
E-Commerce with Rich Clients and Flexible Transactions

Dylan Clarke, Graham Morgan

School of Computing Science, Newcastle University

{Dylan.Clarke,Graham.Morgan}@ncl.ac.uk

Abstract

In this paper we describe an approach for

implementing a shopping cart program using rich

clients. We assume our client is not always connected

to the server side during a purchase. We utilize the

well known approach known as flexible transactions to

afford a best effort approach to successfully complete a

purchase order. Our approach is timely as commercial

solutions for rich client technology (such as adobe air)

is now a realistic proposition for many Internet

application developers.

1. Introduction

The assumption of full connectivity and limited

client functionality has been viewed as a hindrance in

recent years for end user Internet applications. This is

because any enrichment of the user experience relates

to increasing server loads and high bandwidth

requirements. In addition, the latency present between

client and server increases the wait time for users.

Rich clients are being proposed as a way to provide

as much functionality as possible to a user while

limiting dependency on the server side. A user may

work while disconnected from the server, with

interaction between client and server handled

appropriately whenever connectivity is available.

Rich clients go beyond browsers with enhanced

functionality; they represent development platforms

themselves, with persistent store capabilities and an

expectation they will run continuously in the

background. In this scenario a web browser becomes

just another program that runs within a rich client.

Considering the increasing popularity of rich clients

one may reconsider quite fundamental implementations

of existing web based applications. One such

application is the shopping cart. In this paper we

describe our initial experiences of implementing a rich

client shopping cart using flexible transactions on the

adobe air platform. Instead of the immediate

requirement of all-or-nothing, flexible transactions

allow for a more forgiving environment, where sub-

transactions may be compensated for at a later time if

the need arises.

Section 2 describes background and related work.

Section 3 describes our approach and section 4

presents conclusions drawn from our work.

2. Background and Related Work

In this section we first identify the scope of our

work and then present an introduction to different

transactional approaches. We then briefly describe rich

clients. We indicate why our transactional approach is

suitable in the context of rich clients and what benefits

this may bring over the non-rich client approach.

2.1 Scope

Although our overall project covers all the areas of

catalogue updates, user login and security, we

concentrate on the last steps of the purchase process

here to afford a detailed description of our transactional

approach. As client connectivity to the server may be

intermittent in nature, we do not wish a transaction to

fail because a client is not connected to the server for a

period of time.

Worth mentioning at this point is that we could

utilize Web Service transactional services (e.g., [9]).

However, the substantial cost in middleware overhead

in adobe air (and the lack of implementation) meant we

implemented our own techniques. As the main focus of

the paper relates to a shopping cart and not a general

solution, we consider this approach adequate.

2.2 Flexible Transactions

The ACID properties of a standard transaction

cause difficulties for long running activities as timeouts

will inevitably occur [7]. If we allowed timeouts to be

substantial, measured in hours or days, the problem

becomes one of hindering the overall performance of

an application. This is due to the fact that the locking

of resources (possibly over a number of different

transactional participants) may block forward

progression. Alternatively, high abort rates may occur

as interference between resources is detected that

conflict with the atomicity requirement. An approach to

solving this problem and still maintaining some

transactional benefits is via the use of advanced

transaction models. One such model is the flexible

transaction model.

A flexible transaction model allows participants to

work independently of each other, allowing a series of

separately operating transactions to be identified as a

single transaction [8]. Such transactions are viewed as

sub-transactions and cumulatively represent a flexible

transaction; a flexible transaction is a partial ordering

of sub-transactions. Each sub-transaction may be

classed as compensatable, retriable or pivot [9].

Compensatable sub-transactions can be “undone” in the

sense that once committed can be compensated for by

enacting a compensatable transaction. A retriable sub-

transaction may be retried one or more times until it

eventually commits. A pivot sub-transaction is neither

compensatable nor retriable.

A major consideration in e-commerce solutions is to

ensure exactly once semantics [6]. Therefore, care must

be taken when developing any multi-participant

transactional approach that all required state changes

occur as expected, without duplication or partial loss of

state.

3. Transactional Approach

In this section we first state our assumptions

relating to the implementation environment and

behavior of the different parts of our implementation.

We then provide an overview of how our flexible

transaction works without and with compensation.

3.1 Assumptions

We assume that three participants exist in our

scenario: (i) Client – a rich client accessed by a user;

(ii) Payment server – a server responsible for

managing credit balances of users; (iii) Stock server – a

server responsible for managing stock dispatch.

Each participant must have access to a local

database capable of carrying out transactions (all

transactions are considered retriable). In addition, each

participant will be capable of completing their roles

given sufficient time to do so and local databases are

always accessible (failure may occur but as some point

participants will function correctly and committed data

is never lost). Although connectivity may be transient

between the participants, we assume that connectivity

will occur sufficiently long enough at some point in

time to allow message passing. Furthermore, we

assume that participants may not, unilaterally, decide

that a transaction they previously committed may be

compensated. For example, the payment server may not

commit a payment transaction, say T, and then, with no

interaction with client or stock server, decide to

compensate T. Malicious behavior of participants is not

considered. Finally, for the purposes of clarity a client

is associated to only a single purchase order at a time.

3.2 Without Compensation

Figure 1 shows a progression without compensation

and should be used to aid in understanding our

description. When a user indicates that they wish to

purchase the items stored in their shopping cart a

transaction is started in the client (Tc
order

). In this

transaction a client writes order details to the database

at the client side. These details include a client

generated purchase number (Pn) which is used to

uniquely identify this sale across all servers and the

items purchased themselves. Within Tc
order

 the client

sets a flag (Fc
payment

) as FALSE, indicating that this

particular purchase is yet to be paid for. In addition,

another flag (Fc
stock

) is set to FALSE to indicate that

stock is yet to be dispatched. If Tc
order

 successfully

commits then details relating to the value of the

purchases are sent to the payment server in message

Mc
payment

 and purchase details are sent to the stock

server in message Mc
purchase

.

Client

Payment

Stock

Mc
payment

Mc
purchase

Tp
payment

Ts
purchase

Mp
pcode

Tc
confirm

Tc
order

Mc
success

Ts
final

Ms
success

Tc
final

Figure 1 – Non-compensated purchase

When the payment server receives Mc
payment

 a

transaction to handle the required payment procedure is

started (Tp
payment

). The payment server first checks to

determine if Pn already exists in its own local database.

If Pn is not already registered in its database then the

payment server debits the customer account by the

appropriate figure and readies a payment confirmation

code to be stored in its database and to be returned to

the client (Mp
code

). Once Tp
payment

has completed Mp
code

is sent to the client. If Pn already exists when Mc
payment

is received then the appropriate Mp
code

 is resent.

When the stock server receives order details from

the client it first checks its database to determine if Pn

already exists. If Pn does not exist then the stock server

starts a transaction Ts
purchase

 and stores details relating

to the purchase in its local database and sets the flag

Fs
purchase

 to FALSE, indicating that the purchase is yet

to be paid for.

When the client receives Mp
code

 from the payment

server a transaction is started Tc
confirm

 to set Fc
payment

 to

TRUE and the client sends a message to the stock

server indicating that payment has been successful

(Mc
success

).

Client Payment Stock

Mc
payment

Mc
success

Tp
payment

Mp
code

Tc
confirm

Tc
order

Mc
success

Ms
mising

Ts
final

Ms
success

Ts
purchase

Mc
purchase

Tc
final

Figure 2 – Missing purchase at stock server

On receiving Mc
success

 the stock server first checks to

determine if Pn has already been recorded in its local

database. If it has not then the stock server sends a

message to the client Ms
missing

 indicating that no

purchase record exists regarding this Pn. This is shown

in figure 2. Note that this process may be repeated a

number of time until Ts
purchase

 can be achieved. If Pn

does exist then a transaction Ts
final

 is used to set the

appropriate Fs
purchase

 flag to TRUE and so indicate that

stock dispatch is required. A message Ms
success

 is then

sent to the client, to confirm that stock dispatch has

occurred. If Fs
purchase

 is found to be TRUE during Ts
final

then the transaction aborts as the stock has already

been dispatched to the client and Ms
success

 is resent to

the client.

On receiving Ms
missing

 from the stock server the

client resends Mc
purchase

. On receiving Ms
success

 the client

sets the Fc
stock

 flag to TRUE by starting and completing

the Tc
final

 transaction. Once Fc
payment

and Fc
stock

 are both

TRUE then the flexible transaction is considered

complete.

A client makes a decision on when to send

messages based on the value of the Fc
payment

 and FC
stock

flags and if these are resends then such messages can

be achieved without user intervention. If one or both

flags are in the FALSE state then the following is

attempted by the client: (i) Fc
payment

 is set to FALSE

then Mc
payment

 is issued to the payment server and

Mc
purchase

 is sent to the stock server; (ii) Fc
payment

 is

TRUE yet Fc
stock

 is FALSE then Mc
success

 is sent to the

stock server; (iii) if Ms
missing

 is received then Mc
purchase

 is

sent to stock server. We rely on the payment server and

the stock server replying to client messages and do not

require these servers to initiate message passing, only

to respond to client messages.

3.3 Compensation

There is a possibility to compensate some

transactions at all participants if both Fc
payment

 and

Fc
stock

 are not TRUE. However, we have deemed two

transactions as non-compensatable: (i) Tc
final

, where we

recognize the end of the purchase at the client; (ii)

Ts
final

, where we realize stock dispatch at the stock

server. We assume that recalling stock is logistically

unappealing. This leaves us with the following

compenstable transactions: Tc
order

 (recording client

order at client); (ii) Tp
payment

 (recording of payment at

payment server); Ts
purchase

 (recording of purchase

details at stock server); Tc
confirm

 (recording of payment

acknowledgement at client).

If Tc
order

 fails to commit then the whole process

ceases and no messages are ever issued to the payment

and stock servers. In such a scenario a user may be

informed that their purchase failed immediately.

However, if Tc
order

commits the client then assumes the

role of attempting to complete the purchase process via

the repeated sending of messages to the payment and

stock servers as and when appropriate given transient

connectivity (as mentioned in previous section). As one

of our assumptions is that at some point messages will

exchange and transactions commit, we rely on

unfavorable message responses from the payment

and/or stock servers to compensate already committed

transactions. An unfavorable message may be

considered application dependent and relates to the

scenarios “out of stock” or “insufficient finances”.

Therefore, our discussion centers on two possible

scenarios: (i) the payment server is unable to carry out

the financial transaction; (ii) the stock server is unable

to satisfy the sale request.

To accommodate compensation we introduce two

additional flags at the client. These two flags are used

to indicate when there is an inability to carry out the

purchase at the payment server (Fc
pfail

) or the stock

server (Fc
sfail

). Each server has its own failure log that

keeps track of failed and compensated transactions

(payment – Lp
fail
, stock - Ls

fail
). The failed logs are used

to prevent the payment and stock servers from acting

on messages from a client repeatedly (possibly carrying

out compensation erroneously more than once).

We now present a sketch of our approach. The

diagrams are presented to ease understanding and do

not present all possible scenarios.

3.3.1 Payment Server. Figure 3 provides an overview

of the compensation process when the payment server

is unable to honor its obligations. On receiving

Mc
payment

 the payment server may deem the transaction

Tp
payment

 unwarranted due to problems with a client’s

account (e.g., does not exist, unrecognized client

details, suspended account). In such circumstances the

payment server first determines if this purchase (Pn)

has been acted upon previously. If Pn exists in the

payment servers own database then the payment server

assumes that, although invalid at this attempt, a

previous attempt at the purchase succeeded. Therefore,

actions of the payment server follow the same progress

as described without compensation (no compensation).

If Pn does not exist in the payment server’s database

nor the payment server’s failed log then the payment

server records Pn using the transaction Tp
fail

 in Lp
fail
 and

issues a message Mp
fail
 to the client if the Tp

fail
 succeeds.

If Pn does exist in the failed log already then Mp
fail
 is

resent to the client.

Client Payment Stock

Mc
payment

Mc
purchase

Tp
fail

Ts
purchase

Mp
fail

Tc
pfail

Tc
order

Mc
fail

Ts
reverse

Ms
cancelled

Tc
sfail

Tc
fail

Figure 3 – Compensating in the presence of

payment problems

When the client receives Mp
fail
 from the payment

server there is a requirement for the client to inform the

stock server that the previous request for stock

purchase is now not needed. First, the flag Fc
pfail

 at the

client side is set to TRUE using transaction Tc
pfail

 to

indicate that failure of the payment server to honor the

sale has been noted. Once Fc
pfail

 is TRUE the client

sends the message Mc
fail
 to the stock server. Like other

client messages, this message will be sent periodically

as long as Fc
pfail

 is set to TRUE and the Fc
sfail

 flag is set

to FALSE.

When the stock server receives a Mc
fail
 message

from the client it checks to see if Pn exists in the local

database. If Pn does exist then the stock server reverses

the stock allocation of the purchase and deletes the

original purchase data entry created by the original

purchase transaction and records that Pn is associated

to a failed transaction in Ls
fail
. This is achieved in the

single transaction Ts
reverse

. Once Ts
reverse

 has completed

the stock server sends Ms
cancelled

 to the client indicating

that it has reversed its transaction. If Pn already exists

in Ls
fail
 the stock server resends the appropriate

Ms
cancelled

 to the client. If nothing exists in the database

or Ls
fail
 the stock server records the Pn number as a

failed purchase in its Ls
fail
 log using transaction Ts

fail

and sends Ms
cancelled

 to the client.

On receiving an Ms
cancelled

 message the client sets

Fc
sfail

 to TRUE using transaction Tc
sfail

. As with Fc
pfail

,

this flag is originally set to FALSE. Once a client has

both Fc
sfail

 and Fc
pfail

 set to TRUE the flexible

transaction is considered failed. Once these two flags

are set to TRUE a transaction is started at the client

Tc
fail

that deletes the original purchase order associated

to Tc
order

 and resets all client flags.

3.3.2 Stock Server. Figure 4 provides an overview of

what occurs when compensation is required due to the

inability of the stock server to honor its obligations.

Problems may occur at the stock server when

attempting Ts
purchase

 when the initial request for a

purchase is made by a client (receives Mc
purchase

). If this

is the case then the stock server first checks its local

database to determine if this message has been carried

out previously in a successful manner (if Pn has

previously been recorded by Ts
purchase

). If Pn has already

been processed then the stock server assumes that Pn is

valid and may proceed as described without

compensation. If Pn does not exist in the local database

or the Ls
fail
 log then the stock server carries out a

transaction Ts
fail
 to record Pn in the stock server’s Ls

fail

log. Once Ts
fail
 succeeds an Ms

fail
 message is sent to the

client indicating that the purchase associated to Pn is

not possible.

The storing of Pn in Ls
fail
 is for the same reason the

payment server stored Pn in Lp
fail
 (to ensure the

processing of a resent Mc
purchase

 associated to a prior

failed purchase is not undertaken at a later time).

Therefore, as in the payment server, all subsequent

Mc
purchase

 messages must only proceed if there is no

prior record of them having failed in the stock server’s

Ls
fail
 log. If a Mc

purchase
 message is received and an

associated Pn number is already in Ls
fail
 then the stock

server returns the previously generated Ms
fail
 message.

On receiving Ms
fail
 the client sets the Fc

sfail
 flag to

TRUE using a transaction Tc
sfail

 and needs to now

inform the payment server that any transaction that may

have occurred to debit a customer’s account needs to

be reversed. Therefore, as long as Fc
pfail

 flag remains

FALSE and Fc
sfail

 remains TRUE, the client must

attempt to inform the payment server that the purchase

associated to Pn has failed via a Mc
fail
 message.

Client

Payment

Stock

Mc
payment

Mc
purchase

Tp
payment

Ts
fail

Mp
code

Tc
confirm

Tc
order

Ms
fail

Tc
pfail

Tc
sfail

Mc
fail

Ts
reverse

Mc
cancelled

Tc
fail

Figure 4 – Compensating in the presence of stock

problems

On receiving Mc
fail
 the payment server determines if

the transaction has already been compensated for by

checking the database for failed prior compensated

purchases within Lp
fail
. If such a record already exists

then an appropriate Mp
cancelled

message is sent to the

client. If Pn is not recorded as failed or successful at the

payment server (no record exists at all) then a

transaction Tp
fail
 is used to record the failure of the

purchase in Lp
fail
 and Mp

cancelled
 is sent to the client. If Pn

is recorded as a valid purchase then a transaction

Tp
reverse

 that reverses the associated payment in the

database and records the failure in Lp
fail
 is attempted.

Once Tp
reverse

 has completed the payment server sends

an Mp
cancelled

 message to the client. On receiving

Mp
cancelled

 the client sets the Fc
pfail

 flag to TRUE using

transaction Tc
pfail

. The setting of both Fc
pfail

 and Fc
sfail

flags to TRUE indicates that the purchase has failed

and a transaction is started at the client Tc
fail

that deletes

the original purchase order associated to Tc
order

 and

resets all client flags.

4. Conclusions

We have provided an overview of our initial work

in implementing rich client based transactional systems.

Focus of the paper is very much on the transactional

process itself and we acknowledge that a complete

solution will require a number of other issues to be

addressed (e.g., security, catalogue caching, user

identification). In addition, we acknowledge that our

assumptions may be restrictive in that complete

recovery from failure is expected from all participants

to complete the overall process. Further work is

required in this respect to identify how existing fault-

tolerant techniques could be utilized to ensure

progression in the presence of unrecoverable failure.

As a contribution, we have described how flexible

transactions may be implemented on rich client

platforms to implement a design pattern associated to

the shopping cart. As such, empowering the client side

with transactional capabilities provides additional

possibilities for the developer with respect to existing

tried and tested technologies.

5. References

[1] C. Kazoun, and J. Lott, 2008 “Programming Flex 3: the

Comprehensive Guide to Creating Rich Internet Applications

with Adobe Flex. 1”, Adobe Dev Library - Imprint of:

O'Reilly Media.

[2] Google, Google Desktop Website, as viewed November

2008, http://code.google.com/apis/desktop/

[3] Ebay, Ebay Desktop, as viewed November 2008,

http://desktop.ebay.com/

[4] Amazon, Amazon Services Order Notifier (ASON), as

viewed November 2008, http://www.amazon.com

[5] Adobe, Adobe Air, Website, as viewed November 2008,

http://www.adobe.com/products/air/

[6] S. Frolund and R. Guerraoui, "e-transactions: End-to-end

reli-ability for three-tier architectures", IEEE Transactions on

Soft-ware Engineering 28(4): 378 - 395, April 2002

[7] J. Gray, 1981. The transaction concept: virtues and

limitations (invited paper). In Proc. of the Seventh

international Conference on Very Large Data Bases, Volume

7, pp 144-154, France, 1981

[8] G. Alonso, D. Agrawal, A. E. Abbadi, Kamath, M. R.

Günthör, and C. Mohan, Advanced Transaction Models in

Workflow Contexts. In Proc. of the Twelfth international

Conference on Data Engineering, pp 574-58, Washington

DC, 1996

[9] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres,

Ensuring relaxed atomicity for flexible transactions in

multidatabase systems. In Proc.s of the 1994 ACM SIGMOD

international Conference on Management of Data,

Minneapolis, 67-78, 1994

