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ABSTRACT 
We describe approaches for satisfying the real-time collision 
detection requirements of distributed virtual environments. We 
assume a distributed virtual environment is deployed using 
client/server architecture typical of commercial massive 
multiplayer online games. We exploit the scalability provided by 
the clustering of servers in the development of a real-time 
collision detection service that may scale to satisfy the 
requirements of virtual environments that are constructed of 
many thousands of objects. We present performance figures that 
show our approaches to be scalable in that an addition of 
servers to a cluster results in an increased number of objects 
that can be considered for collision detection in real-time. 

 

1. Introduction 
A distributed virtual environment (DVE) provides a graphical 
representation of a virtual world that may be navigated by a 
number of users. User access is via a node that assumes 
responsibility for providing an interface to a virtual world that 
satisfies user/world interaction requirements. A DVE 
application typically presents a virtual world within which a 
user may be represented via an avatar (digital representation of 
a user in a virtual reality site) with additional objects populating 
the virtual world to promote realism (e.g., automatons, furniture, 
buildings). Such applications have been used for training 
purposes [2], computer supported collaborative work (CSCW) 
[1] and social play. 
The ability to provide server technologies that may scale to 
satisfy the requirements of many thousands of players is 
essential to ensure the commercial success of a Massively 
Multiplayer Online Games (MMOG). An approach to server 
side scalability for Internet based applications is via the 
clustering of servers (usually PCs) connected via a LAN. To 
satisfy increased client demand additional servers are added to 
the cluster. Many enabling middleware technologies incorporate 
clustering technologies as standard (e.g., [6]).  
A challenge to MMOG developers is to develop middleware 
services that may benefit from the scalability provided by 
clustered servers. A service that may benefit from such 
deployment is real-time collision detection. The presentation of 
a virtual world populated with moving objects requires real-time 
collision detection algorithms to identify when objects collide. 
This promotes realism as players do not expect to see solid 
objects passing through each other and allows interaction 
between objects/avatars to occur (e.g., picking up an object, 
pressing a button).  

Initial research into applying clustered server technologies to 
MMOG development appears promising [3]. However, 
providing collision detection services that may benefit from the 
scalability offered by the clustering of servers has not been 
explored sufficiently in the literature to provide developers with 
possible solutions to scalable real-time collision detection for 
client/server type MMOG deployment.  
Existing collision detection algorithms and implementations are 
developed with a single node deployment in mind. There has 
been limited development of parallel execution of collision 
detection using local hardware (e.g., [7]) with no work on 
tailoring collision detection services for deployment over a 
cluster of servers. 
In this paper we present a collision detection service that may 
scale to satisfy the requirements of complex virtual worlds 
supporting many thousands of objects. Our service makes use of 
a cluster of servers to achieve scalability. We categorize object 
types within the virtual world based on their control of 
movement within the virtual world (e.g., player influenced, 
automaton, inanimate). Using our categorization, we provide a 
number of scenarios of object deployment in client/server 
architectures associated with MMOG implementation. We 
present performance figures that indicate the suitability of our 
deployment scenarios and provide evidence that our approach is 
scalable. 
The paper is structured as follows. Section 2 describes 
background and related work. In section 3 we present our 
approach, and section 4 presents performance figures. 
Conclusions and future work is presented in section 5. 

2. Background and Related Work 
We assume a DVE represents a 3D geographic space containing 
objects that may navigate such a space. The DVE is deployed 
across geographically separated nodes connected by an 
underlying network. Each node may host a number of objects, 
their local objects, with nodes responsible for informing each 
other of the actions (e.g., movement) of local objects via the 
exchange of messages across the network (state update 
messages). 
Collision detection in a DVE may be based on state update 
message exchange between nodes. A state update message 
indicating that local object, say obj1, of node N1 has moved may 
result in a receiving node, say N2, identifying a collision 
between N2’s local object, say obj2, and obj1. However, before 
N2 enacts collision response both nodes (N1 and N2) must agree 
that a collision has or has not taken place. If agreement is 
reached that a collision has occurred then N1 and N2 must enact 
a suitable collision response (e.g., change direction of 



movement) for their local objects. However, due to message 
latency and processing delays it is possible that nodes N1 and N2 
may disagree on collision. A possible solution would be to only 
enact collision response if both N1 and N2 agree. This approach 
may still result in inconsistency of collision response. 
Inconsistency may arise due to deviations relating to collision 
identification carried out by N1 and N2. Collision response may 
be associated to the actual point of contact between obj1 and 
obj2 (at the polygon level) and other factors (e.g., orientation, 
velocity). If N1 and N2 both agree on collision but on different 
points of contact then the collision responses enacted by each 
node may appear inconsistent. Including in the agreement phase 
a mutually consistent view of point of collision would solve this 
problem. However, the probability of N1 and N2 independently 
determine the same point of contact would decrease the more 
complicated an object becomes (the number of polygons used to 
construct the object). Therefore, N1 or N2 must take the lead and 
determine point of contact.  
There have been significant advances in the development of 
real-time collision detection algorithms for single node 
deployment. A simple algorithm for determining collisions 
would be to compare all objects with all other objects: a brute 
force approach to collision detection. Such an approach is an 
O(n2) problem and satisfying collision detection requirements 
for large numbers of objects may not be possible in real-time. 
This problem has been well studied in the literature and a 
number of algorithms have been proposed that perform better 
than O(n2) (e.g., [4] [5]). A common approach to collision 
detection is to use a two step scenario: (i) a broad phase that 
eliminates many pairwise comparisons due to the large distances 
that separate objects; (ii) a narrow phase for identifying exact 
collisions between object pairs highlighted by the broad phase 
as potential candidates for collision.  
DVEs have utilized existing collision detection techniques 
designed for single node execution with consensus on collision 
between participating nodes derived from message passing. This 
is primarily a peer-to-peer approach, where individual nodes 
share collision detection responsibilities equally (based on local 
objects as mentioned earlier). However, for MMOGs, a 
client/server approach is common for DVE deployment. To 
enable virtual worlds to support many thousands of participants 
an MMOG vendor may deploy a cluster of servers over a single 
LAN. This provides an opportunity to re-engineer existing 
collision detection algorithms in a manner more suited to 
clustered server deployment, and so attempt to provide scalable 
real-time collision detection: 

• Scalability – The addition of servers reduces the time 
taken to satisfy the collision detection requirements of 
a DVE by ensuring that collision detection is carried 
out only once for an object pair during an iteration of 
a collision detection algorithm. 

• Consistency – As collision tests are carried out only 
once, nodes supporting the virtual world will receive 
mutually consistent views of the nature of collision 
detection that result from the narrow phase. 

• Timeliness – Only interested nodes will receive 
collision detection notification without such nodes 
having to enter into any form of agreement protocol to 
determine the exact nature of the collision. 

We consider this work to be of benefit to the community 
because, as of yet, there has been a lack of literature associated 
to the practical deployment of collision detection techniques for 
use with clustered server technology. By presenting a number of 
approaches to distributed collision detection and providing 
performance analysis we hope to identify appropriate avenues 
for further research related to satisfying the real-time collision 
detection requirements for client/server based DVE 
architectures supported by clustered servers. 

3. Architecture 
In this section we describe our general architecture of 
deployment for the provisioning of scalable real-time collision 
detection. The basic approach we advocate is the utilization of a 
cluster of machines co-located on the same LAN designed to 
support collision detection, with the general application level 
interface requirements of the virtual world satisfied by nodes 
that support user access. Such nodes may be large in number 
and geographically separated, modeling an Internet style 
deployment of a MMOG. 

3.1 Overview 
Figure 1 presents a diagram outlining the description of our 
architecture. We assume a number of nodes co-located in a 
single LAN (collision detection cluster) will satisfy the narrow 
phase of the collision detection requirements of the DVE. The 
virtual world is spatially sub-divided into regions with each 
node in the collision detection cluster responsible for 
determining narrow phase collision detection tests for a set of 
objects contained in a single region of the virtual world. A 
region is unique to a node and only a single node will attempt 
narrow phase collision detection tests for the same two objects 
during an iteration of narrow phase collision detection (between 
one frame of animation and the next). An object may appear in 
multiple regions (the case if an object overlaps region 
boundaries). This may result in an object pair appearing in more 
than one region. If this is the case then only one node will enact 
the narrow phase collision test. This eliminates the possibility of 
duplicate narrow phase collision tests carried out on distinct 
nodes. 
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Figure 1 – Collision detection via cluster. 

A single node exists (collision detection server) that assumes 
responsibility for identifying which region(s) an object is 
associated with and informing the appropriate collision 
detection node(s) of the objects that they must consider for 
narrow phase collision detection.   
We assume a set of nodes that support the DVE and allow users 
to interact with the DVE (user domain). Via a node, each user 
may control one or more avatars that may interact with objects 
that populate the DVE. We classify objects into the three 
following categories:  



• Avatars – objects that move under the direct control 
of a user. 

• Active – objects that move in some pre-determined 
manner as directed by some programmed logic 
associated with the virtual world.  

• Non-active – objects that do not normally move but 
may move due to collision with another object. 

Given our assumptions on the types of objects that may exist in 
a virtual world we may support such objects in a distributed 
manner in the following way: 

• User domain - All objects in the virtual world are 
equally distributed across nodes in the user domain. 
Nodes associated to users are responsible for updating 
the location of their local objects and managing the 
collision response of their local objects. 

• User/Server domain - Nodes in the user domain are 
only responsible for updating the location of avatars 
and managing collision response of avatars with the 
collision detection server responsible for updating the 
location of active and non-active objects and 
managing the collision response of such objects. 

• User/collision domain - Nodes in the user domain are 
only responsible for location updates and the collision 
response of their avatars with active and non-active 
objects equally distributed across nodes in the 
collision detection cluster. A node in the collision 
detection cluster is responsible for location updates 
and collision response management of their local 
active and non-active objects. 

We identify the above object distribution models based on the 
fact that active and non-active objects may interact infrequently 
with avatars and may only move in the virtual world via 
computer controlled calculations, be it a path finding algorithm 
for active objects or collision response for non-active objects. 
Therefore, it is possible for the positional update calculations to 
be achieved at arbitrary nodes for active and non-active objects. 
The remote hosting of avatars may introduce unnecessary delay 
in the time taken for an avatar to react to user interaction. As 
such interaction tends to be frequent this would reduce the 
realism of the virtual world. Although a delay may be witnessed 
when an avatar interacts with a remotely hosted object, this 
would be the case in any DVE that used distributed hosting of 
objects. Therefore, we deem it appropriate that avatars are 
hosted on nodes accessed by associated users. 
There are two distinct types of messages contained within our 
system: (i) messages associated with collision detection updates 
and; (ii) messages associated with application level state update 
propagation. We assume a single message may contain 
information associated to multiple objects. For example, an 
application level state update message may contain positional 
update information relating to all objects that have moved since 
the last positional update message was sent and a collision 
update message may contain multiple identifications of pairwise 
collisions. 
Messages associated with collision detection serve the purpose 
of informing nodes in the user domain of collisions whereas 
messages associated with application level state updates inform 

nodes in the user domain of changes in state of the virtual 
world. For example, a collision detection message, say M1, may 
be issued by a node in the collision detection cluster, say by 
CD1, that identifies a collision between objects hosted at U1 and 
U2, requiring the message M1 that originates at CD1 to be sent to 
U1 and U2. An example of application level state update may 
require U1 to issue a message M2 to U2 if a state change event in 
the virtual world enacted by U1 may be deemed influential to 
the objects hosted by U2.  
Messages associated to collision detection also contain 
information relating to the positions of objects when collision 
was determined. This allows user domain nodes to position their 
objects appropriately when enacting collision response. 
There is the possibility that the drawn scene (as viewed by a 
user) may deviate from an expected collision response. For 
example, a state update message may relate to positional 
information of an object and the receiving user node may 
actually draw a collided scenario due to the positional update 
associated with its own object and that described in the received 
message (a possibility due to inconsistency associated with 
message delay/jitter). However, as no collision detection is 
carried out by the receiving node then notification of such a 
collision must be received from the collision detection domain 
before the receiving node may enact a suitable collision 
response for its objects. Alternatively, a collision detection 
message may be received before a node actually views a drawn 
collision, requiring collision response to be enacted in 
anticipation of a collision. Although this may appear to 
highlight an inconsistency in providing collision response when 
associated to the timely drawing of a scene, we admit such an 
inconsistency in an effort to ensure all user nodes interested in a 
collision maintain a mutually consistent view of such a 
collision.  
We now consider the different object distribution scenarios and 
their associated message passing requirements in detail in the 
following sections. 

3.2 User Domain Deployment 
User domain deployment is typical of many peer-to-peer 
deployments associated with DVEs and is commonly referred to 
as frequent state regeneration in online gaming communities. A 
user domain node maintains the state information of a subset of 
objects contained within the virtual world and assumes the 
responsibility of informing other user domain nodes of virtual 
world updates associated to their local objects.  
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Figure 2 – User deployment scenario. 

Figure 2 aids in the description of message flow associated with 
user domain deployment. The collision detection server 
participates in application level state update message passing as 
a receiver only. The collision detection server consumes all 
messages associated to positional update information of all 



objects associated to all user nodes. As positional state update 
messages are received (M1) the collision detection server 
identifies which region the objects described in M1 are located 
(for collision detection purposes) and issues the positional 
update message (M2) to the appropriate CD nodes (CD1, CD3) 
indicating such objects have moved. If any collisions have been 
identified by a CD node then a message is sent to the collision 
detection server indicating such collisions (CD3 sending M3). 
The collision detection server then issues a message to the nodes 
where collided objects have been identified (M4).  

3.3 User/Server Domain Deployment 
In user/server domain deployment the collision detection server 
is responsible for active and non-active object management. 
This requires the collision detection server to move active 
objects using a well defined algorithm (such as path finding) 
and implementing collision response for both active and non-
active objects. This scenario is commonplace in MMOGs, 
where a server is responsible for controlling all non-user 
controlled characters. 
The collision detection server must send state update messages 
to user domain nodes because it is responsible for updating 
virtual world state (active and non-active objects). This is in 
addition to collision detection update messages that may be 
issued to user domain nodes by the collision detection server.  
Message passing associated to user/server domain deployment 
is similar to that described (via figure 2) in user domain 
deployment. However, messages relating to active and non-
active object state will only be sent by the collision detection 
server within the user domain.  
An advantage in the user/server domain deployment scenario 
over that of user domain deployment is the ability to inform 
collision detection nodes of state updates related to active and 
non-active objects directly by the collision detection server. In 
the user domain deployment scenario such messages had to be 
propagated in two steps: (i) initial message from user node 
followed by; (ii) additional message from collision detection 
server to appropriate collision detection node.  

3.4 User/Collision Domain Deployment 
In user/collision domain deployment all active and non-active 
objects are distributed across nodes in the collision detection 
domain and responsibility for avatars is distributed across nodes 
in the user domain. Each node in the collision detection domain 
is responsible for the location updates and collision responses of 
a subset of active and non-active objects located in the virtual 
world. This approach requires that the application state level 
update messages associated to active and non-active objects be 
propagated to the appropriate user nodes from the collision 
detection nodes. One approach would be to allow collision 
detection nodes to send messages directly to user nodes. A 
drawback to this approach is the increased dependency between 
the collision detection domain and the user domain. Ideally, we 
would like to implement scalable collision detection that is 
generic in nature and may suffer only the minimum tailoring to 
work with arbitrary numbers of user domain nodes. Making user 
domain nodes aware of collision detection nodes would inhibit 
the ability to vary collision detection node availability (e.g., 
increase to handle additional complexity of world or decrease 
for routine server maintenance). Therefore, we utilize the 

collision detection server in our approach to propagating 
application state messages from the collision detection domain 
to the user domain. 
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Figure 3- User/collision domain deployment scenario. 

The collision detection server receives all application state 
update messages sent from the collision detection domain and 
relays these messages to the appropriate recipient nodes in the 
user domain. This has the result of the collision detection server 
appearing to host all active and non-active objects in the user 
domain (similar to user/server domain deployment). However, 
the processing burden is lessened on the collision detection 
server compared to the user/server domain deployment due to 
the responsibility for active/non-active object management 
undertaken by nodes in the collision detection domain. 
Figure 3 describes an example of message passing that may 
occur in the user/collision deployment scenario. We assume an 
optimization in that nodes in the collision detection domain may 
inform each other of active/non-active object traversals of 
spatial division boundaries associated to collision detection. For 
example, in figure 3 CD2 notices that an object, say obj1, it hosts 
has traversed a spatial division boundary that indicates that obj1 
and associated collision detection should now be hosted by CD1. 
Therefore, CD2 sends a message (M5) to CD1 informing CD1 of 
the change in object hosting and collision detection 
responsibility. This approach to object hosting ensures that 
collision detection nodes only need to inform each other when 
objects traverse spatial boundaries and not when objects move 
as would be the case if a collision detection node assumed 
hosting responsibilities for an object throughout the lifetime of 
the virtual world. 
Apart from the addition of inter-collision domain node 
interaction (e.g., M5) the description of message passing shown 
in figure 3 remains the same as that for figure 2. 

4. Experiments 
This section describes the experiments carried out to assess the 
performance of our different approaches to determining 
collisions (as described in section 3). The primary reason for our 
experiments is to deduce the scalability of our approaches. We 
consider scalability to relate to the complexity (number of 
objects present) of the virtual world. Ideally, we would like the 
addition of collision detection nodes to provide a speedup in the 
time taken to detect and inform user domain nodes of collisions. 
For comparative analysis we ran the narrow phase collision 
detection on a single node (this is shown in the graphs by the 
line ‘1 Node’).  
We are interested in the time it takes to determine all collisions 
within the virtual world and inform nodes of such collisions. 
Therefore, we manipulated the movement of objects so that they 
would only update their position in the virtual world given a 
signal from the collision detection server that all collisions have 



been identified and appropriate user nodes have been informed 
of such collisions. The time taken between state updates for 
nodes located in the user domain is taken as our measurement of 
performance (we aim to progress object movement whenever 
we are told by the collision detection server that all collisions 
have been identified). This measurement includes message 
latency overheads. We timed how long it took to advance a 
frame of animation for all user nodes and took the mean value. 
User domain nodes were co-located on a different LAN to that 
used for the collision detection domain. However, both LANs 
are geographically co-located. Message latency times between 
user domain and collision detection server are less than 1ms. In 
a real MMOG deployment, user domain nodes may be 
geographically distributed over the Internet with message 
latencies in excess of 100ms in some instances. However, the 
purpose of our experiments is to identify the scalability offered 
by clustered servers for collision detection.  
Both LANs contain the same type of machines and 
configuration (Pentium III 700MHz PCs with 512MB RAM 
running Red Hat Linux 7.2) with nodes connected via 100 Mbits 
fast Ethernet. We implemented our system in Java. However, as 
we are predominantly interested in collision detection and not 
graphical representation we draw no graphics. 
We simulate avatar movement as well as active object 
movement within our experiments. An attempt is made to 
provide realistic movement of objects within the virtual world. 
A number of targets (T) are positioned within the virtual world 
that objects (O) travel towards. Each target has the ability to 
relocate during the execution of an experiment. Relocation of 
targets is determined after the elapse of some random time 
(between Tt

min and Tt
max) from the time the previous relocation 

event occurred. Furthermore, objects may change their targets in 
the same manner (random time between Ot

min and Ot
max). Given 

that the number of targets is less than the number of objects and 
Tt

min, Tt
max, Ot

min and Ot
max are set appropriately, objects will 

cluster and disperse throughout the experiment. 
We assume that each user node maintains a single avatar with 
the remaining objects present in the virtual world equally split 
between active and non-active objects. This scenario presents 
the expected approach to participation of a single avatar per user 
in a DVE.  
Object numbers were increased gradually from 1000 to 4000 
with the time taken to advance a frame recorded at each 
increment. The coverage of the virtual world was set at 
approximately 6%. That is, all object volumes cumulatively 
cover approximately 6% of total virtual world space. In all 
experiments we had 100 nodes in the user domain. 
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Graph 2 - User/Server Domain Deployment
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Graph 3 - User/Collision Domain Deployment
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Graph 4 - Collisions
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Graphs 1 through 3 present performance figures in the three 
deployment scenarios described in section 3 for 1, 2, 4, 8 and 16 
nodes in the collision detection domain. Graph 4 provides an 
indication (average over the run of all experiments and 
scenarios) of the number of exact collisions detected for 1000 
through 4000 objects. When 4000 objects are present there are 
in excess of 1600 exact collisions between object pairs. This 
identifies that the computational requirements for the narrow 
collision detection phase rises given increasing numbers of 
objects.  
The first observation to be made is that increasing the number of 
collision detection nodes does improve performance of the 
overall system (i.e., time taken to calculate all collisions and 
inform nodes in the user domain). Doubling the number of 
collision detection nodes leads to almost a doubling in 
performance. These results are promising as the addition of 
computational resources in the collision detection domain 
relates to an expected speedup in the overall system. That is, the 
cost of additional resources in the collision detection domain is 
justified due to the rate of performance increase.  
A significant observation is that a single node performs at a rate 
that is not acceptable for a DVE. For 1000 objects a single node 
provides rates of approximately 1500 milliseconds rising to over 
6000 milliseconds for 4000 objects in user domain deployment. 
However, this does reduce slightly in user/collision deployment, 
giving approximately 1200 and 4100 milliseconds for 1000 and 
4000 objects respectively. When 16 nodes are present such 
figures do not exceed 1500 milliseconds for 4000 objects and 
provide no more than 600 milliseconds for 1000 objects in the 
worst case (user domain deployment).  



For all node configurations the user/collision deployment 
outperforms all other scenarios. With 4000 objects and 16 nodes 
the user/collision deployment scenario manages to achieve 
performance of approximately 300 milliseconds. Although this 
only equates to a collision detection being achieved at a frame 
rate of 3 (3 frames of animation may be drawn in a second) this 
still provides users with what appears to be a reactive system 
while still maintaining consistency of collision response. If we 
allow user domain nodes to process frame rate independently of 
collision detection then the inconsistency of collision will be 
acceptable for objects that do not exhibit high velocities. For 
example, assume user domains may achieve 40 frames per 
second, then only 10 frames of animation may be shown that are 
free from collision detection. If an object travels a limited 
distance in these ten frames then the collision response will 
appear appropriate.  
We assume the overhead of message passing to be the main 
reason why user deployment performs less well than user/server 
and user/collision deployments. In user deployment all user 
nodes must propagate their state updates for all objects (avatar, 
active and non-active objects) to the collision detection server 
that in turn propagates this information to the appropriate 
collision domain nodes. In user/server and user/collision 
deployments only avatar state updates need to be propagated to 
the collision detection nodes (active and non-active by collision 
detection server in user/server deployment).  
The scenario providing the optimum performance is the 
user/collision scenario. Spreading the management of active and 
non-active objects across collision domain nodes and making 
such nodes responsible for informing each other when such 
objects move appears to utilize the overall processing 
capabilities of the system more appropriately than the other two 
scenarios. As collision detection nodes are co-located on a 
single LAN the overhead of message passing is relatively low 
compared to the requirement to propagate messages related to 
such objects from the nodes in the user domain. We may assume 
that in user/server deployment the responsibility of maintaining 
active and non-active objects on the server will consume the 
processing resources of the collision detection server at the 
expense of carrying out broad phase collision detection. 
The performance results presented here indicate that there is 
benefit to be gained from distribution of collision detection 
responsibilities across nodes that are specifically dedicated to 
satisfying collision detection requirements for DVEs. This is 
most evident in the case where objects that are not under the 
direct control of the user, and can therefore be distributed 
arbitrarily in the system, are distributed on nodes that assume 
responsibility for collision detection. 

5. Conclusions and Future Work 
We have presented a number of approaches for providing real-
time collision detection for DVEs. We demonstrate, via 
experimentation, that our approaches are scalable in terms of 
virtual world complexity (i.e., number of objects and detail of 
objects) and do provide performances that may be acceptable to 
DVEs that use client/server based architectures for their 
deployment. We concentrate on ensuring that participants of a 
virtual world share a mutually consistent view of exact collision 
detection and so aim to alleviate virtual world inconsistencies 
related to collision detection and response. The aim of our 

approach is to provide an architecture within which existing 
collision detection methods may be applied in a traditional two 
phase approach.  
Future work will concentrate on extending our architecture for 
scenarios where a single LAN deployment of collision detection 
nodes may not be suitable. For example, when user nodes are 
distributed around the world (as would be the case in a 
commercial MMOG deployment). In addition, we are currently 
investigating mechanisms to enhance our collision detection 
algorithm [8] and services [9] with Quality of Service (QoS) 
adaptability to enable QoS guarantees to be applied to the 
approaches outlined in this paper.  

Acknowledgements 
This work is funded by the UK EPSRC under grant 
GR/S04529/01: “Middleware Services for Scalable Networked 
Virtual Environments”. 

6. References 
[1] C. Greenhalgh, S. Benford, “MASSIVE: a distributed 

virtual reality system incorporating spatial trading”, 
Proceedings IEEE 15th International Conference on 
distributed computing systems (DCS 95), Vancouver, 
Canader, June 1995. 

[2] D. Miller, J. A. Thorpe. “SIMNET: The advent of 
simulator networking”, In Proceedings of the IEEE 83(8), p 
1114-1123, August 1995. 

[3] IBM, “Butterfly.net: Powering Next Generation Gaming 
with Computing On-Demand”, www.ibm.com , as viewed 
March 2004 

[4] S. Gottschalk, M, C. Lin, D. Monocha, “OBB-Tree: A 
Hierarchical Structure for Rapid Interference Detection”, 
SIGGRAPH 93, p247-254, USA, 1993 

[5] J. D. Cohen, M. C. Lin, D. Manocha, M. K. Ponamgi, “I-
COLLIDE: An Interactive and Exact Collision Detection 
System for Large-Scale Environments”, In Proceedings of 
the 1995 symposium on Interactive 3D graphics, pages 
189–196, 218. ACM, Press, 1995 

[6] S. Labourey, B. Burke, “JBossClustering UNIX Edition 
March 2004”, JBoss Documentation, 
http://www.jboss.org/, as viewed September 2004. 

[7] G. Zachmann, “Optimizing the Collision Detection 
Pipeline”, Proc. of the First International Game 
Technology Conference (GTEC), Hong Kong, 18-21 
January 2001. 

[8] K. Storey, F.Lu, G. Morgan, “Determining Collisions 
between Moving Spheres for Distributed Virtual 
Environments”, Computer Graphics International (CGI'04), 
Crete, June 16 - 19, 2004, pp. 140-147,  EEE Computer 
Society Press 2004 

[9] G. Morgan, K Storey, F Lu, “Expanding Spheres: A 
Collision Detection Algorithm for Interest Management in 
Networked Games”, In Proceedings ICEC 2004, The 
Netherlands, Lecture Notes in Computer Science Volume 
3166 pp. 435 – 440, Springer-Verlag 2004 


	Introduction
	Background and Related Work
	Architecture
	Overview
	User Domain Deployment
	User/Server Domain Deployment
	User/Collision Domain Deployment

	Experiments
	Conclusions and Future Work
	References

