

Scalable Collision Detection for Massively Multiplayer Online Games

Graham Morgan, Kier Storey

School of Computing Science, University of Newcastle, Newcastle upon Tyne
E-mail: {Graham.Morgan, Kier.Storey}@newcastle.ac.uk

ABSTRACT
We describe approaches for satisfying the real-time collision
detection requirements of distributed virtual environments. We
assume a distributed virtual environment is deployed using
client/server architecture typical of commercial massive
multiplayer online games. We exploit the scalability provided by
the clustering of servers in the development of a real-time
collision detection service that may scale to satisfy the
requirements of virtual environments that are constructed of
many thousands of objects. We present performance figures that
show our approaches to be scalable in that an addition of
servers to a cluster results in an increased number of objects
that can be considered for collision detection in real-time.

1. Introduction
A distributed virtual environment (DVE) provides a graphical
representation of a virtual world that may be navigated by a
number of users. User access is via a node that assumes
responsibility for providing an interface to a virtual world that
satisfies user/world interaction requirements. A DVE
application typically presents a virtual world within which a
user may be represented via an avatar (digital representation of
a user in a virtual reality site) with additional objects populating
the virtual world to promote realism (e.g., automatons, furniture,
buildings). Such applications have been used for training
purposes [2], computer supported collaborative work (CSCW)
[1] and social play.
The ability to provide server technologies that may scale to
satisfy the requirements of many thousands of players is
essential to ensure the commercial success of a Massively
Multiplayer Online Games (MMOG). An approach to server
side scalability for Internet based applications is via the
clustering of servers (usually PCs) connected via a LAN. To
satisfy increased client demand additional servers are added to
the cluster. Many enabling middleware technologies incorporate
clustering technologies as standard (e.g., [6]).
A challenge to MMOG developers is to develop middleware
services that may benefit from the scalability provided by
clustered servers. A service that may benefit from such
deployment is real-time collision detection. The presentation of
a virtual world populated with moving objects requires real-time
collision detection algorithms to identify when objects collide.
This promotes realism as players do not expect to see solid
objects passing through each other and allows interaction
between objects/avatars to occur (e.g., picking up an object,
pressing a button).

Initial research into applying clustered server technologies to
MMOG development appears promising [3]. However,
providing collision detection services that may benefit from the
scalability offered by the clustering of servers has not been
explored sufficiently in the literature to provide developers with
possible solutions to scalable real-time collision detection for
client/server type MMOG deployment.
Existing collision detection algorithms and implementations are
developed with a single node deployment in mind. There has
been limited development of parallel execution of collision
detection using local hardware (e.g., [7]) with no work on
tailoring collision detection services for deployment over a
cluster of servers.
In this paper we present a collision detection service that may
scale to satisfy the requirements of complex virtual worlds
supporting many thousands of objects. Our service makes use of
a cluster of servers to achieve scalability. We categorize object
types within the virtual world based on their control of
movement within the virtual world (e.g., player influenced,
automaton, inanimate). Using our categorization, we provide a
number of scenarios of object deployment in client/server
architectures associated with MMOG implementation. We
present performance figures that indicate the suitability of our
deployment scenarios and provide evidence that our approach is
scalable.
The paper is structured as follows. Section 2 describes
background and related work. In section 3 we present our
approach, and section 4 presents performance figures.
Conclusions and future work is presented in section 5.

2. Background and Related Work
We assume a DVE represents a 3D geographic space containing
objects that may navigate such a space. The DVE is deployed
across geographically separated nodes connected by an
underlying network. Each node may host a number of objects,
their local objects, with nodes responsible for informing each
other of the actions (e.g., movement) of local objects via the
exchange of messages across the network (state update
messages).
Collision detection in a DVE may be based on state update
message exchange between nodes. A state update message
indicating that local object, say obj1, of node N1 has moved may
result in a receiving node, say N2, identifying a collision
between N2’s local object, say obj2, and obj1. However, before
N2 enacts collision response both nodes (N1 and N2) must agree
that a collision has or has not taken place. If agreement is
reached that a collision has occurred then N1 and N2 must enact
a suitable collision response (e.g., change direction of

movement) for their local objects. However, due to message
latency and processing delays it is possible that nodes N1 and N2
may disagree on collision. A possible solution would be to only
enact collision response if both N1 and N2 agree. This approach
may still result in inconsistency of collision response.
Inconsistency may arise due to deviations relating to collision
identification carried out by N1 and N2. Collision response may
be associated to the actual point of contact between obj1 and
obj2 (at the polygon level) and other factors (e.g., orientation,
velocity). If N1 and N2 both agree on collision but on different
points of contact then the collision responses enacted by each
node may appear inconsistent. Including in the agreement phase
a mutually consistent view of point of collision would solve this
problem. However, the probability of N1 and N2 independently
determine the same point of contact would decrease the more
complicated an object becomes (the number of polygons used to
construct the object). Therefore, N1 or N2 must take the lead and
determine point of contact.
There have been significant advances in the development of
real-time collision detection algorithms for single node
deployment. A simple algorithm for determining collisions
would be to compare all objects with all other objects: a brute
force approach to collision detection. Such an approach is an
O(n2) problem and satisfying collision detection requirements
for large numbers of objects may not be possible in real-time.
This problem has been well studied in the literature and a
number of algorithms have been proposed that perform better
than O(n2) (e.g., [4] [5]). A common approach to collision
detection is to use a two step scenario: (i) a broad phase that
eliminates many pairwise comparisons due to the large distances
that separate objects; (ii) a narrow phase for identifying exact
collisions between object pairs highlighted by the broad phase
as potential candidates for collision.
DVEs have utilized existing collision detection techniques
designed for single node execution with consensus on collision
between participating nodes derived from message passing. This
is primarily a peer-to-peer approach, where individual nodes
share collision detection responsibilities equally (based on local
objects as mentioned earlier). However, for MMOGs, a
client/server approach is common for DVE deployment. To
enable virtual worlds to support many thousands of participants
an MMOG vendor may deploy a cluster of servers over a single
LAN. This provides an opportunity to re-engineer existing
collision detection algorithms in a manner more suited to
clustered server deployment, and so attempt to provide scalable
real-time collision detection:

• Scalability – The addition of servers reduces the time
taken to satisfy the collision detection requirements of
a DVE by ensuring that collision detection is carried
out only once for an object pair during an iteration of
a collision detection algorithm.

• Consistency – As collision tests are carried out only
once, nodes supporting the virtual world will receive
mutually consistent views of the nature of collision
detection that result from the narrow phase.

• Timeliness – Only interested nodes will receive
collision detection notification without such nodes
having to enter into any form of agreement protocol to
determine the exact nature of the collision.

We consider this work to be of benefit to the community
because, as of yet, there has been a lack of literature associated
to the practical deployment of collision detection techniques for
use with clustered server technology. By presenting a number of
approaches to distributed collision detection and providing
performance analysis we hope to identify appropriate avenues
for further research related to satisfying the real-time collision
detection requirements for client/server based DVE
architectures supported by clustered servers.

3. Architecture
In this section we describe our general architecture of
deployment for the provisioning of scalable real-time collision
detection. The basic approach we advocate is the utilization of a
cluster of machines co-located on the same LAN designed to
support collision detection, with the general application level
interface requirements of the virtual world satisfied by nodes
that support user access. Such nodes may be large in number
and geographically separated, modeling an Internet style
deployment of a MMOG.

3.1 Overview
Figure 1 presents a diagram outlining the description of our
architecture. We assume a number of nodes co-located in a
single LAN (collision detection cluster) will satisfy the narrow
phase of the collision detection requirements of the DVE. The
virtual world is spatially sub-divided into regions with each
node in the collision detection cluster responsible for
determining narrow phase collision detection tests for a set of
objects contained in a single region of the virtual world. A
region is unique to a node and only a single node will attempt
narrow phase collision detection tests for the same two objects
during an iteration of narrow phase collision detection (between
one frame of animation and the next). An object may appear in
multiple regions (the case if an object overlaps region
boundaries). This may result in an object pair appearing in more
than one region. If this is the case then only one node will enact
the narrow phase collision test. This eliminates the possibility of
duplicate narrow phase collision tests carried out on distinct
nodes.

CD1

CD2

CD3

CDn

CDserver

U1

U2

U3

Un

User domain Collision detection
cluster Positional state updates

and collision notifications

Figure 1 – Collision detection via cluster.

A single node exists (collision detection server) that assumes
responsibility for identifying which region(s) an object is
associated with and informing the appropriate collision
detection node(s) of the objects that they must consider for
narrow phase collision detection.
We assume a set of nodes that support the DVE and allow users
to interact with the DVE (user domain). Via a node, each user
may control one or more avatars that may interact with objects
that populate the DVE. We classify objects into the three
following categories:

• Avatars – objects that move under the direct control
of a user.

• Active – objects that move in some pre-determined
manner as directed by some programmed logic
associated with the virtual world.

• Non-active – objects that do not normally move but
may move due to collision with another object.

Given our assumptions on the types of objects that may exist in
a virtual world we may support such objects in a distributed
manner in the following way:

• User domain - All objects in the virtual world are
equally distributed across nodes in the user domain.
Nodes associated to users are responsible for updating
the location of their local objects and managing the
collision response of their local objects.

• User/Server domain - Nodes in the user domain are
only responsible for updating the location of avatars
and managing collision response of avatars with the
collision detection server responsible for updating the
location of active and non-active objects and
managing the collision response of such objects.

• User/collision domain - Nodes in the user domain are
only responsible for location updates and the collision
response of their avatars with active and non-active
objects equally distributed across nodes in the
collision detection cluster. A node in the collision
detection cluster is responsible for location updates
and collision response management of their local
active and non-active objects.

We identify the above object distribution models based on the
fact that active and non-active objects may interact infrequently
with avatars and may only move in the virtual world via
computer controlled calculations, be it a path finding algorithm
for active objects or collision response for non-active objects.
Therefore, it is possible for the positional update calculations to
be achieved at arbitrary nodes for active and non-active objects.
The remote hosting of avatars may introduce unnecessary delay
in the time taken for an avatar to react to user interaction. As
such interaction tends to be frequent this would reduce the
realism of the virtual world. Although a delay may be witnessed
when an avatar interacts with a remotely hosted object, this
would be the case in any DVE that used distributed hosting of
objects. Therefore, we deem it appropriate that avatars are
hosted on nodes accessed by associated users.
There are two distinct types of messages contained within our
system: (i) messages associated with collision detection updates
and; (ii) messages associated with application level state update
propagation. We assume a single message may contain
information associated to multiple objects. For example, an
application level state update message may contain positional
update information relating to all objects that have moved since
the last positional update message was sent and a collision
update message may contain multiple identifications of pairwise
collisions.
Messages associated with collision detection serve the purpose
of informing nodes in the user domain of collisions whereas
messages associated with application level state updates inform

nodes in the user domain of changes in state of the virtual
world. For example, a collision detection message, say M1, may
be issued by a node in the collision detection cluster, say by
CD1, that identifies a collision between objects hosted at U1 and
U2, requiring the message M1 that originates at CD1 to be sent to
U1 and U2. An example of application level state update may
require U1 to issue a message M2 to U2 if a state change event in
the virtual world enacted by U1 may be deemed influential to
the objects hosted by U2.
Messages associated to collision detection also contain
information relating to the positions of objects when collision
was determined. This allows user domain nodes to position their
objects appropriately when enacting collision response.
There is the possibility that the drawn scene (as viewed by a
user) may deviate from an expected collision response. For
example, a state update message may relate to positional
information of an object and the receiving user node may
actually draw a collided scenario due to the positional update
associated with its own object and that described in the received
message (a possibility due to inconsistency associated with
message delay/jitter). However, as no collision detection is
carried out by the receiving node then notification of such a
collision must be received from the collision detection domain
before the receiving node may enact a suitable collision
response for its objects. Alternatively, a collision detection
message may be received before a node actually views a drawn
collision, requiring collision response to be enacted in
anticipation of a collision. Although this may appear to
highlight an inconsistency in providing collision response when
associated to the timely drawing of a scene, we admit such an
inconsistency in an effort to ensure all user nodes interested in a
collision maintain a mutually consistent view of such a
collision.
We now consider the different object distribution scenarios and
their associated message passing requirements in detail in the
following sections.

3.2 User Domain Deployment
User domain deployment is typical of many peer-to-peer
deployments associated with DVEs and is commonly referred to
as frequent state regeneration in online gaming communities. A
user domain node maintains the state information of a subset of
objects contained within the virtual world and assumes the
responsibility of informing other user domain nodes of virtual
world updates associated to their local objects.

CD1

CD2

CD3

CDn

CDserver

U1

U2

U3

Un

User domain Collision detection
cluster

M1

M2

M3

M4

Figure 2 – User deployment scenario.

Figure 2 aids in the description of message flow associated with
user domain deployment. The collision detection server
participates in application level state update message passing as
a receiver only. The collision detection server consumes all
messages associated to positional update information of all

objects associated to all user nodes. As positional state update
messages are received (M1) the collision detection server
identifies which region the objects described in M1 are located
(for collision detection purposes) and issues the positional
update message (M2) to the appropriate CD nodes (CD1, CD3)
indicating such objects have moved. If any collisions have been
identified by a CD node then a message is sent to the collision
detection server indicating such collisions (CD3 sending M3).
The collision detection server then issues a message to the nodes
where collided objects have been identified (M4).

3.3 User/Server Domain Deployment
In user/server domain deployment the collision detection server
is responsible for active and non-active object management.
This requires the collision detection server to move active
objects using a well defined algorithm (such as path finding)
and implementing collision response for both active and non-
active objects. This scenario is commonplace in MMOGs,
where a server is responsible for controlling all non-user
controlled characters.
The collision detection server must send state update messages
to user domain nodes because it is responsible for updating
virtual world state (active and non-active objects). This is in
addition to collision detection update messages that may be
issued to user domain nodes by the collision detection server.
Message passing associated to user/server domain deployment
is similar to that described (via figure 2) in user domain
deployment. However, messages relating to active and non-
active object state will only be sent by the collision detection
server within the user domain.
An advantage in the user/server domain deployment scenario
over that of user domain deployment is the ability to inform
collision detection nodes of state updates related to active and
non-active objects directly by the collision detection server. In
the user domain deployment scenario such messages had to be
propagated in two steps: (i) initial message from user node
followed by; (ii) additional message from collision detection
server to appropriate collision detection node.

3.4 User/Collision Domain Deployment
In user/collision domain deployment all active and non-active
objects are distributed across nodes in the collision detection
domain and responsibility for avatars is distributed across nodes
in the user domain. Each node in the collision detection domain
is responsible for the location updates and collision responses of
a subset of active and non-active objects located in the virtual
world. This approach requires that the application state level
update messages associated to active and non-active objects be
propagated to the appropriate user nodes from the collision
detection nodes. One approach would be to allow collision
detection nodes to send messages directly to user nodes. A
drawback to this approach is the increased dependency between
the collision detection domain and the user domain. Ideally, we
would like to implement scalable collision detection that is
generic in nature and may suffer only the minimum tailoring to
work with arbitrary numbers of user domain nodes. Making user
domain nodes aware of collision detection nodes would inhibit
the ability to vary collision detection node availability (e.g.,
increase to handle additional complexity of world or decrease
for routine server maintenance). Therefore, we utilize the

collision detection server in our approach to propagating
application state messages from the collision detection domain
to the user domain.

CD1

CD2

CD3

CDn

CDserver

U1

U2

U3

Un

User domain Collision detection
cluster

M1

M2

M3

M4 M5

Figure 3- User/collision domain deployment scenario.

The collision detection server receives all application state
update messages sent from the collision detection domain and
relays these messages to the appropriate recipient nodes in the
user domain. This has the result of the collision detection server
appearing to host all active and non-active objects in the user
domain (similar to user/server domain deployment). However,
the processing burden is lessened on the collision detection
server compared to the user/server domain deployment due to
the responsibility for active/non-active object management
undertaken by nodes in the collision detection domain.
Figure 3 describes an example of message passing that may
occur in the user/collision deployment scenario. We assume an
optimization in that nodes in the collision detection domain may
inform each other of active/non-active object traversals of
spatial division boundaries associated to collision detection. For
example, in figure 3 CD2 notices that an object, say obj1, it hosts
has traversed a spatial division boundary that indicates that obj1
and associated collision detection should now be hosted by CD1.
Therefore, CD2 sends a message (M5) to CD1 informing CD1 of
the change in object hosting and collision detection
responsibility. This approach to object hosting ensures that
collision detection nodes only need to inform each other when
objects traverse spatial boundaries and not when objects move
as would be the case if a collision detection node assumed
hosting responsibilities for an object throughout the lifetime of
the virtual world.
Apart from the addition of inter-collision domain node
interaction (e.g., M5) the description of message passing shown
in figure 3 remains the same as that for figure 2.

4. Experiments
This section describes the experiments carried out to assess the
performance of our different approaches to determining
collisions (as described in section 3). The primary reason for our
experiments is to deduce the scalability of our approaches. We
consider scalability to relate to the complexity (number of
objects present) of the virtual world. Ideally, we would like the
addition of collision detection nodes to provide a speedup in the
time taken to detect and inform user domain nodes of collisions.
For comparative analysis we ran the narrow phase collision
detection on a single node (this is shown in the graphs by the
line ‘1 Node’).
We are interested in the time it takes to determine all collisions
within the virtual world and inform nodes of such collisions.
Therefore, we manipulated the movement of objects so that they
would only update their position in the virtual world given a
signal from the collision detection server that all collisions have

been identified and appropriate user nodes have been informed
of such collisions. The time taken between state updates for
nodes located in the user domain is taken as our measurement of
performance (we aim to progress object movement whenever
we are told by the collision detection server that all collisions
have been identified). This measurement includes message
latency overheads. We timed how long it took to advance a
frame of animation for all user nodes and took the mean value.
User domain nodes were co-located on a different LAN to that
used for the collision detection domain. However, both LANs
are geographically co-located. Message latency times between
user domain and collision detection server are less than 1ms. In
a real MMOG deployment, user domain nodes may be
geographically distributed over the Internet with message
latencies in excess of 100ms in some instances. However, the
purpose of our experiments is to identify the scalability offered
by clustered servers for collision detection.
Both LANs contain the same type of machines and
configuration (Pentium III 700MHz PCs with 512MB RAM
running Red Hat Linux 7.2) with nodes connected via 100 Mbits
fast Ethernet. We implemented our system in Java. However, as
we are predominantly interested in collision detection and not
graphical representation we draw no graphics.
We simulate avatar movement as well as active object
movement within our experiments. An attempt is made to
provide realistic movement of objects within the virtual world.
A number of targets (T) are positioned within the virtual world
that objects (O) travel towards. Each target has the ability to
relocate during the execution of an experiment. Relocation of
targets is determined after the elapse of some random time
(between Tt

min and Tt
max) from the time the previous relocation

event occurred. Furthermore, objects may change their targets in
the same manner (random time between Ot

min and Ot
max). Given

that the number of targets is less than the number of objects and
Tt

min, Tt
max, Ot

min and Ot
max are set appropriately, objects will

cluster and disperse throughout the experiment.
We assume that each user node maintains a single avatar with
the remaining objects present in the virtual world equally split
between active and non-active objects. This scenario presents
the expected approach to participation of a single avatar per user
in a DVE.
Object numbers were increased gradually from 1000 to 4000
with the time taken to advance a frame recorded at each
increment. The coverage of the virtual world was set at
approximately 6%. That is, all object volumes cumulatively
cover approximately 6% of total virtual world space. In all
experiments we had 100 nodes in the user domain.

Graph 1 - User Domain Deployment

0

2000

4000

6000

8000

1000 2000 3000 4000
Number of Objects

M
ill

is
ec

on
ds

1 Node
2 Nodes
4 Nodes
8 Nodes
16 Nodes

Graph 2 - User/Server Domain Deployment

0
1000
2000
3000
4000
5000
6000

1000 2000 3000 4000
Number of Objects

M
ill

is
ec

on
ds

1 Node
2 Nodes
4 Nodes
8 Nodes
16 Nodes

Graph 3 - User/Collision Domain Deployment

0
1000
2000
3000
4000
5000

1000 2000 3000 4000
Number of objects

M
ill

is
ec

on
ds

1 Node
2 Nodes
4 Nodes
8 Nodes
16 Nodes

Graph 4 - Collisions

0

500

1000

1500

2000

1000 2000 3000 4000
Number of objects

N
um

be
r o

f c
ol

lis
io

ns

Graphs 1 through 3 present performance figures in the three
deployment scenarios described in section 3 for 1, 2, 4, 8 and 16
nodes in the collision detection domain. Graph 4 provides an
indication (average over the run of all experiments and
scenarios) of the number of exact collisions detected for 1000
through 4000 objects. When 4000 objects are present there are
in excess of 1600 exact collisions between object pairs. This
identifies that the computational requirements for the narrow
collision detection phase rises given increasing numbers of
objects.
The first observation to be made is that increasing the number of
collision detection nodes does improve performance of the
overall system (i.e., time taken to calculate all collisions and
inform nodes in the user domain). Doubling the number of
collision detection nodes leads to almost a doubling in
performance. These results are promising as the addition of
computational resources in the collision detection domain
relates to an expected speedup in the overall system. That is, the
cost of additional resources in the collision detection domain is
justified due to the rate of performance increase.
A significant observation is that a single node performs at a rate
that is not acceptable for a DVE. For 1000 objects a single node
provides rates of approximately 1500 milliseconds rising to over
6000 milliseconds for 4000 objects in user domain deployment.
However, this does reduce slightly in user/collision deployment,
giving approximately 1200 and 4100 milliseconds for 1000 and
4000 objects respectively. When 16 nodes are present such
figures do not exceed 1500 milliseconds for 4000 objects and
provide no more than 600 milliseconds for 1000 objects in the
worst case (user domain deployment).

For all node configurations the user/collision deployment
outperforms all other scenarios. With 4000 objects and 16 nodes
the user/collision deployment scenario manages to achieve
performance of approximately 300 milliseconds. Although this
only equates to a collision detection being achieved at a frame
rate of 3 (3 frames of animation may be drawn in a second) this
still provides users with what appears to be a reactive system
while still maintaining consistency of collision response. If we
allow user domain nodes to process frame rate independently of
collision detection then the inconsistency of collision will be
acceptable for objects that do not exhibit high velocities. For
example, assume user domains may achieve 40 frames per
second, then only 10 frames of animation may be shown that are
free from collision detection. If an object travels a limited
distance in these ten frames then the collision response will
appear appropriate.
We assume the overhead of message passing to be the main
reason why user deployment performs less well than user/server
and user/collision deployments. In user deployment all user
nodes must propagate their state updates for all objects (avatar,
active and non-active objects) to the collision detection server
that in turn propagates this information to the appropriate
collision domain nodes. In user/server and user/collision
deployments only avatar state updates need to be propagated to
the collision detection nodes (active and non-active by collision
detection server in user/server deployment).
The scenario providing the optimum performance is the
user/collision scenario. Spreading the management of active and
non-active objects across collision domain nodes and making
such nodes responsible for informing each other when such
objects move appears to utilize the overall processing
capabilities of the system more appropriately than the other two
scenarios. As collision detection nodes are co-located on a
single LAN the overhead of message passing is relatively low
compared to the requirement to propagate messages related to
such objects from the nodes in the user domain. We may assume
that in user/server deployment the responsibility of maintaining
active and non-active objects on the server will consume the
processing resources of the collision detection server at the
expense of carrying out broad phase collision detection.
The performance results presented here indicate that there is
benefit to be gained from distribution of collision detection
responsibilities across nodes that are specifically dedicated to
satisfying collision detection requirements for DVEs. This is
most evident in the case where objects that are not under the
direct control of the user, and can therefore be distributed
arbitrarily in the system, are distributed on nodes that assume
responsibility for collision detection.

5. Conclusions and Future Work
We have presented a number of approaches for providing real-
time collision detection for DVEs. We demonstrate, via
experimentation, that our approaches are scalable in terms of
virtual world complexity (i.e., number of objects and detail of
objects) and do provide performances that may be acceptable to
DVEs that use client/server based architectures for their
deployment. We concentrate on ensuring that participants of a
virtual world share a mutually consistent view of exact collision
detection and so aim to alleviate virtual world inconsistencies
related to collision detection and response. The aim of our

approach is to provide an architecture within which existing
collision detection methods may be applied in a traditional two
phase approach.
Future work will concentrate on extending our architecture for
scenarios where a single LAN deployment of collision detection
nodes may not be suitable. For example, when user nodes are
distributed around the world (as would be the case in a
commercial MMOG deployment). In addition, we are currently
investigating mechanisms to enhance our collision detection
algorithm [8] and services [9] with Quality of Service (QoS)
adaptability to enable QoS guarantees to be applied to the
approaches outlined in this paper.

Acknowledgements
This work is funded by the UK EPSRC under grant
GR/S04529/01: “Middleware Services for Scalable Networked
Virtual Environments”.

6. References
[1] C. Greenhalgh, S. Benford, “MASSIVE: a distributed

virtual reality system incorporating spatial trading”,
Proceedings IEEE 15th International Conference on
distributed computing systems (DCS 95), Vancouver,
Canader, June 1995.

[2] D. Miller, J. A. Thorpe. “SIMNET: The advent of
simulator networking”, In Proceedings of the IEEE 83(8), p
1114-1123, August 1995.

[3] IBM, “Butterfly.net: Powering Next Generation Gaming
with Computing On-Demand”, www.ibm.com , as viewed
March 2004

[4] S. Gottschalk, M, C. Lin, D. Monocha, “OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection”,
SIGGRAPH 93, p247-254, USA, 1993

[5] J. D. Cohen, M. C. Lin, D. Manocha, M. K. Ponamgi, “I-
COLLIDE: An Interactive and Exact Collision Detection
System for Large-Scale Environments”, In Proceedings of
the 1995 symposium on Interactive 3D graphics, pages
189–196, 218. ACM, Press, 1995

[6] S. Labourey, B. Burke, “JBossClustering UNIX Edition
March 2004”, JBoss Documentation,
http://www.jboss.org/, as viewed September 2004.

[7] G. Zachmann, “Optimizing the Collision Detection
Pipeline”, Proc. of the First International Game
Technology Conference (GTEC), Hong Kong, 18-21
January 2001.

[8] K. Storey, F.Lu, G. Morgan, “Determining Collisions
between Moving Spheres for Distributed Virtual
Environments”, Computer Graphics International (CGI'04),
Crete, June 16 - 19, 2004, pp. 140-147, EEE Computer
Society Press 2004

[9] G. Morgan, K Storey, F Lu, “Expanding Spheres: A
Collision Detection Algorithm for Interest Management in
Networked Games”, In Proceedings ICEC 2004, The
Netherlands, Lecture Notes in Computer Science Volume
3166 pp. 435 – 440, Springer-Verlag 2004

	Introduction
	Background and Related Work
	Architecture
	Overview
	User Domain Deployment
	User/Server Domain Deployment
	User/Collision Domain Deployment

	Experiments
	Conclusions and Future Work
	References

