
within the server group, by creating a new client/server 
group. Consider this scenario further. Assume that the 
request manager fails as the servers are multicasting 
their replies (during the stage depicted in fig. 4(iii)). 
The server group will be reformed with the request 
manager removed, and no reply will be sent to the 
client. Client retries can be handled by the new request 
manager without causing re-execution, provided retries 
contain the same call number as the original call and 
servers retain the data of the last reply message 
(enabling the request manager to resend the reply). 
These are ‘standard’ techniques used in any RPC 



implementation. Logic for this can be provided either 
in the invocation layer or at the application level (in 
client and server stubs): in the current design, we have 
chosen the latter option. Note that client retries can be 
handled transparently using the IOGR feature of ORBs 
as discussed in section 2.2.   

4.2. Optimisations  
In the above scheme, clients can select any member 

of the server group for forming a client/server group 
(fig. 5(i)); total ordering of forwarded requests ensures 
that all the servers are delivered requests in identical 
causality preserving order. However, a request received 
by a request manager becomes deliverable only after it 
has been delivered through a multicast; this delay can 
be eliminated at the request manager if only a single 
request manager is used by all the clients (fig. 5(ii)). 
This optimisation will be termed restricted group 
optimisation. 

 

(i) (ii)  

Figure 5: Single request manager optimisation 
Further optimisation to the restricted group is 

possible, termed asynchronous message forwarding, 
when the client is expecting a reply from a single server 
(wait for first). The request manager, rather than 
making ‘wait for first’ calls on the servers (step (ii) of 
the previous section) makes ‘one way send’ invocation 
and simply returns a single reply itself. Combining the 
restricted open group and asynchronous message 
forwarding approaches as discussed here is particularly 
attractive for supporting passive replication. The 
request manager may assume the role of the primary; 
receiving, processing and replying to client requests. 
The remainder of the server group are passive 
members, receiving (but not necessarily acting upon) 
client requests. The asymmetric ordering protocol 
would be most suitable in this setting, with the role of 
the sequencer, request manager and primary all 
undertaken by the same group member.  

4.3. Group to Group Invocations 
The open group approach presented earlier provides 

an economic way of extension to group to group 
invocations. One scheme is illustrated in fig. 6; here a 
client invokes group gx; members of gx make another 
call to gy. Each member of the client group (gx in this 
case) uses the open group approach to invoke the server 
group (gy), using the same request manager. Another 
group, termed a client monitor group, containing gx 
and the request manager is created. The request 
manager expects the call request to come from all the 
members of gz (except itself), and filters them out, 

except one, and forwards it to members of gy. Each 
member of gy multicasts its reply within gy. The 
request manager returns the replies to all the members 
of gx by multicasting within gz.   
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 Figure 6: Implementing group to group invocations 

The scheme described above is one of several ways 
of implementing group to group invocations. Another 
way would be to use request managers at each group to 
perform message distribution. In the design presented 
here, the aim has been to minimise inter-group 
(between gx and gy) multicasts. The only such 
multicast is from the request manger to members of gz; 
this is necessary to ensure atomic delivery to all the 
functioning members of gx. 

4.4.  On the use of Overlapping Groups 
Isis system was first to use overlapping groups [2]; 

it supported closed groups for client-server interactions. 
We have taken this approach a step further and 
described the use of overlapping groups for supporting 
closed groups, open groups and for supporting group to 
group invocations. The AQuA system [12] also uses 
overlapping groups in a variety of ways for replica 
management. The group communication protocols used 
in NewTop have been designed to cope with 
overlapping groups in an efficient manner [5]. In the 
open group approach, we have relied on the use of a 
client/server group for invoking a single server. Since 
no multicasting is involved, a client can in principle 
invoke the server directly, without using the group 
system. Although this is possible (and used in [17]), we 
have chosen the former approach because it has the 
power of preserving causality (if any) between multiple 
client requests. This is illustrated with the help of fig. 7. 
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Figure 7: Ordering of related client requests 
A group gx consists of two members (A and B). B 

issues an open group request to gy (m1). B then sends  
a message in gx (m2). During the processing of m2, A 
issues an open group request to gy (m3). We want to 
ensure that request m1 is serviced at gy before m3. This 



will be the case if requests m1 and m3 are sent using 
client/server groups (fig. 7(ii)). 

 

5. Performance Evaluation 
This section describes the experiments carried out 

to assess the benefits of customisation facilities made 
available to application developers. That is, we assess 
the advantages of being able to select between closed 
and open groups as well as two ways of enforcing total 
order (asymmetric or symmetric) for a given group. 
Two classes of experiments were carried out:  

Request-Reply - A client issues a request to multiple 
servers and waits for their replies, fig. 1(i). Inter-server 
as well as client-server communication could be via a 
high speed LAN (local distribution) or Internet (wide 
area distribution). Performance of closed and open 
group approaches (figs. 8(i) and (ii) respectively), and 
the restricted group with asynchronous message 
forwarding optimisation (discussed in section 4.2) 
depicted here in fig. 8(iii)) have been evaluated under 
the two classes of ordering protocols. 

Peer Participation - All the members are regularly 
multicasting by using the asynchronous method 
invocation operation, fig. 1(ii). Performance of locally 
distributed and widely distributed groups under the two 
classes of ordering protocols have been evaluated. 
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Figure 8: Group configurations for request-reply 
interactions 

The two network environments used in the 
experiments were: (i) LAN: Pentium Linux machines 
connected by 100 Mbits fast Ethernet; and (ii) WAN: 
Pentium Linux machines were geographically 
separated by large distances, communicating via the 
Internet; the machines were located in Newcastle 
(United Kingdom), London  (United Kingdom) and 
Pisa (Italy). The ORB used in these experiments was 
omniORB2 [19]. In all the experiments, group 
members reside in the same address space as their 
NSOs. 

5.1. Request Reply Interactions 
Two performance metrics are of interests: for a 

client we wish to know the RPC time for invoking a 
service, whereas for a server we wish to know the 
throughput (number of requests serviced per second). 
To measure server throughput, clients were configured 
to issue requests as frequently as possible: as soon as a 
reply is received, another request is issued. The server 

used in this experiment is a CORBA object that simply 
returns a pseudo random number when requested to do 
so by a client. Client numbers were increased gradually 
from one to twenty. At each of these increments each 
participating client is timed for 1000 requests, and the 
average is taken. 

Given the above scenario and assuming negligible 
computation time for a service (as is the case here), we 
would expect servers to become saturated (reach 
maximum throughput) with only small number of 
clients if the clients are connected by a low latency path 
to the servers; at the same time, RPC times would 
increase as the client numbers increased. On the other 
hand, if the clients are connected by a high latency path 
to the servers, then we would expect the server 
throughput to increase as the number of clients 
increased, and the RPC times would not be affected 
that much.  

The server group consisted of three members in all 
these experiments with all groups designated as event 
driven; the following client/server group configurations 
were used: 

 (i) Low latency: clients and servers were all on 
the same LAN;  

(ii) Low and high latency: servers were located on 
the same LAN in Newcastle; clients were equally 
distributed between London and Pisa; and, 

(iii) High latency: servers and clients were 
geographically separated between Newcastle, London 
and Pisa. 

5.1.1 Non-replicated service 
To enable comparative analysis of the performance 

figures, CORBA RPC times without the use of the 
NewTop Object Group Service were first obtained. The 
figures obtained are shown in table 1.  

The experiment was repeated, however, 
communication was achieved via the group service. 
Performance figures within the LAN environment are 
shown in graphs 1 and 2 and those over the Internet in 
graphs 3 and 4. 

 

CORBA RPC Timed request 
(milliseconds) 

Throughput 
(requests per 

second) 

Client and server  

on distinct nodes in LAN 
0.9 1111.11 

Client in Pisa and server in Newcastle 78.0 12.82 

Client in London  

and server in Newcastle 
81.0 12.34 

Client in Pisa  

and server in London 
86.0 11.62 

Table  1: Performance of CORBA RPC 
The first observation to be made is that the RPC 

time of a single client making a call via the NewTop 
service (2.5 msec, LAN and 209 msec, Internet) is 
around two and half times the performance of a single 



client making an RPC without the NewTop service. 
This drop in performance is inevitable and may be 
explained by the manner with which messages are 
handled; this message passing process is shown in fig. 
9.  
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Graph 2 - Throughput (req/sec): Non 
replicated server with clients on same LAN
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Graph 3 - RPC (milliseconds): Non 

replicated server with distant clients
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Graph 4 - Throughput (req/sec): Non 
replicated server with distant clients 
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A request by a client for a pseudo random number 
is received by the client’s NSO (m1). The client’s NSO 
then multicasts this message to the replica group (m2). 
The server’s NSO receives this message and queues 
this message as pending. Messages in the pending 
queue that satisfy ordering and delivery guarantees are 
then delivered to the NSO’s associated application 
object (pseudo random number generator object) (m3). 
This delivery takes the form of an invocation. Results 
from the invocation are then queued by the server’s 
NSO in the multicast pending list (m4). A thread is 
then created which handles the multicasting of 
messages held in this list. Finally, the client’s NSO 
receives this return message (m5) and queues it in the 
messages pending list, awaiting delivery back to the 
client object of the NSO (m6). Assuming the client 
(server) NSO to be in the same address space as the 
client (server), request-reply message pairs m1-m6, 
m3-m4 will not generate any network traffic. On the 
other hand, message m2 as well as message m5 are 
each a CORBA RPC. As we have remarked earlier 
(section 2.2) expected availability of asynchronous 
messaging (and multicast services) in next generation 
ORBs will remove the main source of the inefficiency. 

 

m1

m2

m3

m4

m5

m6

Server

Server’s NSO

Client

Client’s NSO

 

Figure 9: Message passing between NSOs and 
application objects 

As the number of clients is increased, the behaviour 
obtained is consistent with the explanation of expected 
behaviour given earlier; so in the LAN environment, a 

single client is able to saturate the server, whereas the 
throughput of the server in the Internet environment 
increases with the number of clients. 

 5.1.2. Optimised group invocation 
We first consider the group invocation requiring a 

reply from a single server (wait for first) and present 
the performance of the scheme depicted in fig. 8(iii) 
incorporating the restricted open group with 
asynchronous message forwarding optimisation that is 
ideal for passive replication. This will enable us to 
directly compare performance of group invocation with 
that of non-replicated invocation discussed in the 
previous subsection: in both the cases, the client 
invokes a single server; the only additional work 
required for group invocation is that the request 
manager is required to forward the request to all the 
members. Since this is performed asynchronously, we 
would expect the performance of optimised group 
invocation to closely match that of the non-replicated 
invocation. This is indeed the case when the 
asymmetric ordering protocol is used, with the role of 
the sequencer, request manager and primary all 
undertaken by the same group member. 
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Graph 7 - RPC (milliseconds): Server(s) on 

the same LAN and clients distant
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Graph 8 - Throughput (req/sec): Server(s) on 
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Graph 9 - RPC (milliseconds): 

Geographically distributed server(s) and 
clients
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The performance figures (including those of non-
replicated server obtained earlier) are presented in 
graphs 5 through to 10 for the optimised asynchronous 
open group combination. 

5.1.3. Closed and open group invocations  
We next compare the performance of request reply 

interactions using closed groups and open groups. In 
the closed group approach, a server failure is 
automatically masked, whereas in the open group 
approach, clients bound to that server are required to 



rebind. In the absence of failures, the open group 
approach is expected to perform better than the closed 
group approach, although within low latency networks, 
the difference between the two is not expected to be 
significant. The performance figures, for the case of the 
server group using asymmetric ordering protocol and 
clients invoking ‘wait for all’ are shown in graphs 11 
through to 16. We note that when clients are separated 
from servers by high latency paths, the open group 
approach is most attractive. 

Figures obtained for the case of the groups using the 
symmetric ordering protocols have been omitted here 
to save space, but we can make two observations: (i) 
the closed group approach does not perform well, 
because it gives rise to extensive protocol related 
multicast traffic amongst all the members for ensuring 
order; and (ii) under the open group approach, there is 
little to chose between the two; this is because message 
ordering is performed within one group only, and it 
does not matter which technique is used. 

 
 Legend for graphs - Closed Open 
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Graph 13 - RPC (milliseconds): Servers on 

the same LAN and clients distant
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Graph 14 - Throughput (req/sec): Servers on 
the same LAN and clients distant 
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Graph 15 - RPC (milliseconds): 

Geographically seperated servers & clients
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5.2. Peer to Peer Interactions  
The peer participation scenario is commonly 

associated with applications wishing to share 
information across a number of participants. 
GroupWare applications are typical examples of such 
applications (e.g., teleconferencing, shared 
whiteboards, Internet Relay Chat (IRC)). Members 
simply distribute messages (via multicast) throughout 
the group using one way send; the body of the message 
consists of a CORBA string type of 100 characters in 
length. All members issue multicasts as frequently as 
possible. Performance is measured by assessing how 
long a multicast takes to become deliverable at all 
members within a group from the time of the 
multicast’s issue. The time taken for 1000 multicasts 
from each member to become deliverable at every 

other member of the group is measured. This results in 
a figure per client (as all clients are multicasting). Each 
of these figures are then divided by a 1000 to gain a 
figure for the time taken for a single multicast. The 
resultant figures are then summed to allow a throughput 
figure for the group to be gained. 

The group was designated as lively; two group 
configurations were used: 

(i) Low latency: members were distributed over 
the same LAN; and, 

(ii) High latency: members were distributed 
between Newcastle, London and Pisa. 

The symmetric ordering scheme is superior to the 
asymmetric ordering scheme in peer to peer 
interactions. In the LAN environment the volume of 
messages that result from persistently sending 
asynchronous multicasts has resulted in a deterioration 
of performance in both the symmetric and asymmetric 
protocols as group membership rises. This deterioration 
is more extreme in the asymmetric protocol than the 
symmetric protocol. This indicates that the sequencer is 
receiving more messages than it can handle. The 
sequencer is a bottleneck. This bottleneck effect 
explains why the asymmetric performance deteriorates 
significantly as group membership rises. This 
deterioration is not evident in the symmetric scenario as 
the handling of messages and multicasting is more 
evenly spread throughout the group. In the Internet 
scenario, due to the large message transit times 
involved, the sequencer does not present a bottleneck. 
However, the cost of redirection is evident; the 
performance of the asymmetric protocol is 
approximately half that of the symmetric protocol. 

 
 Legend for graphs - Symmetric Asymmetric 

 
Graph 17 - Throughput(msg/sec): Peer 
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6. Concluding Remarks 
We have taken a modular approach in the design of 

the NewTop object group service described here. First 
we have implemented a CORBA group communication 
service that supports overlapping groups (objects can 
simultaneously belong to many groups) and symmetric 
and asymmetric total order protocols. Then we have 
enriched the group communication service with a set of 
high level invocation and group management primitives 
that can be used for supporting a wide variety of group 
based applications, with scope for optimisation based 
on knowledge of application behaviour and network 
latency. For the case of request-reply interactions, we 
have implemented open and closed group approaches. 



The closed group approach works well within low 
latency networks but does not scale to high latency 
networks (wide area distribution), where the open 
group approach is most suitable. The optimised version 
of the open group approach works well in all the 
settings and almost matches the performance of its non-
replicated counterpart. Finally, experiments indicate 
that the asymmetric ordering protocol is more 
appropriate for groups that are used in request/reply 
mode, whereas the symmetric protocol is more suitable 
in peer to peer interactions. 
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