
Implementing Flexible Object Group Invocation in Networked Systems

G. Morgan and S.K. Shrivastava
Department of Computing Science, Newcastle University,

Newcastle upon Tyne, NE1 7RU, England.

Abstract
Distributed applications should be able to make use

of an object group service in a number of application
specific ways. Three main modes of interactions can be
identified: (i) request-reply: a client issues a request to
multiple servers and waits for their replies; this
represents a commonly occurring scenario when a
service is replicated; (ii) group-to-group request-reply:
a generalisation of the previous case, where clients are
themselves groups; and (iii) Peer Participation: here
all the members are regularly multicasting messages
(asynchronous invocation); this represents a commonly
occurring scenario when the purpose of an application
is to share information between members, (e.g., a
teleconferencing application). Customisation within
each class of interaction is frequently required for
obtaining better performance. This paper describes the
design and implementation of a flexible CORBA object
group service that supports the three types of
interactions and enables application specific
customisation. Performance figures collected over low
latency LAN and high latency WAN are presented to
support the case for flexibility.

1. Introduction
Distributed applications are increasingly being

designed and implemented using CORBA middleware
services. In the context of fault tolerant systems, the
provision of an object group service is considered
highly desirable, as many fault-tolerant distributed
applications can be structured as one or more groups of
objects that cooperate by multicasting invocations on
member objects. A group is defined as a collection of
distributed entities (objects, processes) in which a
member entity communicates with other members by
multicasting to the full membership of the group. The
building of group based applications is considerably
simplified if the members of a group can multicast
reliably and have a mutually consistent view of the
order in which events (such as invocations,
membership changes) have taken place. In particular,
we require the property that a given multicast be
atomic: either all the functioning members are
delivered the message or none; an additional property

of interest is guaranteeing total order: all the
functioning members are delivered messages in
causality preserving identical order. Management of
replicated data for high availability is a good example
of the application of groups; here each member process
manages a copy of the data, and given atomic delivery
and order, it is relatively easy to ensure that copies of
data do not diverge. Another example is a collaborative
application (e.g., a conference) where members of the
group (conference participants) require delivery of
messages in causality preserving identical order.
Design and development of process groups with the
accompanying membership service has been an active
area of research [e.g., 1-6]. In the world of distributed
objects, process group ideas can be mapped to object
groups, and there have been many recent research
efforts to enrich CORBA with an object group service
[7-14].

Distributed applications should be able to make use
of an object group service in a number of application
specific ways. Three main modes of interactions can be
identified: (i) request-reply: a client issues a request to
multiple servers and waits for their replies; this
represents a commonly occurring scenario when a
service is replicated, fig. 1(i); (ii) group-to-group
request-reply: a generalisation of the previous case,
where clients are themselves groups; and (iii) Peer
Participation: here all the members are regularly
multicasting messages (asynchronous invocation); this
represents a commonly occurring scenario when the
purpose of an application is to share information
between members, (e.g., a teleconferencing
application), fig.1(ii).

(i) (ii)

Figure 1: Request/Reply and peer participation
Customisation within each class of interaction is

frequently required for obtaining better performance.
Consider request-reply interaction between a client and
an actively replicated service (in active replication all

correctly functioning replicas perform processing). If
the client and servers are all connected by high-speed,
low latency network, then an efficient way of invoking
the replicas would be for the client to multicast to the
replicas directly using the underlying total order
multicast service (in effect, the client acts as a member
of the server group). On the other hand, if the client is
separated from servers by a high latency
communication path (e.g., WAN, Internet), then this
method would be unattractive, and an alternative
method that enabled a client to avoid directly
multicasting to the replicas would be desirable.
Different kinds of customisation might be needed for
invoking passively replicated services (in passive
replication, a single copy, the primary, performs
processing, the remaining members act as backups).
Another aspect of customisation is choice of the total
order protocol. There are basically two ways of
enforcing total order. In the asymmetric version, one of
the members of the group assumes the responsibility
for the ordering of messages within the group. Such a
member is commonly termed a sequencer. In the
symmetric version, all the members use a deterministic
algorithm for message ordering: this requires the
members to exchange, periodically, protocol specific
messages amongst themselves to enable message
ordering. It has been shown that symmetric protocols
tend to be more attractive in situations where all the
members are lively, and multicasting regularly (e.g., a
conferencing application), so the need for periodically
exchanging protocol specific messages just for ordering
is eliminated, whereas asymmetric protocols are better
in other situations [15]. An application should therefore
be able to choose between the two.

In this paper we describe the design and
implementation of a CORBA object group service that
enables distributed applications to deploy and make use
of object groups in a flexible manner as hinted above.
We present performance figures collected over low
latency LAN and high latency WAN to support the
case for flexibility. We have taken a modular approach
in the design of the service called the NewTop object
group service. First we have implemented a CORBA
group communication service that supports overlapping
groups (objects can simultaneously belong to many
groups) and symmetric and asymmetric total order
protocols [13]. Then we have implemented an object
invocation layer that uses the multicast service to
provide the three specific ways of interacting with
object groups mentioned above, together with
application specific customisation. As we argue in the
next section (related work), existing CORBA object
group services do not support all of the functionality or
the flexibility provided by our system. In this respect
our system represents an advance.

In the next section we describe our layered design
and relate our work to existing work on object groups.
Section three presents the overview of the NewTop

service. Section four describes the design of the
invocation layer. Performance figures of our system
taken in LAN and Internet settings are presented in
section five; these figures illustrate the need for the
type of functionality and customisation supported by
our system.

2. Approach and Related Work
2.1. Approach

The architecture of our system is depicted in fig. 2.
The function of the invocation layer is to use the group
communication service to support the three types of
object group interactions, namely, request-reply, group-
to-group request-reply and peer participation, each one
of which can be customised in a specific manner for
better performance as indicated earlier and to be
discussed further here. The fig. shows how a request-
reply interaction between a client and a server group is
handled (only a single server is shown). The client
application makes its request to the NewTop service;
internal to the service, the request is handled by the
invocation layer which then uses the group
communication service to send NewTop specific
message to servers; the message then travels up and
down the protocol stack on the server side. The
invocation layer employs open and closed groups (see
below) to implement request-reply and group-to-group
request-reply interactions to enable clients to obtain
good performance in high latency as well as low
latency networks.
 Client

Application

Invocation Service

Group Comm.
Service

Issued
 requests

NewTop
Service

Outgoing
messages

Server
Application

Invocation Service

Group Comm.
Service Outgoing

messages
Incoming
messages

Incoming
messages

Deliverable
messages

Issued
requests

Multicast
replies

Server
replies

Server
replies

Deliverable
messages

ORB

Figure 2: System architecture
Closed group - A client is considered a member of

the server group and multicasts requests to each
member of the server group directly. Closed groups are
appropriate when clients and servers are connected by
low latency communication paths (e.g., a LAN).

Open group - A client is not considered a member
of the server group and issues requests to just a single
member of the server group (that then multicasts the
request within the group). Unlike the closed group,
clients do not participate in group communication
protocols as members of the server group. This makes
the open group approach more suitable for use in cases
where clients are separated from servers by high
latency networks (e.g., a WAN).

The invocation layer achieves open and closed
group approaches to client/server group interactions via
overlapping of groups. A single group containing
members that support some service is identified as a

server group. Clients wishing to access the service
provided by a server group create a group containing
themselves that overlaps with (shares membership of)
the server group. A group that contains clients and
servers is termed a client/server group. To satisfy open
and closed groups, the overlapping of client/server and
server groups may be achieved thus: closed group -
client/server group contains the client and all the
members of the server group (fig. 3 (i)); open group -
client/server group contains the client and only one
member of the server group (fig.3(ii)).

 Member

Client

(ii)

Client/server
group

Server
group (i)

Figure 3: Achieving closed and open groups
Note that in the open group approach, a failure of

the server within a client/server group (or the server’s
disconnection from the client due to some
communication failure) will cause the binding between
the client and the server to be broken, with the
client/server group disbanded. A client can then rebind
to some other server within the server group, by
creating a new client/server group. In our current
design, such actions are handled at the application level
in some application specific manner. For example, a
client application can be provided with a ‘smart proxy’
for the server that automatically does the rebinding as
suggested here. Rebinding can also be performed at the
ORB level, as discussed in section 2.2. In contrast, in
the closed group approach, server failures can be
automatically masked, without any need for rebinding;
this is of course the advantage of making a client and
all the servers members of a group.

There is no limit to the number of client/server
groups a client may form. Nor is there any limit to the
number of client/server groups the members of a server
group may participate in. A given group can be
configured to use either symmetric or asymmetric total
ordering protocol. Furthermore, the open and closed
group approaches may be used simultaneously by both
clients and members of a server group. This permits
implementation of group-to-group request-reply
invocations (this will be discussed in a subsequent
section).

In contrast to request-reply interactions, peer
participation interaction is straightforward to
implement (no overlapping groups are required); here
the invocation layer simply provides ‘one way send’
invocation facility. In all, the invocation layer supports
the following types of invocation primitives:

One way send - A request requires no reply. The
issuer of such a request does not wait for replies and
may continue processing;

Wait for first - Only wait for a reply from a single
member of the server group;

Wait for majority - Wait for replies from a majority
of the server group;

Wait for all - Wait for replies from all members of
the server group.

Replies generated from a request are sent to the
client directly (closed group approach) or indirectly via
a member of the server group (open group approach).

The underlying group communication service has
been designed to be suitable for a wide variety of group
based applications; objects can simultaneously belong
to many groups, group size could be large, and objects
could be geographically widely separated. The service
can provide causality preserving total order delivery to
members of a group, ensuring that total order delivery
is preserved even for multi-group objects. Both
symmetric and asymmetric total order protocols are
supported, permitting a member to use say symmetric
version in one group and asymmetric version in another
group simultaneously [5].

2.2. Related Work
Enriching CORBA with an object group service has

been an active area of research [7-14]. Three ways of
incorporating object groups in CORBA have been
identified [7,8]. The integration approach takes an
existing group communication system and replaces the
transport service of the ORB by the group service [9].
Although this is a very efficient way of incorporating
group functionality in an ORB, this approach is not
CORBA compliant, lacking in interoperability.

The second approach called the interceptor
approach also makes use of an existing group
communication system; here messages issued by an
ORB are intercepted and mapped on to calls of the
group communication system. Well known examples of
this approach are the Eternal [10,11] and AQuA [12]
systems; Eternal uses the Totem group communication
system [6], whereas AQuA uses the Ensemble group
communication system [3]. Both Eternal and AQuA
make use of group communication for supporting
object replication only (and not for other uses of group
communication, such as collaborative applications).
They do so by using the closed group approach, and
have been engineered for use in high speed LAN
environments, rather than over the Internet. Ignoring
for the moment that our system does not use the
interception approach (it uses the service approach
discussed below), the architecture of our system is
different: rather than providing an integrated set of
mechanisms for implementing a specific system
function suitable in a specific setting (e.g., replication
within LAN environments), we have enriched the
group communication service with a set of high level

invocation and group management primitives that can
be used for supporting a wide variety of group based
applications, with scope for optimisation based on
knowledge of application behaviour and network
latency. Naturally, our object group service will need to
be used in conjunction with additional subsystems that
provide specific functions; for example, in order to
support passive replication, some form of state transfer
facility would have to be implemented. We have shown
elsewhere how a subsystem for replication of
transactional objects (that itself uses the CORBA
transaction service) can make use of the object group
service [16].

The third approach is the service approach: it does
not make use of any existing group communication
system; rather the group communication system is
implemented as a CORBA service from scratch. In
addition to being CORBA compliant, the advantage
here is that the service is directly available to
application builders so can be used for a variety of
purposes. This approach was first developed in the
Object Group Service (OGS) [7,8], and has been taken
in the NewTop service. The NewTop service offers a
more comprehensive set of group management
facilities than OGS. In particular, OGS does not
support overlapping groups or group to group
invocations.

NewTop can be adapted to exploit forthcoming
enhancements to ORBs. As part of the ongoing
development of CORBA, the OMG have recently
adopted interceptors, messaging, and fault-tolerance
specifications. Availability of ORBs with interceptors
will enable the use of NewTop as a multicast transport
service as demonstrated by the Eternal system.
Exploitation of the messaging service will enable more
efficient implementation of multicasting than is
possible now. Since at present ORBs only provide one
to one communication, multicasting has been
implemented by making synchronous invocations in
turn to all the members. Multiple threads of execution
are used to obtain parallelism and prevent client
blocking. Such a measure to prevent blocking will not
be required if the ORB supported asynchronous
invocation provided by the messaging service.

The forthcoming fault tolerance standard extends
the Interoperable Object Reference (IOR) to handle
object groups (IOGR - Interoperable Object Group
Reference). This is achieved by embedding the IORs of
group members within a single IOGR. NewTop can
exploit this feature in a number of ways: in open
groups, if the client ORB is unable to invoke one of the
members of the object group (one IOR is identified as
primary and will be chosen first by the ORB), an
attempt may be made to invoke another member that is
present in the IOGR. As this is executed at the ORB
level (possibly with the aid of interceptors), the process
is transparent to the client. In a closed group, a

multicast may be initiated by the client ORB, sending
an invocation to all members present in the IOGR.

Although not a CORBA service, the system
described in [17] is worth mentioning. The paper
describes a client access protocol for invoking object
replicas, without the need for the client to use
multicasts. We obtain the same functionality by making
use of open groups.

3. Overview of the NewTop Object Group
Service

The failure assumptions made by the NewTop
service are the same as made in other group services
referred to in this paper. It is assumed that
processes/objects fail only by crashing, i.e., by stopping
to function. The communication environment is
modelled as asynchronous, where message
transmission times cannot be accurately estimated, and
the underlying network may well get partitioned,
preventing functioning members from communicating
with each other. The actual protocols used in the
NewTop service will not be described here, as these
details are not directly relevant to this paper; the
interested reader is referred to [5].

The NewTop service is a distributed service and
achieves distribution with the aid of the NewTop
service object (NSO). In the following description, a
group member will also be referred to as a client of the
NewTop service. Each client is allocated an NSO.
Group related communication required by a client is
handled by its NSO. Referring to fig. 2 of section 2, the
shaded box is an NSO. Only one NSO is required by a
client, irrespective of how many groups the client
participates in. Communication between a client and its
NSO is handled by the ORB. Therefore, the NSO may
reside within the same address space, in a different
address space, or on a different node in the network to
the group member associated with it. The most efficient
configuration would be the client and its NSO within
the same address space.

Internally, the NewTop service itself has been
composed of a group communication subsystem that
handles membership and reliable multicasts and the
invocation subsystem. The group communication
system provides clients with create, delete and leave
group operations and causal and total order multicasts.
In addition, it maintains the membership information
(group view) and ensures that this information is kept
mutually consistent at each member. This is achieved
with the help of a failure suspector that initiates
membership agreement as soon as a member is
suspected to have failed. The client can obtain the
current membership information by invoking
‘groupDetails’ operation. View updates are atomic with
respect to message deliveries, as in virtually
synchronous communication [2]. Message delivery is
atomic with two types of ordering guarantees (causal

and causality preserving total order) and in case of total
order, two types of ordering techniques, symmetric and
asymmetric, are supported. In the asymmetric version,
one of the members of the group assumes the
responsibility for the ordering of messages within the
group. Such a member is commonly termed a
sequencer. Electing a new sequencer, in case the
original one departs from the group, is straightforward
as the underlying membership service maintains
consistent group views; so any deterministic algorithm
can be used. In the symmetric version, all the members
use a deterministic algorithm for message ordering.

In a group communication system a member is
often required to stay lively within a group to avoid
being suspected by other members. This usually takes
the form of a member periodically sending “I am alive”
or “NULL” messages during periods it has no
application level messages to send. In NewTop, after a
member has neglected to send a message for a period
of time, the NewTop time-silence mechanism will send
a “I am alive” message. A client of the NewTop service
creating a group may decide if the group is to be lively
or event driven:

· Lively – time-silence mechanism and failure
suspicion is active throughout the lifetime of a group;
the duration of the time-silence period is specified at
the creation time. Such a configuration would be most
appropriate in peer group settings.

· Event – The time-silence mechanism is only active
when application dependent messages exist within the
NewTop service environment. Once all these messages
are delivered to group members the failure suspicion
and time-silence mechanisms are shutdown. The
appearance of further application dependent messages
wakes up these mechanisms. Such a configuration
would be most appropriate in request-reply group
settings.

4. Flexible Object Group Invocation
In this section we describe how the invocation layer

implements one way send, wait for first, wait for
majority, and wait for all for a client invoking a group
of servers. Replies generated from servers are sent to a
client directly (closed group approach) or indirectly via
a member of a server group (open group approach).
Implementation using the closed group approach (fig.
3(i)) is relatively straightforward and will not be
described here. Instead we will concentrate on the
implementation using the open group approach; for a
more detailed description, see [18].

 4.1. Open group approach
The client forms a client/server group containing

itself and only one member of the server group. As
client requests are directed at only a single server, a
mechanism that will propagate such messages

throughout the server group and collect replies ready
for returning to the client is necessary. This mechanism
is described, with reference to fig. 4, where all the
requests/replies are causality preserving total order
multicasts.

(i) Receiving client request - A request sent
within a client/server group is received by the server.
This server is considered to be the request manager for
this particular client (fig. 4(i)).

(ii) Distributing client request - The request
manager multicasts the request within the server group
(fig. 4(ii)). This is achieved by the request manager
acting as a client and issuing the incoming invocation
as a new invocation (of the same type, e.g., wait for
first, wait for all).

(iii) Receiving server replies - Each member of the
server group multicasts replies within the group (fig.
4(iii)). This would be the case when each member is
generating replies, as in active replication. A variation
on this behaviour is when only one member generates
the reply; this will be discussed in the next subsection.

(iv) Returning server replies to client - Server
replies are gathered by the request manager (one,
majority or all) and returned to the client (fig. 4(iv)).
No reply is sent when the client invocation is of type
one way.

(i) Receiving client
request

(ii) Distributing
client request

(iii) Receiving
server replies

(iv) Returning server
replies to client

request manager

Figure 4: Client invocations in open groups

As observed earlier, a failure of the request
manager will cause the binding between the client and
the server to be broken, with the client/server group
disbanded. A client can rebind to some other server
within the server group, by creating a new client/server
group. Consider this scenario further. Assume that the
request manager fails as the servers are multicasting
their replies (during the stage depicted in fig. 4(iii)).
The server group will be reformed with the request
manager removed, and no reply will be sent to the
client. Client retries can be handled by the new request
manager without causing re-execution, provided retries
contain the same call number as the original call and
servers retain the data of the last reply message
(enabling the request manager to resend the reply).
These are ‘standard’ techniques used in any RPC

implementation. Logic for this can be provided either
in the invocation layer or at the application level (in
client and server stubs): in the current design, we have
chosen the latter option. Note that client retries can be
handled transparently using the IOGR feature of ORBs
as discussed in section 2.2.

4.2. Optimisations
In the above scheme, clients can select any member

of the server group for forming a client/server group
(fig. 5(i)); total ordering of forwarded requests ensures
that all the servers are delivered requests in identical
causality preserving order. However, a request received
by a request manager becomes deliverable only after it
has been delivered through a multicast; this delay can
be eliminated at the request manager if only a single
request manager is used by all the clients (fig. 5(ii)).
This optimisation will be termed restricted group
optimisation.

(i) (ii)

Figure 5: Single request manager optimisation
Further optimisation to the restricted group is

possible, termed asynchronous message forwarding,
when the client is expecting a reply from a single server
(wait for first). The request manager, rather than
making ‘wait for first’ calls on the servers (step (ii) of
the previous section) makes ‘one way send’ invocation
and simply returns a single reply itself. Combining the
restricted open group and asynchronous message
forwarding approaches as discussed here is particularly
attractive for supporting passive replication. The
request manager may assume the role of the primary;
receiving, processing and replying to client requests.
The remainder of the server group are passive
members, receiving (but not necessarily acting upon)
client requests. The asymmetric ordering protocol
would be most suitable in this setting, with the role of
the sequencer, request manager and primary all
undertaken by the same group member.

4.3. Group to Group Invocations
The open group approach presented earlier provides

an economic way of extension to group to group
invocations. One scheme is illustrated in fig. 6; here a
client invokes group gx; members of gx make another
call to gy. Each member of the client group (gx in this
case) uses the open group approach to invoke the server
group (gy), using the same request manager. Another
group, termed a client monitor group, containing gx
and the request manager is created. The request
manager expects the call request to come from all the
members of gz (except itself), and filters them out,

except one, and forwards it to members of gy. Each
member of gy multicasts its reply within gy. The
request manager returns the replies to all the members
of gx by multicasting within gz.

gx

gy

gz

Open client/server
group

Server or client
group

Client monitor
group

 Figure 6: Implementing group to group invocations

The scheme described above is one of several ways
of implementing group to group invocations. Another
way would be to use request managers at each group to
perform message distribution. In the design presented
here, the aim has been to minimise inter-group
(between gx and gy) multicasts. The only such
multicast is from the request manger to members of gz;
this is necessary to ensure atomic delivery to all the
functioning members of gx.

4.4. On the use of Overlapping Groups
Isis system was first to use overlapping groups [2];

it supported closed groups for client-server interactions.
We have taken this approach a step further and
described the use of overlapping groups for supporting
closed groups, open groups and for supporting group to
group invocations. The AQuA system [12] also uses
overlapping groups in a variety of ways for replica
management. The group communication protocols used
in NewTop have been designed to cope with
overlapping groups in an efficient manner [5]. In the
open group approach, we have relied on the use of a
client/server group for invoking a single server. Since
no multicasting is involved, a client can in principle
invoke the server directly, without using the group
system. Although this is possible (and used in [17]), we
have chosen the former approach because it has the
power of preserving causality (if any) between multiple
client requests. This is illustrated with the help of fig. 7.

gx

gy m2

m1

A

B

m3

gx

gy
m2

m1

A

B

m3

gw

gz

(i) (ii

Figure 7: Ordering of related client requests
A group gx consists of two members (A and B). B

issues an open group request to gy (m1). B then sends
a message in gx (m2). During the processing of m2, A
issues an open group request to gy (m3). We want to
ensure that request m1 is serviced at gy before m3. This

will be the case if requests m1 and m3 are sent using
client/server groups (fig. 7(ii)).

5. Performance Evaluation
This section describes the experiments carried out

to assess the benefits of customisation facilities made
available to application developers. That is, we assess
the advantages of being able to select between closed
and open groups as well as two ways of enforcing total
order (asymmetric or symmetric) for a given group.
Two classes of experiments were carried out:

Request-Reply - A client issues a request to multiple
servers and waits for their replies, fig. 1(i). Inter-server
as well as client-server communication could be via a
high speed LAN (local distribution) or Internet (wide
area distribution). Performance of closed and open
group approaches (figs. 8(i) and (ii) respectively), and
the restricted group with asynchronous message
forwarding optimisation (discussed in section 4.2)
depicted here in fig. 8(iii)) have been evaluated under
the two classes of ordering protocols.

Peer Participation - All the members are regularly
multicasting by using the asynchronous method
invocation operation, fig. 1(ii). Performance of locally
distributed and widely distributed groups under the two
classes of ordering protocols have been evaluated.

(i)

Server Client

(ii) (iii)

Client/server group Server group

Figure 8: Group configurations for request-reply
interactions

The two network environments used in the
experiments were: (i) LAN: Pentium Linux machines
connected by 100 Mbits fast Ethernet; and (ii) WAN:
Pentium Linux machines were geographically
separated by large distances, communicating via the
Internet; the machines were located in Newcastle
(United Kingdom), London (United Kingdom) and
Pisa (Italy). The ORB used in these experiments was
omniORB2 [19]. In all the experiments, group
members reside in the same address space as their
NSOs.

5.1. Request Reply Interactions
Two performance metrics are of interests: for a

client we wish to know the RPC time for invoking a
service, whereas for a server we wish to know the
throughput (number of requests serviced per second).
To measure server throughput, clients were configured
to issue requests as frequently as possible: as soon as a
reply is received, another request is issued. The server

used in this experiment is a CORBA object that simply
returns a pseudo random number when requested to do
so by a client. Client numbers were increased gradually
from one to twenty. At each of these increments each
participating client is timed for 1000 requests, and the
average is taken.

Given the above scenario and assuming negligible
computation time for a service (as is the case here), we
would expect servers to become saturated (reach
maximum throughput) with only small number of
clients if the clients are connected by a low latency path
to the servers; at the same time, RPC times would
increase as the client numbers increased. On the other
hand, if the clients are connected by a high latency path
to the servers, then we would expect the server
throughput to increase as the number of clients
increased, and the RPC times would not be affected
that much.

The server group consisted of three members in all
these experiments with all groups designated as event
driven; the following client/server group configurations
were used:

 (i) Low latency: clients and servers were all on
the same LAN;

(ii) Low and high latency: servers were located on
the same LAN in Newcastle; clients were equally
distributed between London and Pisa; and,

(iii) High latency: servers and clients were
geographically separated between Newcastle, London
and Pisa.

5.1.1 Non-replicated service
To enable comparative analysis of the performance

figures, CORBA RPC times without the use of the
NewTop Object Group Service were first obtained. The
figures obtained are shown in table 1.

The experiment was repeated, however,
communication was achieved via the group service.
Performance figures within the LAN environment are
shown in graphs 1 and 2 and those over the Internet in
graphs 3 and 4.

CORBA RPC Timed request
(milliseconds)

Throughput
(requests per

second)

Client and server

on distinct nodes in LAN
0.9 1111.11

Client in Pisa and server in Newcastle 78.0 12.82

Client in London

and server in Newcastle
81.0 12.34

Client in Pisa

and server in London
86.0 11.62

Table 1: Performance of CORBA RPC
The first observation to be made is that the RPC

time of a single client making a call via the NewTop
service (2.5 msec, LAN and 209 msec, Internet) is
around two and half times the performance of a single

client making an RPC without the NewTop service.
This drop in performance is inevitable and may be
explained by the manner with which messages are
handled; this message passing process is shown in fig.
9.

Graph 1 - RPC (milliseconds): Non
replicated server with clients on same LAN

0

10

20

30

40

50

60

1 6 11 16

Number of clients

R
P

C

Graph 2 - Throughput (req/sec): Non
replicated server with clients on same LAN

0

100

200

300

400

500

1 6 11 16

Number of clients

T
h

ro
u

g
h

p
u

t

Graph 3 - RPC (milliseconds): Non

replicated server with distant clients

0

100

200

300

400

500

1 6 11 16

Number of clients

R
P

C

Graph 4 - Throughput (req/sec): Non
replicated server with distant clients

0
10
20
30
40
50
60

1 6 11 16

Number of clients

T
h

ro
u

g
h

p
u

t

A request by a client for a pseudo random number
is received by the client’s NSO (m1). The client’s NSO
then multicasts this message to the replica group (m2).
The server’s NSO receives this message and queues
this message as pending. Messages in the pending
queue that satisfy ordering and delivery guarantees are
then delivered to the NSO’s associated application
object (pseudo random number generator object) (m3).
This delivery takes the form of an invocation. Results
from the invocation are then queued by the server’s
NSO in the multicast pending list (m4). A thread is
then created which handles the multicasting of
messages held in this list. Finally, the client’s NSO
receives this return message (m5) and queues it in the
messages pending list, awaiting delivery back to the
client object of the NSO (m6). Assuming the client
(server) NSO to be in the same address space as the
client (server), request-reply message pairs m1-m6,
m3-m4 will not generate any network traffic. On the
other hand, message m2 as well as message m5 are
each a CORBA RPC. As we have remarked earlier
(section 2.2) expected availability of asynchronous
messaging (and multicast services) in next generation
ORBs will remove the main source of the inefficiency.

m1

m2

m3

m4

m5

m6

Server

Server’s NSO

Client

Client’s NSO

Figure 9: Message passing between NSOs and
application objects

As the number of clients is increased, the behaviour
obtained is consistent with the explanation of expected
behaviour given earlier; so in the LAN environment, a

single client is able to saturate the server, whereas the
throughput of the server in the Internet environment
increases with the number of clients.

 5.1.2. Optimised group invocation
We first consider the group invocation requiring a

reply from a single server (wait for first) and present
the performance of the scheme depicted in fig. 8(iii)
incorporating the restricted open group with
asynchronous message forwarding optimisation that is
ideal for passive replication. This will enable us to
directly compare performance of group invocation with
that of non-replicated invocation discussed in the
previous subsection: in both the cases, the client
invokes a single server; the only additional work
required for group invocation is that the request
manager is required to forward the request to all the
members. Since this is performed asynchronously, we
would expect the performance of optimised group
invocation to closely match that of the non-replicated
invocation. This is indeed the case when the
asymmetric ordering protocol is used, with the role of
the sequencer, request manager and primary all
undertaken by the same group member.

 Legend for graphs - Non-replicated

server
Optimised open
asynchronous

Graph 5 - RPC (milliseconds): Clients &
server(s) on the same LAN

0

20

40

60

1 6 11 16

Number of clients

R
P

C

Graph 6 - Throughput (req/sec): Clients &
server(s) on the same LAN

0

100

200

300

400

500

1 6 11 16

Number of clients

T
h

ro
u

g
h

p
u

t

Graph 7 - RPC (milliseconds): Server(s) on

the same LAN and clients distant

0

100

200

300

400

500

1 6 11 16
Number of clients

R
P

C

Graph 8 - Throughput (req/sec): Server(s) on
the same LAN and clients distant

0
10
20
30
40
50
60

1 6 11 16

Number of clients

T
hr

o
u

g
hp

u
t

Graph 9 - RPC (milliseconds):

Geographically distributed server(s) and
clients

0

100

200

300

400

500

1 6 11 16

Number of clients

R
P

C

Graph 10 - Throughput (req/sec):
Geographically distributed server(s) and

clients

0
10
20
30
40
50
60

1 6 11 16
Number of clients

T
hr

o
u

g
hp

u
t

The performance figures (including those of non-
replicated server obtained earlier) are presented in
graphs 5 through to 10 for the optimised asynchronous
open group combination.

5.1.3. Closed and open group invocations
We next compare the performance of request reply

interactions using closed groups and open groups. In
the closed group approach, a server failure is
automatically masked, whereas in the open group
approach, clients bound to that server are required to

rebind. In the absence of failures, the open group
approach is expected to perform better than the closed
group approach, although within low latency networks,
the difference between the two is not expected to be
significant. The performance figures, for the case of the
server group using asymmetric ordering protocol and
clients invoking ‘wait for all’ are shown in graphs 11
through to 16. We note that when clients are separated
from servers by high latency paths, the open group
approach is most attractive.

Figures obtained for the case of the groups using the
symmetric ordering protocols have been omitted here
to save space, but we can make two observations: (i)
the closed group approach does not perform well,
because it gives rise to extensive protocol related
multicast traffic amongst all the members for ensuring
order; and (ii) under the open group approach, there is
little to chose between the two; this is because message
ordering is performed within one group only, and it
does not matter which technique is used.

 Legend for graphs - Closed Open

Graph 11 - RPC (milliseconds): Clients &

servers on the same LAN

0
10
20
30
40
50
60
70
80

1 6 11 16number of clients

R
P

C

Graph 12 - Throughput (req/sec): Clients &
servers on the same LAN

0

100

200

300

400

1 6 11 16

Number of clients

T
h

ro
u

g
h

p
u

t

Graph 13 - RPC (milliseconds): Servers on

the same LAN and clients distant

0

500

1000

1500

2000

1 6 11 16
Number of clients

R
P

C

Graph 14 - Throughput (req/sec): Servers on
the same LAN and clients distant

0
10
20
30

40
50
60

1 6 11 16
Number of clients

T
h

ro
u

g
h

p
u

t

Graph 15 - RPC (milliseconds):

Geographically seperated servers & clients

0

500

1000

1500

2000

1 6 11 16
Number of clients

R
P

C

Graph 16 - Throughput(req/sec):
Geographically seperated servers & clients

0

5

10

15

20

25

30

1 6 11 16
Number of clients

Th
ro

ug
hp

ut

5.2. Peer to Peer Interactions
The peer participation scenario is commonly

associated with applications wishing to share
information across a number of participants.
GroupWare applications are typical examples of such
applications (e.g., teleconferencing, shared
whiteboards, Internet Relay Chat (IRC)). Members
simply distribute messages (via multicast) throughout
the group using one way send; the body of the message
consists of a CORBA string type of 100 characters in
length. All members issue multicasts as frequently as
possible. Performance is measured by assessing how
long a multicast takes to become deliverable at all
members within a group from the time of the
multicast’s issue. The time taken for 1000 multicasts
from each member to become deliverable at every

other member of the group is measured. This results in
a figure per client (as all clients are multicasting). Each
of these figures are then divided by a 1000 to gain a
figure for the time taken for a single multicast. The
resultant figures are then summed to allow a throughput
figure for the group to be gained.

The group was designated as lively; two group
configurations were used:

(i) Low latency: members were distributed over
the same LAN; and,

(ii) High latency: members were distributed
between Newcastle, London and Pisa.

The symmetric ordering scheme is superior to the
asymmetric ordering scheme in peer to peer
interactions. In the LAN environment the volume of
messages that result from persistently sending
asynchronous multicasts has resulted in a deterioration
of performance in both the symmetric and asymmetric
protocols as group membership rises. This deterioration
is more extreme in the asymmetric protocol than the
symmetric protocol. This indicates that the sequencer is
receiving more messages than it can handle. The
sequencer is a bottleneck. This bottleneck effect
explains why the asymmetric performance deteriorates
significantly as group membership rises. This
deterioration is not evident in the symmetric scenario as
the handling of messages and multicasting is more
evenly spread throughout the group. In the Internet
scenario, due to the large message transit times
involved, the sequencer does not present a bottleneck.
However, the cost of redirection is evident; the
performance of the asymmetric protocol is
approximately half that of the symmetric protocol.

 Legend for graphs - Symmetric Asymmetric

Graph 17 - Throughput(msg/sec): Peer
participation, geographically seperated

members

0

20

40

60

0 5 10 15 20

Members

T
hr

ou
gh

pu
t

Graph 18 - Throughput (msg/sec): Peer
participation, geographically sperated

members

0

100

200

300

400

0 5 10 15 20

Members

T
hr

ou
gh

pu
t

6. Concluding Remarks
We have taken a modular approach in the design of

the NewTop object group service described here. First
we have implemented a CORBA group communication
service that supports overlapping groups (objects can
simultaneously belong to many groups) and symmetric
and asymmetric total order protocols. Then we have
enriched the group communication service with a set of
high level invocation and group management primitives
that can be used for supporting a wide variety of group
based applications, with scope for optimisation based
on knowledge of application behaviour and network
latency. For the case of request-reply interactions, we
have implemented open and closed group approaches.

The closed group approach works well within low
latency networks but does not scale to high latency
networks (wide area distribution), where the open
group approach is most suitable. The optimised version
of the open group approach works well in all the
settings and almost matches the performance of its non-
replicated counterpart. Finally, experiments indicate
that the asymmetric ordering protocol is more
appropriate for groups that are used in request/reply
mode, whereas the symmetric protocol is more suitable
in peer to peer interactions.

Acknowledgements
G. Morgan was supported by EPSRC CASE PhD

studentship with industrial sponsorship from HP
Laboratories, Bristol.

References

[1] Amir, Y., et al, “Transis: A Communication Sub-
system for High Availability”, Digest of Papers,
FTCS-22, Boston, July 1992, pp. 76-84.

[2] K. Birman , “The process group approach to
reliable computing”, CACM , 36, 12, pp. 37-53,
December 1993.

[3] M. Hayden, “The Ensemble system”, PhD thesis,
Dept. of Computer Science, Cornell University,
1998.

[4] D. Dolev and D. Malki, “The Transis approach to
high availability cluster communication”, CACM,
39 (4), April 1996, pp. 64-70.

[5] P. Ezhilchelvan, R. Macedo and S. K. Shrivastava,
“NewTop: a fault-tolerant group communication
protocol”, 15th IEEE Intl. Conf. on Distributed
Computing Systems, Vancouver, May 1995, pp.
296-306.

[6] L.E. Moser, P.M. Melliar-Smith et al, “Totem: a
Fault-tolerant multicast group communication
system”, CACM, 39 (4), April 1996, pp. 54-63.

[7] P. Felber, R. Guerraoui and A. Schiper, “The
implementation of a CORBA object group
service”, Theory and Practice of Object Systems,
4(2), 1998, pp. 93-105.

[8] P. Felber, “The CORBA Object Group Service: a
Service Approach to Object Groups in CORBA”,
PhD thesis, Ecole Polytechnique Federale de
Lausanne, 1998.

[9] S. Maffeis, “Run-time support for object-oriented
distributed programming”, PhD thesis, University
of Zurich, February 1995.

[10] P. Narasimhan, L, E. Moser and P. M. Melliar-
Smith, “Replica consistency of CORBA objects in

partitionable distributed systems”, Distributed
Systems Eng., 4, 1997, pp. 139-150.

[11] L.E. Moser, P.M. Melliar-Smith and P.
Narasimhan, “A Fault tolerance framework for
COBRA”, Proc. of 29th Symp. On Fault Tolerant
Computing, FTCS-29, Madison, June 1999.

[12] M. Cukier et al., “AQuA: an adaptive architecture
that provides dependable distributed objects”,
Proc. of 17th IEEE Symp. on Reliable Distributred
Computing (SRDS’98), West Lafayette, October
1998, pp. 245-253.

[13] G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan
and M.C. Little, “Design and Implementation of a
CORBA Fault-tolerant Object Group Service”,
Distributed Applications and Interoperable
Systems, Ed. Lea Kutvonen, Hartmut Konig,
Martti Tienari, Kluwer Academic Publishers,
1999, ISBN 0-7923-8527-6, pp. 361-374.

[14] S. Misra, Lan Fei, and Guming Xing, “Design,
Implementation and Performance Evaluation of a
CORBA Group Communication Service”, Proc. of
29th Symp. On Fault Tolerant Computing, FTCS-
29, Madison, June 1999.

[15] L. Rodriguez, H. Fonseca and P. Verissimo,
“Totally ordered multicasts in large scale
systems”, 16th IEEE Intl. Conf. on Distributed
Computing Systems, Hong Kong, May 1996, pp.
503-510.

[16] M.C. Little and S K Shrivastava, “Implementing
high availability CORBA applications with Java”,
Proc. of IEEE Workshop on Internet Applications,
WIAPP’99, San Jose, July 1999.

[17] C. T. Karamanolis and J.N. Magee, “Client access
protocols for replicated services”, IEEE
Transactions on Software Engineering, Vol. 25,
No. 1, 1999, pp. 3-22.

[18] G. Morgan, “A middleware service for fault
tolerant group communications”, Phd thesis, Dept.
of Computing Science, University of Newcastle
upon Tyne, September 1999.

[19] www.uk.research.att.com/omniORB/omniOB.html

