
Portal Replication for Web Application Availability Via SOAP

Simon Woodman, Graham Morgan & Simon Parkin
School of Computing Science, University of Newcastle

Newcastle upon Tyne NE1 7RU, UK
{S.J.Woodman, Graham.Morgan, S.E.Parkin}@ncl.ac.uk

Abstract
The interoperability of SOAP has eased the provision of B2B
(business to business) solutions where web applications (web
form submission via browser) are only suitable for
supporting B2C (business to client). As many services exist
that are delivered to clients via web applications, enabling
the delivery of such services via SOAP to provide B2B
solutions is desirable. One mechanism for achieving this is
via the use of portals. A portal may provide clients with a
single point of access to geographically distributed services
and tailor such services to satisfy client requirements. As a
single point of access to many services, a portal may present
a single point of failure. The provision of fault-tolerant
portals may be viewed as essential by an organisation. This
paper describes a portal suitable for exhibiting web
applications as SOAP based services and presents an
approach for replicating portals to overcome the problem of
a portal representing a single point of failure.

Keywords and phrases: SOAP, replication, group
communications, Web services, portal, CORBA

1. Introduction

 We are concerned with a particular class of Internet-
based applications that provide clients with a single point of
access to geographically distributed services. This class of
applications are commonly described as portals. The term
portal usually refers to an application that provides access to
information sources, integrating heterogeneous data systems
and possibly allowing users to tailor information presentation
to satisfy their individual requirements [11]. Such portals are
termed Enterprise Information Portals (EIPs). EIPs are
specifically designed to deliver information to end users via
web browsers, which makes them appropriate for delivering
business-to-client type services. The provision of such
services to enable organisations to use each other’s services
when satisfying end user requirements is considered an
integral part of future web application development.
Examples of this can be seen in attempts by Amazon.com
and Google to provide access to their services in a manner
suitable for satisfying business-to-business requirements
[12]. It is now possible for an organisation to utilise Google
search engine technologies in their own web based

applications without actually requiring Google technologies
to be installed within their organisational domain. Web
services are promoted as providing a suitable paradigm for
application integration across organisational boundaries.
Services may be implemented and deployed using platform
specific mechanisms with interoperability achieved via Web
service standards and communications over standard
protocols. The protocol specified by Web services for
ensuring interoperability is the Simple Access Object
Protocol (SOAP) [20].
 Web services, including SOAP, are specified using the
Extensible Markup Language (XML) [6]. XML allows a
developer to represent different elements of data in a text file
that may be read and processed by applications. SOAP
provides extendable XML-based mechanisms allowing data
exchange between distributed applications and may be used
with a number of network protocols (e.g., Hyper Text
Transfer Protocol (HTTP), Simple Mail Transfer Protocol
(SMTP)). The use of SOAP over HTTP is viewed as a
solution for providing interoperability between web-based
applications [13].
 We propose the use of a portal that allows clients to
access web applications provided by different organisations
via SOAP. This has two main advantages:

• Organisations can allow their web forms to be
exhibited in a manner more appropriate for
satisfying business-to-business solutions without the
need to reengineer their own services.

• A portal may tailor services derived from a number
of different organisations to satisfy client
requirements.

As a single point of access to services, the failure of a portal
will inhibit clients from accessing services even when such
services may be reachable by clients and functioning
correctly at an organisation’s site. A mechanism widely used
to increase the availability of a service is replication: a
service is replicated over a number of nodes in a network and
as long as one of the service replicas is correctly functioning
and reachable by clients then client requests may be satisfied.
Therefore, we propose portal replication to ensure a portal is
not a single point of failure.
 Efforts to provide fault-tolerant services via group
communications [18] using Common Object Request Broker

Architecture (CORBA) [22] technologies are amongst the
most successful [14] [15] [16] [3]. These approaches, and in
particular [16], have resulted in a fault-tolerant specification
for CORBA [21]. CORBA’s goals of interoperability
through standardisation of services and protocols are similar
to that of Web services. The choice, for application
developers, between these two technologies is a subject of
debate [17]. Rather than develop a new replication service,
we propose the refining of an existing CORBA group
communication service for use in portal replication.
 In the next section we describe the design and
implementation of our portal. Section 3 describes the ability
to tailor existing services for use by portal clients. Section 4
presents an approach to portal replication. Performance
figures of our system are presented in section 5 and
concluding remarks are presented in section 6.

2. Design and Implementation

 We have implemented a portal that allows client
requests, issued using SOAP, to be satisfied by web
applications that exhibit their functionality via web forms.
Java was chosen as the implementation language as a
number of freely available Java based technologies eased the
development of our service and the suitability of Java for
handling XML, HTTP and SOAP is well known. The
diagram in figure 1 presents an overview of our portal.

Client
Web

Application
Server

Web
Application

Gateway

SOAP
request

SOAP
response

HTTP
response

HTTP
request

HTML
representing

form

SOAP services
repository

Administrative
action

Figure 1 – Overview of system.

 The Web Application Gateway (WAG) together with the
SOAP Services Repository (SSR) are the main components
of our portal implementation. The WAG may handle
simultaneous client requests and may satisfy such requests
via an arbitrary number of web application servers. Before
enabling client requests, a service must be registered in the
SSR by an administrator. This action is trivial, requiring an
administrator to submit a configuration file that includes a
URL that identifies the web form that will satisfy a proposed
service. After registration of a service, the WAG automates
the provision of exhibiting a web form as a service and the
handling of client requests. We now continue with detailed
descriptions of service creation and service invocation.

2.1 Service creation

 Passing configuration parameters to the WAG instigates
the process of creating and making available to clients a
service. Configuration parameters are contained within a file
(a configuration file is provided on a per-web form basis),
which is supplied by an administrator and may be submitted

via an administrative interface (web form). A configuration
file contains parameters related to the following:

• Location of form – URL of a web page containing
the form that is to provide the basis for creating the
new service. When required, proxy server
information is supplied.

• Poorly formed data – Indicate appropriate action
to take if errors occur in the processing of data
(possibly due to poorly formed HTML).

• Working offline – Indicate if the process of
generating a service is to be achieved with access to
remote services or rely only on services found
within the domain of the local machine.

 A RPC file provides the information to allow the mapping
of a client request to a web application request (form
submission) and is provided on a per-form basis. We now
describe the processes involved when deriving a RPC file
with the aid of the diagram in figure 2.
 On the submission of a configuration file (step 1), an
attempt to retrieve the web form indicated by the URL is
made. As the web form may have to be retrieved via a proxy
server, details relating to the proxy server are also included in
the configuration file. On successful retrieval of the web page
(step 2) any unnecessary HTML is removed (e.g., formatting,
references to images, descriptive text) (step 3). To ensure the
success of later stages of the creation process, it is important
that the resulting HTML document is still valid (readable by a
browser). Therefore, required tags are unaffected (e.g.,
<HTML>, <BODY>).

web server

configuration
file

unprocessed
HTML
describing
form

HTML with
only required
information

jTidy
Web

application/services
portal

 XHTML

 RPC file

Xalan

Step 1

Step 2 Step 3 Step 4

Step 5

 XSLT
stylesheet

Figure 2 – Deriving RPC files.

 Once the retrieval and initial formatting of the HTML file
has been achieved, a RPC file may be derived. RPC files are
automatically generated from the retrieved HTML description
of a web form. However, the generation of the RPC file is not
possible if the HTML describing the form is not well formed.
Therefore, jTidy [8] is used (step 4) to convert the HTML to
an Extensible Hypertext Markup Language (XHTML)
document that is well formed and so readable by an XML
parser. It is worth noting that a configuration file may
indicate an appropriate action to take if there is a failure of
any of the parsing stages when deriving a RPC file. For
example, failure of jTidy to produce XHTML may result in
the “best effort” output of jTidy to be placed in a temporary
file, allowing an administrator opportunity to fix jTidy output

manually before continuing with the RPC file creation
process.
 After successful generation of valid XHTML describing
the web form, an Extensible Stylesheet Language
Transformation (XSLT) [10] stylesheet is applied, creating a
RPC file (step 5). A stylesheet indicates to an XSLT
transformer how to achieve the required transformations.
Apache Xalan [9] was chosen as the XSLT transformer tool
because Transformation API for XML (TrAX) is supported (a
common API that allows developers to write to consistent
interfaces and apply transformations in a polymorphic
manner). TrAX allows the passing of parameters by an
application to the stylesheet, which override default values in
the stylesheet. This is necessary to allow a RPC file to
contain the URL of its associated web page. The target URL
is not included in the original HTML of the web form and is
derived from the configuration file. We make a decision to
include the URL of the web form in the RPC file so a client
may realise the organisation from which a service is derived.
It is not the purpose of our system to hide from clients the
identity of service providers. The processing of client
requests associated to a RPC file may occur once the RPC
file is registered in the SSR.
 When deriving and manipulating XHTML documents,
access to the XHTML Document Type Definition (DTD) is
required. A DTD may be used to define structure and legal
elements associated with XML documents. A copy of the
XHTML DTD would, by default, be retrieved from a remote
service (allowing multiple instances of the WAG to use the
same, up to date, standard). However, it is possible to use a
local copy and provide offline working. The location of a
local copy of the XHTML DTD may be identified in the
configuration file.

2.2 Service invocation

 A client must retrieve a copy of a RPC file to realise the
appropriate contents of a SOAP RPC request. RPC files may
be downloaded from the WAG via HTTP requests from a
browser or application. A single service capable of satisfying
all SOAP RPCs located in the SSR is provided by the WAG.
This is achieved by presenting a single RPC that takes two
parameters:

• Identifier of service – The name of a RPC file that
represents the service a client wishes to invoke.

• Parameter list – A hash table that contains the
parameters expected by a service. The key to an
element in the hash table is the name of the
parameter and the value in the hash table is the
value of the parameter.

 The hash table format is suitable for parameter types
where the mapping from name to value is one-to-one.
However, parameter types that may assume multiple values
(e.g., an element representing a group of check boxes) must
be treated as a special case. Such parameters are still
represented by a single element with multiple values
separated by tokens. The ampersand is recognised as such a

token, and identifies text separated by an ampersand as
separate values. An ampersand may still be passed as a value
with the use of the percent character followed by the ASCII
code for ampersand. We now describe the processes involved
in satisfying a client request with the aid of figure 3.

web server SOAP Server

 RPC file

client

SOAP
request

SOAP
response

Step 1

Step 2

Validate and
format into

HTTP request

Step 3

 GET
request

 POST
request

 Formatted HTTP request

Step 4

Send HTTP
request and

handle response
Step 5

Step 6

Step 7

Figure 3 – Invoking services.

 On receiving a request from a client (step 1) a check is
made to identify if the request relates to an existing service
(step 2). This is achieved by ensuring the identifier of service
parameter in the client request relates to a RPC file in the
SSR. If an appropriate RPC file exists then the hash table of
parameters contained in the client request is validated against
those represented in the RPC file (step 3) and an appropriate
HTTP request is derived (step 4). The type of HTTP request
(GET or POST) is described in the RPC file. HTML allows a
number of content types to be used to encode the form data
set for submission to a server. Content types identify how the
form submission is to be interpreted by the server. The
default content type application/x-www-form-urlencoded is
supported (i.e., name is separated from value by ‘=’ and
name/value pairs are separated from each other by ‘&’).
Other content types may be supported when required. The
HTTP request is issued (step 5) with replies returned to the
SOAP server (step 6). Replies are formatted to the
appropriate return types as identified in the RPC file and
returned to the client (step 7).

3. Tailoring Services

 Satisfying a client request may require functionality
derived from more than one service and may involve multiple
organisations. For example, the WAG may present clients
with interfaces relating to vacation purchases (e.g., airplane
reservations, hotel reservations, car hire). A portal may allow
a client to issue a single request that reserves all the elements
required for a vacation booking with the functionality
associated to each element satisfied by a different
organisation. Furthermore, a number of organisations may be
able to satisfy a single element of a vacation booking (e.g.,
multiple organisations offering airplane reservations). It is
worth noting that client requests may be related and grouped
into sessions. There is an expectation that a client may issue a
number of requests in the booking of a vacation as the
availability and cost of one service may dictate a client’s
choice of other services (e.g., choosing resort, hotel, then
airline). Component architectures exist that successfully
allow developers to incorporate sessions into their

applications [7]. However, such architectural support in Web
services is not yet suitable for the modelling of sessions
across organisational boundaries. Considering the level of
abstraction and scope of this paper we do not include the
notion of Web service based sessions in our work.
 We conclude that the following types of services may be
exploited by the WAG:

• Equivalent – Services, possibly derived from
different organisations, providing a choice to the
WAG when satisfying a client request.

• Composite – More than one service, possibly
derived from different organisations, is required to
satisfy a client request.

 We now describe how equivalent and composite services
are managed by the WAG.

3.1 Equivalent Services

 As each service is derived from a web form and is
represented by a RPC file, there is a need to identify different
RPC files as equivalent and provide an interface that allows
clients to make use of equivalent services. As the variable
identifiers used in a RPC file are taken from web form labels,
the likelihood of these identifiers being the same across
equivalent services is unlikely (e.g., in the case of airline seat
reservations, the variable identifying the cost of a flight may
be represented by the label “price” in one RPC file and the
label “charge” in an equivalent RPC file). Furthermore, RPC
files may be identified as being equivalent when they
provide differing functionality. For example, there may exist
a number of RPC files representing flight bookings that are
each derived from different organisations and each present
varying functionality (e.g., some airlines may allow clients to
choose vegetarian meals whereas others may allow the
identification of limited changes en route) yet still present
the same subset of functionality (core functionality) that
allows the WAG to consider them equivalent. Considering
our observations, RPC files may be considered equivalent if
differing functionality is derived from parameters that are
optional. Considering our flight bookings example, if
vegetarian meals must be specified in RPC file X, then a
RPC file, say Y, may only be considered equivalent to X if Y
also has a vegetarian meal option. This problem of differing
functionality may be tackled one of two ways:

• Transparent – Clients are unaware of equivalent
services and rely on the WAG to determine the
choice of service provider. Any differing
functionality is ignored and only functionality
provided by all providers is exhibited.

• Client driven – The WAG provides a client with
an informed choice of equivalent services, allowing
a client to choose (based on variations in service)
the appropriate service provider.

 The client driven approach provides obvious advantages
to the client over the transparent approach (by allowing the
full functionality provided by a service to be utilised).

However, additional processing is required at the client side
to indicate to the WAG which service provider to choose.
Therefore, a trade off between the transparent approach and
the client driven approach is proposed: the client may specify
provider, but this is not necessary when dealing with core
functionality only. We now describe how equivalent services
are represented and used within the WAG.
 A RPC file (root RPC file) that represents the core
functionality provided by equivalent services is created
(manually by an administrator). This is used to remove the
problem of differing variable identifiers across equivalent
RPC files. A stylesheet per RPC file is produced to map the
variable identifiers in the root RPC file to their alternate
representation in an equivalent RPC file. The root RPC file
presents clients with an interface to equivalent services. The
root RPC file contains a list of all the information from each
equivalent RPC file that may implement the core
functionality. Optional functionality, and the equivalent
service capable of providing such extensions over the core
functionality, is described in the root RPC file. A client that
uses the additional functionality is required to request the
appropriate RPC file and use it directly (rather than use the
root RPC file). This represents the client driven approach. If a
client uses a root RPC file directly (only using core
functionality), then the WAG will determine the service
provider.

3.2 Composite Services

A composite service is created by combining the functionality
described by more than one RPC file contained in the SSR
into a single RPC file. Therefore, the functionality described
by a composite service is also described elsewhere in our
system in RPC files that are derived from web forms.
Presenting a composite service via a RPC file does not make
a distinction between the way a client accesses a composite
service compared to a non-composite service. However, due
to the nature of composite services (derived from RPC files
and not directly from a web form), the URL that identifies the
web form from which a RPC file is derived is missing. As no
URL is present, there is a possibility that a client is unaware
of the organisation(s) that implement a composite service.
This approach is undesirable, as it is not the purpose of our
system to hide from clients the identity of the organisations
that may be satisfying their requirements. Therefore, we
include identifiers that may be used by a client to discover the
organisations that contribute to the implementation of a
composite service. This is achieved by listing the identifiers
of the RPC files that have been combined to create the
composite service in the RPC file that represents a composite
service. A client may discover the organisation(s) that
implement a composite service by retrieving the appropriate
RPC files as described in a composite service’s RPC file.
 A composite service’s RPC file may be generated
automatically by our system after receiving configuration
details from an administrator. This process is trivial and
simply requires a direct copying of the functionality
described in contributing RPC files to the new composite

service’s RPC file. An administrator, via a web interface,
lists the RPC file identifiers that are required to create the
composite service’s RPC file and provides a name for
identifying the new RPC file.
 When satisfying client requests via a composite service
there may be a need for the WAG to submit web form data to
multiple organisations. There is an assumption made by the
WAG that the order in which data is submitted to different
web forms is irrelevant when satisfying composite service
requests. When dependencies exist between different
requests (the choice of one request determines the input to
another request), we suggest that a client manage this process
by accessing the required RPC files separately.
 A RPC file used to contribute to a composite service may
be a composite service itself. Furthermore, composite
services may be considered equivalent and may be
constructed from services that may be considered equivalent.

4. Replicated Services

 Equivalent services provide a redundancy that may be
exploited by the WAG to provide continued service
provision in the presence of limited service failure. If an
organisation’s service fails, then continued service may be
provided to clients as long as a correctly functioning and
reachable equivalent service exists. To make use of such a
scenario it is important that the WAG itself is not a single
point of failure. Therefore, we propose a system whereby
WAG replicas are distributed over a number of nodes in a
network.
 Replicated processing is typically done in two different
ways: active and passive. In active replication client requests
are directed at each replica. Each replica then attempts to
process the request and may reply to client requests. Even
when equivalent services exist, a decision must be made to
invoke only one of the equivalent services to avoid
duplicated request processing. Therefore, we propose a
passive replication scheme. Passive replication requires only
one member of the replica group, the primary (sometimes
referred to as the coordinator), to receive, process, and reply
to client requests.
 Group communication services have been shown to be
useful in the development of applications that use replication
schemes to achieve fault-tolerance [14] [15] [16]. We
assume the availability of a group communication sub-
system (NewTop [3]) that provides reliable, total ordered,
delivery of multicast messages and ensures that members
have a mutually consistent view of the order in which events
(such as membership changes, invocations) have taken place.
By reliable multicast we mean that either all or none of the
functioning members (replicas in our case) are delivered a
given multicast. Total order results in all functioning
members delivering a set of multicasts in the same order that
preserves causal precedence. The qualities exhibited by
NewTop ensure replica states remain mutually consistent and
that state changes are consistent with causal precedence. As
NewTop is designed to support CORBA applications,
tailoring of NewTop to work with our system is required.

 The failure assumptions made by the NewTop service are
the same as made in other group services referred to in this
paper. It is assumed that processes/objects (in our case
WAGs) fail only by crashing, i.e., by stopping to function.
The communication environment is modelled as
asynchronous, where message transmission times cannot be
accurately estimated, and the underlying network may well
get partitioned, preventing functioning members from
communicating with each other. The protocols and the
implementation details of the NewTop service will not be
described here, as these details are not directly relevant to this
paper; the interested reader is referred to [1] [2].

4.1 Client Invocations

 A client may connect to any WAG replica to retrieve a
RPC file. Once a RPC file is retrieved by a client, a client
may issue requests. The WAG replica responsible for
receiving and replying to client requests is known as the
request manager. An assumption is made that a suitable
mechanism exists that will enable a client to locate WAG
replicas in the first instance (possibly using some location and
discovery service similar to Universal Description, Discovery
and Integration [23]). However, we consider the provision of
a fault-tolerant location and discovery mechanism for Web
based services as a further topic of research and is therefore
beyond the scope of this paper.
 Figure 4 identifies the overall architecture of WAG
replication. The replica service satisfies the replication
requirements of our system.

R1 R2 R3

Client

NewTop CORBA object group service

RSO RSO RSO

SOAP

IIOP
SOAP

Figure 4 – Replicated Services.

 The replication service is a distributed service and
achieves distribution with the aid of the Replica Service
Object (RSO). Each replica is allocated an RSO. Replication
related service requirements of a replica are satisfied by its
RSO. We now describe the process of handling a client
request with the aid of figure 5.
 A WAG does not deal directly with client invocations.
Instead, an RSO intercepts an incoming client request and
marshals the request into a form suitable for transmission
over the Internet Inter-ORB Protocol (IIOP - protocol used
for CORBA communications) (figure 5.i). The RSO acts as a
proxy for a WAG and uses the same mechanism as the WAG
for receiving client requests. As all client requests adhere to
the same format (hash table), and all data is text based, the
marshalling of a request is easy to achieve via the CORBA
data types of sequence and string. The request manager
multicasts (via NewTop) the marshalled request to all replicas
(figure 5.i). NewTop ensures that client requests are delivered

to all RSOs in the same order. A member of the replica
group is identified as the primary. When required to do so
(i.e., after group membership changes), the RSO of each
member run an agreement protocol to elect a primary.
NewTop supports this functionality and uses the
Interoperable Object Reference (IOR – object reference
scheme used by CORBA) of each RSO in the group to
determine the primary and indicates the designated primary
to member RSOs. The RSO of the primary unmarshals the
client request back into its SOAP form and passes it to the
primary replica. The primary then issues requests to
appropriate service(s) via HTTP (figure 5.ii). The RSO
associated to the primary assumes the role of client, and
waits for a reply from the primary. The reply returned to the
RSO is multicast to all replicas (figure 5.iii). After NewTop
delivers a reply to the RSO layer, the request manager
unmarshals the reply and returns the reply to the client
(figure 5.iv). The request manager does not necessarily have
to be the same as the primary (clients may connect to any
WAG replica).

R1

R2

R3
Primary

Request
manager

SOAP
request

R1

R2

R3 HTTP
Request/

reply

R1

R2

R3

R1

R2

R3

SOAP
reply

(i) (ii) (iii) (iv)

Figure 5 – Handling client requests.

4.2 Handling Failure

 For ease of exposition, we shall assume in the rest of the
paper that a client request received by a server is always a
valid one that needs to be processed. This enables us to
concentrate on a server’s core task of processing the
requests. Failure may occur at any one of the replicas or a
remote service provided by an organisation. We assume the
underlying communication medium (HTTP over TCP/IP)
raises an exception when an attempt is made to submit a
request to a failed service. If an exception is raised by the
communication medium, indicating that the request was not
sent, then an equivalent service may be tried by the primary.
If no equivalent service exists (or all equivalent services are
unavailable) then the primary informs all replicas of the
exception. Such an exception is described in the reply that is
sent from the primary to the other replicas (figure 5.iii). The
request manager then returns this exception to the client
(figure 5.iv).
 We assume an organisation’s services are accessed via
the Internet and that the Quality Of Service (QOS) provided
by the Internet is that of a best effort asynchronous network.
Given this QOS, there is an inability to distinguish a slow
service from a failed service. Consider the scenario where an
exception is raised (due to some timeout related to the lack
of a reply to a request) and it is not clear if a request has been
processed by an organisation’s service (i.e., after a request
has been sent by the WAG but before a reply has been

received). A decision must be made to determine if the use of
equivalent services is appropriate. Unfortunately, exploiting
equivalent services for a request that may have been
processed already may result in the multiple processing the
same request. To partially solve this problem, agreement may
be reached between all organisations that provide an
equivalent service to determine the organisation that will
satisfy a client request and exclude those organisations that
are considered failed. However, given the domain differences
(organisations may be competing against each other to satisfy
client requirements) the implementation of such a scheme is
unlikely. Another solution would be to use a transaction for
the request. If a request fails, the transaction will ensure all
operations and procedures are undone, and all data rolled
back to its previous state (as if the request was not processed
by an organisation’s service). The qualities associated with
transactions would remove the problem of the same request
being processed more than once. Providing end-to-end
transactions across organisational boundaries is an ongoing
research activity [4] [5]. Therefore, we treat this scenario as if
an organisation’s service did not receive the request, resulting
in an exception eventually passed back to a client (as
described previously). This exception indicates to a client that
their request may or may not have been processed, leaving
the decision of how to handle such an exception to a client.
 A composite service may require a primary to issue a
number of requests to more than one organisation. The
presence of a transaction service would allow related requests
to be contained within a single transaction, with the inability
to satisfy any one request resulting in the ability to abort
related requests without any adverse consequences (failed
requests do not cause state changes at an organisation’s site).
However, as previously mentioned, providing transactions
across organisational boundaries is an active area of research
and appropriate enabling technologies are unavailable at
present. Therefore, the default behaviour of a primary is as
follows: if there is an inability to satisfy a single part of a
composite request then an exception is raised and returned to
the client (as described in figure 5). It is worth noting that the
default behaviour of our system may result in exceptions
raised even though requests may have been (partially)
processed. The exception returned to a client describes any
part processing of the request that may have been carried out.
We now consider failures of the WAG replicas themselves.
 The failure of the request manager will cause the
surviving replicas to deliver a view-change message
indicating a change in the membership of the replica group,
and the binding between the client and the request manager to
be broken. The client has to bind with another replica and
reissue its request. Consider this scenario further. Assume
that the request manager fails as the replicas are multicasting
their replies (during the stage depicted in figure 5.iii). The
replica group will be reformed with the request manager
removed, and no reply will be sent to the client. Client retries
can be handled by the new request manager without causing
re-execution, provided retries contain the same request
number as the original request and servers retain the data of
the last reply message (enabling the new request manager to

resend the reply). These are ‘standard’ techniques used in
many RPC implementations.
 The failure of the primary will cause a group
membership change that will result in the remaining,
correctly functioning replicas, electing a new primary. Any
request delivered to the primary that lacks a reply prior to the
installation of the delivery of a view change message (due to
primary failure) is considered outstanding. It is not possible
to determine if outstanding requests have been processed or
not. Therefore, request managers must reply to all clients of
outstanding requests indicating that their requests may or
may not have been processed due to primary failure. The
new primary assumes responsibility for satisfying client
requests that were not consumed by the old primary.

5. Performance

 Experiments were carried out to determine the
performance of our system over a single LAN in failure free,
non-replicated scenarios. We consider the figures presented
here as initial investigations into the performance of our
system, further work is required to identify the performance
of replicated services (as described in section 4) over the
Internet. We have published comprehensive figures relating
to NewTop in both failure free and failure prone
environments over LAN and Internet [2] [3] [24].
 The system used in our experiments consisted of 10
Pentium III PCs running Windows 2000, each with 128
megabytes of RAM, connected together using 100 Mbit fast
Ethernet. Jakarta Tomcat 4.1.12 [25] was used as the
application server and Apache SOAP 2.3.1 [26] as the SOAP
server.
 To enable comparative analysis of the performance
figures, web form requests without the use of a WAG were
obtained (table 1 column 2). Two types of system
configurations were used in the experiments: (1) WAG
residing on same machine as web application (table 1
column 3), (2) WAG residing on different machine to web
application (table 1 column 4). Each client is hosted on a
different node in the network. A single web server satisfied
all user requests and was deployed on a different node to
clients. Configuration 1 represents the type of environment
an organisation might present when enabling its own web
form based services for use by clients via SOAP.
Configuration 2 represents a more portal type approach,
where the WAG is geographically distant from an
organisation that is providing services.
 Each experiment required a client to issue 10 requests.
The time taken to satisfy all 10 requests was measured (from
issuing request to receiving reply) with the mean used to
identify the timing of a single request. Each request was
synchronous in nature and issued in sequence by a client
(next request was issued only after a reply was received for
prior request). All timings are described in milliseconds and
were derived by repeating the experiment throughout the
course of a day (to negate variable network traffic associated
to our LAN). Table 1 identifies the time taken for a single
request to be satisfied given client numbers 1 through 10.

The experiments relate to client invocations only, not the
creation of services. The web application was a web form that
accepts two numbers (supplied in the client request), adds
these two numbers, and returns the result as a reply.

Clients No WAG local WAG remote WAG

1 29.7 339.5 441.7
2 35.9 382.5 510.8
3 45.3 457.7 537.8
4 48.3 474.6 596.2
5 59.3 521.0 657.9
6 64.0 642.3 703.1
7 76.6 752.8 785.2
8 86.7 812.1 932.7
9 104.6 862.2 988.4

10 114.1 931.3 1052.5
Table 1 – Satisfying client requests.

 A noticeable performance overhead can be seen when the
WAG is introduced (local or remote). With only 1 client
present, this overhead is approximately 11 times greater for
configuration 1 and 15 times greater for configuration 2.
However, with an increase in client numbers to 10 these
overheads drop to approximately 8 times and 9 times
respectively. We can deduce that the processing required by a
WAG to validate SOAP requests (including a read from
persistent storage when accessing the SSR) and translate such
requests to HTTP and replies back to SOAP is substantially
greater than handling web form requests. However, in an
Internet environment, where message latency may be more
appropriately measured in 10s or 100s of milliseconds, the
overhead introduced by our system is more acceptable. The
smaller percentage increase in overhead when client numbers
are increased to 10 can be associated to the ability of a WAG
to handle simultaneous client requests in a manner that
utilises processing resources more efficiently. Client requests
are not queued and handled in sequence, allowing some client
requests to be processed and issued while other client
requests block until replies are received. An increase in client
numbers reduces the percentage overhead of configuration 2
more than configuration1. The only difference between the
two configurations is the placement of the WAG (remote in
configuration 2 as apposed to local in configuration 1).
Configuration 2 should provide the Web application and
WAG with greater processing resources over configuration 1.
This greater availability of resources may be attributed to the
greater drop in percentage overhead of configuration 2 over
configuration 1 when client numbers are increased.

6. Concluding Remarks

 We have described a portal that allows web forms
(typically a business-to-client solution) to be delivered to
clients via SOAP (providing the possibility of business-to-
business solutions). From a developer’s point of view, this
process is almost totally automated. Furthermore, tailoring of
services to satisfy client requests may be achieved by our
portal via the use of equivalent and composite services. To
ensure our portal does not present a single point of failure, we

propose the use of a passive replication scheme. Tailoring
existing CORBA fault-tolerant technologies satisfy our
system’s replication requirements.
 Inadequacies with existing SOAP/HTTP based
technologies limit the effectiveness of our system when
attempting to provide end-to-end reliability across
organisational boundaries. For example, a lack of standard
transactional and/or agreement services for Web services
suitable for inter-organisational communications makes it
unfeasible to ensure client requests could be satisfied once
and only once. However, the use of equivalent services may
overcome this problem in certain circumstances.
 Future work is directed at providing a system that may be
more integrated with Web service based technologies. For
example, the location and discovery mechanism is not
adequate for real world scenarios and the Web Services
Definition Language (WSDL) [19] could address the
presentation of service interfaces in a more appropriate
manner. Additional work is required to fully develop our
replication scheme and gain comprehensive performance
figures.

7. References

[1] P. Ezhilchelvan, R. Macedo and S. K. Shrivastava, “NewTop: a
fault-tolerant group communication protocol”, 15th IEEE Intl.
Conf. on Distributed Computing Systems, Vancouver, May
1995, pp. 296-306.

[2] G. Morgan and S. K. Shrivastava, "Implementing Flexible
Object Group Invocations in Networked Systems", International
Conference on Dependable Systems and Networks, FTCS-30
and DCCA-8, New York, NY, USA, June 25-28, 2000.

[3] G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan and M.C. Little,
“Design and Implementation of a CORBA Fault-tolerant Object
Group Service”, Distributed Applications and Interoperable
Systems, Ed. Lea Kutvonen, Hartmut Konig, Martti Tienari,
Kluwer Academic Publishers, 1999, ISBN 0-7923-8527-6, pp.
361-374.

[4] S. Frølund, R. Guerraoui, “Transactional Exactly-Once”,
International Conference on Dependable Systems and
Networks, FTCS-30 and DCCA-8, New York, NY, USA, June
25-28, 2000.

[5] S. Frølund, R. Guerraoui, “Implementing e-Transactions with
Asynchronous Replication”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 12, No. 2, February 2001.

[6] W3C Recommendation, “Extensible Markup Language (XML)
1.0 (Seconf Edition), http://www.w3.org/TR/2000/REC-xml-
20001006.html, as viewed October 2002.

[7] Sun Microsystems, Bill Shannon, “Java™ 2 Platform Enterprise
Edition Specification, v1.4”, http://java.sun.com/j2ee/j2ee-1_4-
pfd-spec.pdf, Proposed Final Draft, August 2002.

[8] S. Lempinen, “jTidy – HTML parser and pretty-printer in Java”,
http://lempinen.net/sami/jtidy, as viewed May 2002.

[9] The Apache XML Project, “Xalan - XSLT processor for
transforming XML documents into HTML, text, or other XML

document types”, http://xml.apache.org/xalan-j, as viewed May
2002.

[10] The World Wide Web Consortium (W3C), “XSL
Transformations (XSLT) Version 1.0”, W3C Recommendation
16 November 1999

[11] M. Vering, et al, “The E-Business Workplace: Discovering the
Power of Enterprise Portals”, John Wiley & Sons, February
2001.

[12] “Google Web APIs”, http://www.google.com/apis/, as viewed
October 2002.

[13] K. Gottschalk etal, “Introduction to Web services architecture”,
IBM Systems Journal, Vol 42, No 2, 2002.

[14] M. Cukier et al., “AQuA: an adaptive architecture that provides
dependable distributed objects”, Proc. of 17th IEEE Symp. on
Reliable Distributred Computing (SRDS’98), West Lafayette,
October 1998, pp. 245-253.

[15] Felber, “The CORBA Object Group Service: a Service
Approach to Object Groups in CORBA”, PhD thesis, Ecole
Polytechnique Federale de Lausanne, 1998.

[16] P. Narasimhan, L, E. Moser and P. M. Melliar-Smith, “Replica
consistency of CORBA objects in partitionable distributed
systems”, Distributed Systems Eng., 4, 1997, pp. 139-150.

[17] A. Gokhale et al., “Reinventing the Wheel? CORBA vs. Web
Services”, WWW2002, The Eleventh International World Wide
Web Conference, Honolulu, Hawaii, USA, 7-11 May 2002.

[18] K. Birman, “The process group approach to reliable
computing”, CACM , 36, 12, pp. 37-53, December 1993.

[19] The World Wide Web Consortium (W3C), “Web Services
Description Language (WSDL) (version 1.1)”, W3C Note 15
March 2001.

[20] The World Wide Web Consortium (W3C), “Simple Object
Access Protocol (SOAP) (version 1.1)”, W3C Note 08 May
2000.

[21] Object Management Group, “Fault tolerant CORBA (final
adopted specification)”, OMG Technical Committee Document,
ptc/2000-04-04, March 2000.

[22] Object Management Group, “The Common Object Request
Broker: Architecture and Specification, 2.3 edition”, OMG
Technical Committee Document formal/98-12-01, June 1999.

[23] Organization for the Advancement of Structured Information
Standards (OASIS), “UDDI Version 3.0 Published
Specification”, http://www.uddi.org/specification.html, as
viewed October 2002, 19 July 2002.

[24] G. Morgan and P.D. Ezhilchelvan, "Policies for using Replica
Groups and their effectiveness over the Internet", Proceedings of
the 2nd International COST264 on Networked Group
Communication (NGC 2000), Stanford University, Palo Alto,
California, USA, 2000.

[25] The Jacarta Project, “Tomcat Document Index”,
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/index.html, as
viewed October 2002.

[26] The Apache XML Project, “Apache SOAP 2.3.1
Documentation”, http://xml.apache.org/soap/docs/index.html, as
viewed October 2002

