
Challenges of Online
Game Development: A
Review

Graham Morgan1

Abstract

The focus of this article is to determine how the engineering practices common in
online game development may be approached differently to promote more diverse
online gaming scenarios. The technical difficulties in providing online gaming are
not trivial, requiring substantially larger budgets compared with their non-online
counterparts: Commercial failure of an online game could be costly. Therefore, when
considering alternate engineering approaches, those that appear tried and tested in
other domains, and hence may be lower-cost solutions, are considered.

Keywords

commercial success, content management, content sharing, CORBA, cost, engineering
approaches, evolution, game development, game scenarios, interaction, interest
management, interoperability, middleware, MMO, multiplayer gaming, networking,
online gaming, performance, programming, propriety play, protocols, rules, scalability,
service agreement, standardization, standards, technical difficulties

This article is structured as follows. First, background information relating to the
online gaming industry is described followed by a number of technical challenges
faced by online game developers. A number of research avenues are then suggested,
which may overcome these challenges. Finally, conclusions are presented.

In the opening section, we emphasize the significant cost of bringing an online
game to market. An argument is suggested that the high cost to market entry is due

Simulation & Gaming
XX(X) xx–xx

© The Author(s) 2009
Reprints and permission: http://www.
sagepub.com/journalsPermissions.nav

DOI: 10.1177/1046878109340295
http://sg.sagepub.com

1 School of Computing Science, Newcastle University, Newcastle Upon Tyne, UK

Corresponding Author:
Graham Morgan, School of Computing Science, Newcastle University, Newcastle Upon Tyne, NE1
7RU, UK
Email: graham.morgan@ncl.ac.uk

 Simulation Gaming OnlineFirst, published on July 24, 2009 as doi:10.1177/1046878109340295

2		 Simulation & Gaming XX(X)

to not only the very difficult technical challenges associated to online game develop-
ment but also the manner with which existing engineering approaches are employed
to overcome such challenges.

Apart from pointing out technical difficulties, this article presents an optimistic
view that there already exists significant work that could aid in online game develop-
ment. Such work is not always considered by game developers and is often overlooked
by researchers in game development. This oversight is primarily caused as such work
is achieved in a different application domain (e.g., eCommerce) and is yet to make a
significant impact in online game development.

The technical challenges covered in detail in this article are as follows:

•• Propriety play: Competitive commercial activity makes it impossible for
players to move their gaming content, possibly created at some expense,
between online games created by different vendors.

•• Longevity: Current approaches to maintaining content in online worlds are
extremely costly and afford little scope for exciting change once content is
introduced.

•• Describing play: Existing ad hoc approaches to describing interaction in a
game make it difficult to model intricate interaction to afford a wide variety
of game play.

The counterpart to these challenges, the potential for optimism if you will, is
the wealth of already accomplished work described, within this article, in the
following sections:

•• Standardization quest: Distributed application development (especially
Internet applications) have benefited from standardization for many years.

•• Safe and useful content evolution: Dynamically updating data and behav-
ior of Internet-based computer systems is not too dissimilar to virtual-world
content management and is already a well-explored discipline.

•• Enabling rich interaction: Describing services (allowing automatic search-
ing of them) and the monitoring of interaction between multiple
computer-based participants has long occupied the eCommerce developer.

This article does not prescribe finished solutions to the most demanding technical
challenges of online gaming. Nor are the accomplishments of online game developers
and researchers belittled; online games are fully functioning, highly profitable, systems.
Indeed, the advances in game technology (not just online gaming) have been quite
substantial over the years. The article (also published in this journal series) by Prakash
et al. (in press) describes many of these advancements quite eloquently and highlights
just how technically demanding a subject game development is.

As a researcher, one must always consider opportunities to diversify approaches to
discover novel solutions. To prompt such diversification, this article seeks to encourage

Morgan	 3

avenues of research rarely considered in the games industry in an attempt to circum-
vent some of the technical challenges faced by the online games industry.

Multiplayer Gaming
A number of technological factors influence game play possibilities for online
gamers. This goes beyond the limitations of play imposed by the user interface itself
to include the networking limitations of the Internet. The enabling technologies
responsible for managing game state across multiple-player consoles dictates what a
player can and cannot do in an online virtual world. From the network protocols
through to the storage and representation of game artifacts on remote servers, the
approach to implementation taken by a game developer will inevitably influence the
rules of a game and dictate the type of games possible.

Diverse Skill Sets
Considering that some online games may take many teams of developers covering
many skill sets (e.g., networking, graphics, databases, clustered computing) a number
of years to produce, realizing the ramifications on game rules even the smallest
change to implementation may cause is difficult to judge. In turn, this makes judging
what may be possible in a multiplayer game a difficult task at the design stage given
the need to realize all implementation issues throughout the development, deploy-
ment, and maintenance of an online game.

The diverse computational skills that combine to make online games result in
complicated pieces of software. Jim Waldo (2008), who has worked in distributed
systems research for a number of years with great success, points out that online
games present quite different challenges to other distributed application domains
(e.g., eCommerce). However, the basic problems remain of gaining scalability and
ensuring correctness of execution.

In an effort to ensure correctness of execution (and stave off virtual-world fail-
ure), tried and tested approaches to virtual-world creation are repeated time and
again. This has resulted in many virtual worlds appearing very similar to each other.
This, in turn, has resulted in similar game play scenarios across many different vir-
tual worlds with minimal in-world improvements or additions to excite the player.
Advances in technology appear to be minimal as virtual-world numbers increase,
and what is on offer to the player seldom changes or varies across vendors.

Billion Dollar Industry
Online games are here, and they are a multibillion dollar industry. Money is made, and
such commercial ventures have proved highly successful. Therefore, one may wonder
why we hint that online gaming is, in technological terms, in its infancy. The alterna-
tive should be considered: Will enabling technologies emerge to ease the development

4		 Simulation & Gaming XX(X)

of online games and allow more interactive, complex gaming arenas? The cost of
bringing an MMO (Massively Multiplayer Online—industry neglects to include
“game” in the acronym) game to market may be in excess of $10 million (Carpenter,
2003), with some placing the figure closer to $50 million (Zenke, 2008). In addition,
once an online game is up and running, the maintenance costs may require a total
investment, including start-up, of close to $500 million to contemplate competing as a
market leader (Zenke, 2008). These figures seem substantial considering that many
successful Internet applications are brought to market for much less. Will technology
specifically designed for online gaming lower the entry level for such enterprises?

Propriety Play
Online gaming spans many different genres of play. From the ability to gamble online
to the ability to participate in a first-person shooter game, players are provided with a
number of gaming choices. Different gaming environments are provided via different
online services. For example, some vendors may specialize in Web sites that provide
poker games, while other vendors may specialize in providing services that host first-
person shooter environments. These are quite separate businesses, and one would not
expect to come across gamers playing Texas Hold’em poker within an online server
supporting the popular first-person shooter MEDAL OF HONOR (EA, 2008). Not
only is the game play distinctly different, but the requirements of these two gaming
genres have resulted in quite different technological approaches to engineer.

Different Engineering Approaches
The provision of specialized gaming services over the Internet via a multitude of dif-
ferent vendors using different engineering approaches is expected, both by vendors
and players alike. In fact, a question one may pose when considering an integrated
engineering approach to diverse gaming environments such as poker and first-person
shooters is “Why would anyone ever want to play poker in the middle of a fire
fight?” This question may be considered for all different game genres that do not lie
comfortably together. However, by considering a negative answer to this question,
we encourage developers to consider the engineering of solutions whose only com-
monality is defined by the standard Internet protocols (they must at least work over
the Internet) (Postal, 1981).

Minimal Standardization
Without a concerted effort toward standardization, technologies built on top of such
protocols for the support of gaming environments will be propriety in nature. Fur-
thermore, such technologies will tend to be created with particular gaming genres in
mind. This is a hindrance to code reuse, one of the fundamental requirements in soft-
ware engineering practices.

Morgan	 5

The greatest drawback to interoperability, and a truly interoperable gaming plat-
form, is the inability of the games industry to apply standardization at the content
level. Online game play and content are provided on a per-platform basis. Each plat-
form is propriety to a particular online gaming vendor. The lack of existing work,
academically and within industry, in this area gives no indication that this will change
in the near future.

Inability to Share Content
At present, two different persistent virtual worlds (provided by different vendors)
cannot share content. No standard exists to allow the representation of a game arti-
fact, rule, or context to be described in the same manner for all online environments.
For example, gaming scenarios and content developed for WORLD OF WARCRAFT
(WoW, 2008) is limited to the WORLD OF WARCRAFT domain. Even similar
domains, such as LORD OF THE RINGS (LoTR, 2008) and WORLD OF WAR-
CRAFT, that share similar gaming interfaces, storyline progressions, and character
development have no concept of sharing content.

Figure 1 presents screenshots from games where similarities are quite evident
(WORLD OF WARCRAFT and WARHAMMER ONLINE). These similarities are to
be expected as the graphical representation of the artifacts are developed using similar
graphical tools and are saved in a format which, if not the same, could be transferred
from one format to another using the appropriate tools (e.g., 3D Studio Max to DirectX).

More Than Graphical Representation
To ensure appropriate interoperability at the content level, we need to go beyond
graphical format issues; the way artifacts are stored in persistent storage and the
attributes associated with them need to be standardized in some manner as well as
the manner with which players interact with them. This was viewed as a problem
by the U.S. Department of Defense in the mid-1990s as efforts were made to ensure
that simulation projects that were funded by the military could actually integrate

Figure 1. Similar representations but two different games

6		 Simulation & Gaming XX(X)

and work successfully together (and so bring greater value for money). This effort
of standardization of content across different platforms was proposed via the high-
level architecture (HLA; Miller, 1996).

The HLA does provide a platform for interoperability of virtual worlds given
heterogeneous deployment environments but has not found favor within the com-
mercial games industry. The HLA has been limited to military simulations as opposed
to general purpose gaming. However, the work carried out by Fong (2006) describes
how off-the-shelf components can be used for low-cost military simulations, indicat-
ing that 10 years later, this was still a target for military-oriented simulations.
Therefore, an assumption may be drawn that such interoperability is still difficult to
achieve even with concerted effort.

Promoting Interoperability
Bringing standardization to middleware and content provision will allow interoper-
ability of game play for players across different gaming platforms and gaming
scenarios. At the moment, technology creation is viewed as a competitive strategy
for game developers, forcing players to make a choice (and pay) for different gaming
scenarios, and a competitive edge, providing something that is a little different or a
little better than a competitor. However, the cost of developing MMOs has reached
millions of dollars and the expense of maintaining such worlds have also reached
millions of dollars; this has resulted in a high entrance level to market, actually hin-
dering rather than helping the industry expand.

Longevity
Many popular gaming scenarios provide virtual worlds that are persistent in nature (e.g.,
WoW, 2008). Players return to participate in persistent worlds many times over a period
of weeks, months, or even years. Persistent virtual worlds allow participants to enter a
virtual world that provides a degree of continuity; artifacts may be created and persist
over periods of time, and the results of events on artifacts may persist. For example, a
participant may purchase a virtual car, drive the car to the end of a virtual road, return
some days, months, or even years later and retrieve the car. Of course, someone else may
have procured the car and driven it elsewhere in the meantime, but the continuity pro-
vided by persistence of artifacts is a factor that aids in classifying these virtual worlds.

Maintaining Interest
Player interest must be maintained over prolonged periods of time to ensure the
financial success of an MMO: The longer players participate in an MMO, the more
revenue such players will supply as they contribute their financial subscriptions and/
or participate in virtual-world financial transactions. Therefore, an important factor
in the design of any MMO is the requirement to continue providing new and

Morgan	 7

challenging scenarios to encourage player participation. This can be achieved by
periodically introducing new content (e.g., artifacts, rules, stories, areas) and ensur-
ing that all content exhibits a degree of persistence to provide a heightened sense of
continuing community. For the purposes of this article, the interesting questions
relating to the quality of game content is not considered. The interested reader is
directed to other literature for this interesting subject (e.g., Ang, 2006).

Evolution of Content
Apart from a recent discussion related to scripting in gaming (White, Koch, Gehrke,
& Demers, 2008), one may be surprised to learn that little has been achieved aca-
demically to ease content maintenance and creation in persistent online worlds. This
is surprising because of the importance vendors place on maintaining a constantly
evolving virtual world to retain players. Evolutionary change is afforded only at the
coding level via manual updates. This approach has resulted in the management of
evolutionary change in an ad hoc manner and severely limits the ability to introduce
far-reaching change while ensuring the correctness of a virtual world.

To illustrate how challenging a problem may be, consider the following example.

In a virtual world that already allows users to navigate ships between ports, we
wish to evolve an economic market by introducing “trade” and “cargo.” Once
introduced, users will be able to trade between ports via ships carrying cargo.
This enhancement to the gaming scenario requires the modification to the arti-
fact ship to enable the carrying of cargo. In addition, the new concept of trade
will require modification to the rules governing the virtual world itself. Ports
will assume the role of trade hubs and must be enhanced to recognize their role
in trading.

In this example, it is not sufficient to just add content, but existing content (ships,
ports) must also be altered to enhance them with the ability to participate in trade. This
requires updates in the persistent data store (e.g., amount of cargo that a ship can carry)
and updates in the application logic to enhance functionality (e.g., unload/load cargo).
Furthermore, other artifacts not mentioned in our example must be designated as
cargo. This in itself will require updates to other artifacts in the persistent data store
(e.g., weight, size, and owner) and additions in the application logic (e.g., in transit, set
owner, and change value). Finally, the concept of trade itself is quite fundamental and
not easily captured within one single artifact, requiring recognition in the rules
governing a virtual world (e.g., supply, wealth, and exchange).

A Commercial Problem

Commercial activities have shown the problem of managing change in persistent
virtual worlds to be acute (CNet, 2006). Vendors are restricted to manual updates by

8		 Simulation & Gaming XX(X)

their own developers or by players. This is primarily because of an inability of the
technology to be flexible enough to self-manage content change. Vendors may have
good reasons to manage content for the purposes of coherent story lines and directing
the overall look and feel of a gaming scenario. However, this is a burdensome task
when millions of items exist. Therefore, an alternative approach has arisen where
players are encouraged to create such content, albeit at the expense of a vendor’s
ability to direct gaming scenarios (Linden, 2008).

When vendors manage content, the use of client-side updates coupled with addi-
tions at the server side is common as can be seen with the introduction of THE
TRIALS OF OBI-WAN introduced by Lucas Arts (Lucas Arts, 2008) to enhance
their STAR WARS GALAXIES MMO. Updates to client’s software are an additional
revenue stream for a vendor. Such updates are achieved by the vendor releasing
“expansion packs” (software updates) that the player must purchase to participate in
new gaming scenarios. To ensure that existing players may continue to participate
without “expansion packs,” the vendor isolates new scenarios from existing content.
This is achieved by adding a new area to a virtual world. In reality, existing content
is not evolved but increased in the form of additional areas.

SECOND LIFE (Linden, 2008), by Linden Lab, allows player-created content with
a financial revenue model based on real estate and trading: The main type of revenue
for Linden Lab relates to the purchase of land and paying of ground rent. Such content
may then be traded between players. No client-side updates are required to access new
content. A scripting language allows items of a virtual world to be instilled with behav-
ior, allowing players to provide their own gaming scenarios. This approach provides
SECOND LIFE players with the most powerful content creation tool available today
for persistent virtual worlds with players providing a wealth of content.

Content Management Problems
Existing approaches to vendor- and player-derived content evolution can’t realize our
trading example, as existing content cannot be changed appropriately to accommodate
new content. In SECOND LIFE, propagation of change from one artifact to another is
limited and inhibited between artifacts belonging to different owners. Even using such
an inhibitive approach, SECOND LIFE has been plagued by problems (failure of simu-
lation because of erroneous scripts) (Linden, 2007). The more controlled approach used
in vendor-driven content change has faired better in terms of virtual-world correctness
(but failures still happen). However, this safety has come at the expense of limiting
existing content updates to simple bug fixes and only allowing new content distinct
from existing content. Fundamentally, all existing approaches severely limit content
evolution in favor of safety, and the programming burden is immense.

Describing Play
The need to provide some mechanism to describe interaction in any gaming environ-
ment is a necessity, as without such a mechanism, no way exists to describe a game.

Morgan	 9

Describing a game is important, if one wishes to reason about the possible behavior
in a game and if such behavior would result in undesirable gaming scenarios. For
example, a virtual world in which players may assume much greater abilities than
others will ultimately lead to an unbalanced gaming scenario.

Interest and Influence Management
In a real game, different interactions indicate different types of events, and the previ-
ous occurrence of events cumulatively contributes to the current game state. The
current game state then influences player participation, which manifests itself as fur-
ther events witnessed by players. One way of describing the abstract notion of game
progression is via the identification of interest expressed and influence exerted by
players, and the gaming environment itself, during a game. In practice, the behavior
that may be exhibited is quite extensive given the limited expressiveness, as shown
in Noy, Raban, and Ravid (2006), but for the purposes of this article, we consider
such expressiveness difficult to describe.

Interest management is the term used to describe how influence exerted and inter-
est expressed by participants in a virtual world translates to participant interaction.
For example, consider a plane carrying food parcels. A plane may influence a food
parcel by “carrying it.” A food parcel may influence a plane by “making it heavier.”
A food parcel “dropped” by a plane (plane influencing food parcel) may provide
nutrition to individuals (food parcel influencing individuals).

Determining Influence
Identifying when influence occurs appears straightforward (e.g., parcel in plane
makes plane heavier) and is based on where items are in a virtual world. However, this
may not always be the case as the relationships between the different items inhabiting
a virtual world may lead to behavior not necessarily considered by a developer.

In the parcel example, there are transitive relationships to consider (heavier plane
indicates increased fuel consumption; therefore, parcel requires more fuel for tran-
sit). Consideration of the laws of physics (acceleration) must be taken into account,
which may influence the tactics of pilots and air traffic controllers (the height flown
at, the use of jet streams, acceleration strategies, etc.). This may be straightforward
to describe in isolation, but in complex scenarios the eventual behavior may be dif-
ficult or even impossible to predict.

Language for Interaction
Describing the manner of interaction between participants requires a language capa-
ble of expressing a variety of techniques. Although some languages have been
proposed (e.g., Powel, Mellon, Watson, & Tarbox, 1996), they tend to be limited in
their expressiveness. Such limitation is witnessed in many online gaming genres and
reflects (like the technology used to implement them) specific interaction patterns.

10		 Simulation & Gaming XX(X)

In this respect, a card game implements a particular style of interaction, whereas a
first-person shooter will implement another style of interaction.

Geography as a Basis for Determining Interaction
In commercial products, interest management schemes identify potential player interac-
tion based on geographic location of participants in a virtual world. Popular games in the
MMO genre all employ clustered-server solutions to achieve scalability while managing
consistency. The techniques used to implement their interest management solutions in a
server cluster is not described in detail in a published article for general viewing (which
is to be expected for a commercial enterprise in a competitive market). However, an
article (Kushner, 2005) describing EVERQUEST’s approach in general terms does
exist: a mixture of regions and “duplicate worlds” (duplicate worlds are sometimes
called shards) with each duplicate world supporting approximately 2,000 to 3,000 play-
ers with each world divided into regions based on the geography of the virtual world.

In EVERQUEST, a duplicate world is itself supported by a cluster of servers, with
regions used to aid in allocating the processing requests that originated from player
actions among such servers as and when required. Because of the similarities in
game play and the existence of duplicate worlds; one may assume that all other com-
mercial MMOs approaches to implementation of interest management are similar,
conceptually, to that of EVERQUEST.

Duplicate worlds and geographically influenced regionalization present a three-
step approach to reducing the identification of interest and influence to a manageable
size: (a) players do not interact across different duplicate worlds; (b) players do not
interact across different regions; and (c) players interact intricately with other players
they specifically target (e.g., click on with mouse). This approach provides two dis-
tinct forms of interaction: (a) a general, viewing type style, where players can see the
actions of others in their region (assuming appropriate line of sight) and (b) an intri-
cate manner where players directly interact with each other in a user-directed way.

This author, together with his research team (Morgan, Lu, & Storey, 2005), has
shown that it is possible to allow dynamic configuration of the virtual space to model
interaction while maintaining scalability. This is compared with the regionalization
approach taken in industry. Dynamic approaches do allow a degree of interaction
more accurate than the three-step approach, allowing different virtual-world inhabit-
ants to specify their own areas of influence without regard for static regions. Industry
thought that this approach may not be scalable as earlier academic work found it dif-
ficult to make such a solution scalable beyond a few users. However, with judicial
use of enabling technologies at the server-side, player numbers can be supported on
the scale required by commercial solutions (Lu, Parkin, & Morgan, 2006).

Synchronization and Interest Management
Once an assumption is made that interest management affords greater scalability, a
developer must consider how messages may be synchronized within an interest

Morgan	 11

management scheme to ensure that players are presented with a mutually consistent
view of a virtual world. Messages sent without consideration of synchronization may
be received in arbitrary order, or worse still, not arrive at all (if communication chan-
nels are not reliable). This would ultimately result in players witnessing the virtual
world in different ways, hindering game play.

Approaches to message synchronization for virtual worlds using interest manage-
ment techniques for scalability find their origins in the parallel and simulation
community. Roccetti, Ferretti, and Palazzi (2008) provide a convenient discussion of the
state of the art together with some interesting comparisons made between the tech-
niques. In addition, work by Minson and Theodoropoulos (2008) indicates that such
approaches may be suitable in first-person shooter-type environments. However, the
consistency protocols that afford the best synchronization (developed for fault-tolerant
computing) have had little success transferring to online gaming. One reason could be
the difficulty such protocols had of scaling beyond 10 or 20 players when employed in
virtual worlds in the early 1990s. This is most evident when considering the utilization
of the ISIS group communication toolkit (Birman, 1986) to synchronize participant
interaction within the DIVE system (Carlsson & Hagsand, 1993). Less than 20 partici-
pants could be supported before the system slowed to unacceptable levels.

Scalability and Interest Management Confusion
What has been witnessed in commercial solutions to describing game play (due in
part to academic work) is confusion between the use of interest management to
model player interaction and the exploitation of interest management to engineer a
scalable solution; interest management appears to define the barriers to interaction as
opposed to promoting interaction. Once interest management is exploited to provide
scalability, there must be additional mechanisms implemented to promote synchroni-
zation. This provides a competing balance between synchronization on one hand and
scalability on the other. However, one must not look too dimly on the outcome of this
research, as the inability to provide a scalable solution would inhibit commercial
activity (as to turn players away from a game would not make good business sense).

Standardization Quest
In recent years, middleware for game developers has appeared that may indicate
some movement to standardization.

Console Vendors Promote Standards
The recent consoles (Xbox 360, Wii, and PS3) are designed to make full use of
network capabilities, being both LAN and Internet ready. Microsoft provides a
comprehensive development environment via its XNA toolset (XNA, 2008),
which is based on Microsoft’s own .NET framework. This leverages a mature
middleware standard tailored for the game developer. Targeted at all developers

12		 Simulation & Gaming XX(X)

(from professional to amateur), this middleware has seen success (as witnessed in
its XNA Creators Club) and encourages a number of games to be released on
Xbox Live and PC platforms. Xbox Live is the media delivery system associated
with Microsoft’s Xbox gaming consoles (as well as limited PC capabilities). Sony
has its own competitor to Xbox Live called Playstation Network, designed for use
with its PS3 console. This offers similar services to the end user as Xbox Live.
However, the development environment is not as forthcoming compared with
XNA; typically because Microsoft is primarily a software-based company as
opposed to Sony’s hardware focus (one would expect Microsoft to be stronger in
this area).

Server-Side Standards for MMOs
Development of scalable server-side solutions for gaming environments have been
tackled via the provision of middleware. An important advancement is the attempt
IBM made to use an existing, well-known, middleware standard in the game devel-
opment process (Shaikh, Sahu, Rosu, Shea, & Saha, 2006). During the excitement
of grid computing, IBM attempted to demonstrate the usefulness of their Grid Tech-
nology and Web Services for the support of online game development (Sharp,
2004). This is an example of a concerted effort, at some financial cost, to encourage
the game development community to consider a standardized approach to online
game development. An interesting aspect of this work is the recognition that content
itself needs to be standardized with an identification made by IBM of the business
value chain involved in producing an MMO (with different vendors producing dif-
ferent technologies). Figure 2 highlights this approach. Another notable subscriber
to this approach is Sun Microsystems, which is creating a server-side clustering
solution (Project Darkstar) based on its well-known Java technologies (Sun, 2008b).
Although Sun’s approach is not focused on standardized content, it does promote
the use of existing technologies for achieving scalable server-side solution for
online gaming.

When considering general purpose service delivery across the Internet (not in
the context of online gaming), standardization and middleware support are com-
monplace. Middleware is provided by a number of vendors that aim to ease Internet
application development by providing end-to-end solutions to developers. Web
Services provide industrywide standardization for describing loosely coupled busi-
ness-to-business solutions with many server-side solutions supported by popular
component-based middleware pertaining to Microsoft’s .NET (Fay, 2003) or Sun’s
J2EE (Sun, 2008a). In addition, the well-established distributed object technology
CORBA (Object Management Group [OMG], 2008) (another widely recognized
industry standard) has found favor with the industries that require distributed
applications that can afford a tighter degree of integration (over that afforded by
Web Services).

Morgan	 13

Consideration of Existing Standards

Online games that are server based may appear to lend themselves to implementation
using server-side middleware technologies (e.g., .NET, J2EE) or, at the least, using
distributed object technologies within a server cluster (e.g., CORBA). Such tech-
nologies, with a minor configuration or appropriate usage of additional (readily
available) services, are apt at providing general solutions to load balancing, scalabil-
ity, persistence, and reliability. However, these existing technologies are rarely
employed in online gaming solutions. Such services are instead constructed using
techniques developed in-house (or at least created by a third party specifically for a
particular online game type).

Early Steps
The approaches to middleware standardization for online games so far in the games
industry may be considered early steps. No standardization or widely accepted plat-
form promoting interoperability exists today. The XNA approach by Microsoft eases
game development and does promote interoperability, but only across Microsoft’s
own platforms. Sun and IBM have made progress toward a scalable server-side plat-
form solution for online game development but these works may be considered to be
in progress[. Most disappointingly, the vast effort put in middleware research and
development is yet to be usefully employed by the games industry.

Safe and Useful Content Evolution
Maintaining applications during runtime is a significant research problem in comput-
ing science. As persistent virtual worlds are maintained via large clusters of servers

Content Owners
Application Owners

Hosting/Aggregation Service Provisioning Access Provisioning Games

Platform Owner

Content/Application Owners
and producers
- Create and own Rich Media
 Content and games

Service Provisioning
- Internet access
- Rich Media delivery and
 subscription
- Online game services
- Payment services

Platform Owner
- Hardware manufacturers
- Consumer electronics
- NextGen consoles, mobiles

Network Owner

Hosting/Aggregation

- Hosting & management
- Aggregate content from various owners

Access Provisioning

- Higher bandwidth access to service
 providers

Figure 2. Business value chain for online gaming promoted by IBM

14		 Simulation & Gaming XX(X)

(hundreds, possibly thousands), a need exists to maintain uninterrupted service to
players in the presence of server failure, downtime, maintenance, or additions.
Achieving this is not straightforward when wishing to simply maintain current ser-
vice levels. However, the added difficulty of achieving this with a view to increasing
virtual-world complexity for enhancing online gaming scenarios places an additional
burden on the programmer. This is because such systems are constructed from mul-
tiple-code fragments that cumulatively describe the virtual world within which
players participate.

Managing Code Fragments
In SECOND LIFE, virtual-world content is described using a scripting language that
can be written by players or developers alike. The current object-oriented and
component-based approaches to software development encourage such scripting-like
approaches allowing functionality and attributes associated to a single virtual-world
artifact to be combined into single-code fragments. Such code fragments are then
distributed across a server cluster for load balancing purposes with persistent attri-
butes retrieved from the data-store tier as and when required.

Figure 3 presents an example demonstrating the problem of content update and man-
agement in the context of code fragments, their persistent attributes, and their deployment
across a cluster. In this example, a new code fragment representing an artifact is intro-
duced on Node 1, requiring insertion of new code into an already executing environment
and new attribute data to be stored. This results in the need to change other artifact
instances (code fragments and attributes) to make best use of the new artifact.

The Role of Reflection
A new code fragment representing an artifact may be manually created. However, the
adaptation of the system to accommodate the new artifact should be sufficiently auto-
mated to lessen the development burden and ensure safety. To achieve this, the notion
of runtime code modification is required. Such an approach to application evolution is
commonly termed reflection. One use of reflection is to allow the self-reorganization

Figure 3. Code fragments and associated attributes

Morgan	 15

of a system. In essence, reflection may be used to enable self-reorganization of code
fragments and associated attributes to allow far-reaching evolutionary change in a
safe manner.

There are three increasingly challenging steps required to achieve the evolution
described in Figure 3: (a) insert new code fragment, (b) update associated code fragments
(locally), and (c) disseminate change across nodes (update remote code fragments).

The work of Rivières, J., Smith B. C., 1984 in the early 1980s is often cited as
providing the earliest description of reflection: “A reflective system is one in which
otherwise implicit aspects of the system’s structure and behaviour are available for
explicit inspection and manipulation.” To ready a system for “explicit inspection and
manipulation,” Smith suggested making use of a metalevel. A metalevel assumes
responsibility for interpreting computations described in a program. The interpreted
program is commonly termed the baselevel. As metalevels are also described using
programs, they may also be subject to their own metalevel interpretation (in practice,
one metalevel and associated baselevel are considered sufficient).

A Mature Discipline
There has been substantial work in the development of reflective systems, allowing
programmers using a variety of development environments to make use of a meta-
level within their applications: languages with reflection as a cornerstone of their
construction (e.g., CLOS—Bobrow, Gabriel, & White, 1991; Smalltalk—Rivard,
1996); enhancing non or partially reflective languages with reflective properties
(e.g., C++—Chiba, 1995; Java—Welch & Stroud, 2002); scripting with reflection
(e.g., Tcl—Wetherall & Lindblad, 1995); advancements in middleware (e.g.,
Genie—Bencomo & Blair,2006). Using reflection, programmers have been able to
augment their applications with additional qualities (e.g., fault-tolerance—Fabre &
Perennou, 1998).

Considering that artifacts are encapsulated within individually separated code
fragments and associated persistent attributes, regulating their change via reflective
techniques to allow evolutionary change should be possible. Work at Lancaster
University (Okanda & Blair, 2003) identified the role that reflection may play in
MMOs for satisfying scalability, persistence, and responsiveness requirements.
However, the goal of achieving changing of gaming scenarios through content
updates is significantly different to the goals of Lancaster’s work.

Rules
A major problem with using reflection is that although reflection provides the means
for change, it does so with very limited safety constraints. In fact, such an approach is
rarely undertaken in industrial applications that exhibit the degree of complexity asso-
ciated to MMOs. Another alternative, which may be considered a safer option, is to
abstract the governance of a virtual world away from the code fragments altogether.

16		 Simulation & Gaming XX(X)

This allows changes to the rules governing gaming scenarios independently from the
changes associated to content representation.

In recent years, engineers of eCommerce solutions have begun to make use of rule-
based approaches in the construction of their applications (e.g., Oracle, 2007). A
number of server-side middleware products now include rule-based tools as part of
their application development support (e.g., JBoss, 2008). As business practices are
well attuned to operating within particular parameters governed by rules, efforts to
construct software tools and techniques to ease the development of business-oriented
applications by allowing rules to be clearly stated have preoccupied a number of
researchers. By separating the business logic from other aspects of application imple-
mentation, one may alter business rules without a requirement to manually update a
number of code fragments within the application tier of the server side. In effect, the
rules become a clearly identifiable (and manipulative) aspect of an overall application.
This has proved successful in the development process, as rules that were not deter-
mined accurately at design time could be tailored (or even created) after a system has
gone live.

Initially, rule-based software tools originate from work carried out in the artificial
intelligence research community. Work carried out in Expert Systems may be consid-
ered rule based, with such research eventually taking a number of directions, most
prominently, helping create the Business Rule Management Systems in current mid-
dleware products. There are a number of rule-based systems available for
programmers to make use of, most interesting to MMO developers are those found
in distributed systems middleware solutions (e.g., J2EE, .NET). Preliminary studies
by Zhu and Morgan (2008) have shown that utilization of rule-based approaches for
content evolution may hold promise.

Reflection and Rules in Games Development
No literature or software suggests that the games industry uses rule engines or reflec-
tive techniques to manage evolutionary change in persistent virtual worlds. With
such a lack of consideration for these two techniques, one may only assume that
propriety ad hoc approaches are the mainstay of the game developer. Although
reflection may be considered a dangerous programming approach by many, rule-
based engines appear quite a convenient abstraction in which to describe gaming
scenarios if they can be tailored sufficiently well for use in MMOs. For example, a
problem with business rules is that they are quite specific. And what may be needed
is a “business rule of thumb,” which can usually be expressed as constraints of vari-
ous kinds. In this format, they are more accessible for managers to understand and
manipulate (more overall governance than isolated rules).

Enabling Rich Interaction
Interest management has been achieved in commercial solutions via the subdivision
of the virtual world; players close to each other, sharing the same area, are more

Morgan	 17

likely to interact than those separated by larger distances. Beyond such assumptions,
little has been achieved in actually describing influence or interest in a machine-
readable format. This makes describing gaming scenarios difficult in the context of
the interest and influence expressed by players because of a lack of a language capa-
ble for succinctly providing such a description. However, in both academia and
industry, there have been attempts in nongaming domains to describe the interaction
of participants in a manner suitable for automated analysis.

Describing Services: The Middleware Approach
A first step to achieving a complete language for interest management requires a mecha-
nism for discovery as one must be able to locate gaming scenarios based on their
descriptions (in addition to individual objects searching for each other in a virtual world).
One area of work that is strongly related to such a problem is that of location and discov-
ery services in distributed systems and middleware research: the ability to query a
selection of possible services to determine their suitability for satisfying a given request.
This is prevalent in the CORBA Trading Service (OMG, 2000b), which (in the specifica-
tions own words) “facilitates the offering and the discovery of instances of services of
particular types.” In addition to the CORBA approach, the white, green and yellow pages
associated to the Universal Description, Discovery, and Integration (UDDI) protocol is
a mechanism for aiding in the location and discovery of Web Services (UDDI, 2000). As
a note to the reader, the UDDI is now quite a different entity (Version 3 in draft form) as
the catalog service of the original specification never became popular.

CORBA is a standard that describes the specification of middleware that eases the
development of distributed applications. The technology is primarily based on the
object-oriented paradigm for constructing applications (as this was, and probably
still is, the most popular paradigm for application development). Objects assume the
natural unit of distribution in CORBA and may be distributed across nodes in a com-
puter network. The complications associated to accessing an object’s methods across
a computer network are conveniently handled by CORBA middleware (greatly
easing the development of distributed applications). The Trading Service allows an
object to register a description pertaining to its functionality. This description can
then be searched by potential clients, allowing clients to determine the suitability of
different types of objects to satisfy their requests. For example, an object may repre-
sent a particular printer with functionality describing the type of printer, pages per
second, size of paper, and other additional information that could be used to differ-
entiate between printers. Queries to the Trader Service may assume similar style and
presentation as other query languages (such as SQL).

UDDI is the Web Service equivalent of the CORBA Trading Service with a
number of differences that reflect the multiorganizational aspects of Web Services.
Web Services are designed for loosely coupled application development and, as
such, provide only service interfaces (without the concept of instantiation). The stan-
dard for Web Services specifies the basic protocol and textural representation of
messages with additional services to aid distributed application development.

18		 Simulation & Gaming XX(X)

Agreeing on Service Usage

The actual game play scenario description of a successful interest management ser-
vice requires a language capable of describing interaction. Research in the area or
eCommerce has produced a number of solutions for describing the interaction of ser-
vices for the purposes of monitoring and evaluation. The need to automate the
regulation of service usage across the Internet to ensure that service consumers and
service providers adhere to predefined rules of interaction has resulted in a number of
technologies. The fact that interaction must be described in an unambiguous manner
indicates that such technology may be suitable for exploitation within interest man-
agement. The bases for such technologies are Service-Level Agreements (SLAs).

SLAs specify the quality of service associated with the interaction between the
provider of a service and a service consumer. SLAs are gaining in importance as
increasing numbers of companies conduct business over the Internet (e.g., banking,
auctions), requiring the positioning of SLAs at organizational boundaries to provide
a basis on which to emulate the electronic equivalents of contract-based business
management practices. A number of languages have been developed to describe
SLAs, with such languages integrated into overall systems to provide complete mon-
itoring/evaluation solutions for eCommerce.

Conclusions
This article has described four research challenges that are inhibiting the advance-
ment of enabling technologies suitable for creating highly interactive online gaming
scenarios:

•• Engineering practices: The competitive nature of the games industry has
resulted in propriety approaches that are not conducive to promoting stan-
dardized middleware for online games.

•• Longevity: Persistent virtual worlds are maintained in a way that limits the
evolution possible within gaming scenarios, restricting players to repetitive
game play scenarios.

•• Describing game play: A lack of a descriptive language to successfully
describe game play inhibits the ability to automate analysis and creation of
gaming scenarios and the support of such scenarios.

Commercial Success Hides Technological Shortcomings
The commercial success of online gaming in recent years has masked the technologi-
cal inadequacies highlighted in this article. Although rapidly growing in popularity,
online games are not the most significant revenue stream of the games industry at the
time of writing this article. In the future, one may envisage that online gaming may
become the dominant force in the games industry. However, to achieve this position
of dominance, the games industry needs to consider more diverse gaming scenarios

Morgan	 19

to satisfy the gaming requirements of a wider variety of players than exists at
the moment; commercially successful online games tend to be dominated by role-
playing games, mostly related to the fantasy genre, that provide game play that
differs little.

The challenges highlighted in this article go some way to identifying what direc-
tion current online games research could take. Table 1 presents a brief summary of
the discussion presented here.

Consider Technology Beyond Gaming
The challenges described here have been related to work achieved, both in the game
industry and other computing disciplines. When considering a broader field of com-
puting science, a clear picture emerges that work from a variety of disciplines may
be appropriate to the advancement of online game development. Therefore, a require-
ment for the online game developer is a need to extend their view of network-related
technologies and prevent reinvention of existing techniques in the guise of online
gaming middleware.

Promotion of Standards
The competitive nature of the gaming industry needs to be tempered to encourage
collaboration and agreement on core technologies. In the development of distributed
applications, there has long been an agreement as to how technologies may interact
via adherence to industry standards. An understanding that collaboration via stan-
dardization, although not ideal for every requirement, provides a basis that reduces
the development and maintenance costs of software and promotes interoperability. If
the cost of persistent virtual-world development, deployment, and maintenance
remains high, then the opportunity for innovation will be hampered.

Table 1. Engineering Issues in Online Gaming

Engineering
Issue

Games Most
Affected

Hindrance

Possible Solutions

Propriety play All games Inability to share content
across gaming
environments

Adoption of middleware
standards

Longevity MMOs Not possible to adapt
existing gaming
scenarios beyond trivial
fixes and expansions

Reflective programming
combined with rule
engines

Describing play MMOs Not possible to describe
and reason about gaming
scenarios and model all
behavior

Utilization of discovery
services combined with
language describing
service provision

Note: MMO = Massively Multiplayer Online.

20		 Simulation & Gaming XX(X)

Glossary

3D Studio Max  Popular modeling tools for 3D content creation (also used to describe the
file format associated to this modeling tool)

CORBA  Common Object Request Broker Architecture, a technology to ease distributed
application development in heterogeneous environments (different programming lan-
guages and operating systems) using the object-oriented paradigm

DirectX  Suite of libraries to allow game development on Microsoft platforms (also used to
describe the file format associated to DirectX 3D models)

First-Person Shooter  Nonpersistent gaming environment characterized by fast, real-time,
action, and low number (less than 50) of players participating at any one time

Grid  An approach to computing, where a collection of loosely coupled computers collabo-
rate to perform a task

High-Level Architecture (HLA)  Architecture designed to accommodate the creation of
distributed simulations

Interest Management  Mechanism for describing interest and influence in distributed vir-
tual worlds

J2EE  A programming platform to ease server-side development in the Java language
Middleware  Software residing above the operating system and below the application layer

that eases distributed application development
MMO  Commonly used abbreviation of MMORPG (Massively Multiplayer Online Role

Playing Game) usually with persistent qualities (e.g., WORLD OF WARCRAFT,
WARHAMMER ONLINE)

NET  A development framework from Microsoft providing an array of libraries and code to
ease windows application development

OMG  Object Management Group, standards body responsible for CORBA and related
standards

UDDI  Universal Description, Discovery, and Integration attempt to catalog services avail-
able across the Internet (strongly related to Web Services)

Region  Area of virtual world that identifies one or more areas of localized game play
interaction

Shard  A duplication of a virtual world’s static environment (term originally used in database
terminology, where a shard is individual separately stored rows)

SLA  Service-Level Agreement, embodiment, in an electronic form, of an agreement defin-
ing service usage and provision between machines

Web Services  Standards to promote interoperability, primarily for machine-to-machine
communications (usually associated with interorganizational computing)

XNA  Set of runtime tools for easing the development of computer games from Microsoft

Acknowledgments

I would like to thank my reviewer’s and a number of colleagues for providing recommenda-
tions that have improved this article immeasurably. In particular, I would like to thank Rob
Smith, Rob Minson, Pierre Corbeil, and David Crookall.

Morgan	 21

Declaration of Conflicting Interests

The author declared no conflicts of interest with respect to the authorship and/or publication
of this article.

Funding

The author received no financial support for the research and/or authorship of this
article.

References

Ang, C. S. (2006). Rules, gameplay, and narratives in video games. Simulation & Gaming,
37, 306-325.

Bencomo, N., & Blair, G. (2006, October). Genie: A domain-specific modelling tool for the
generation of adaptive and reflective middleware families. Paper presented at the Sixth
OOPSLA Workshop on Domain-Specific Modelling, Portland, OR.

Birman, K. P. (1986). Isis: A system for fault-tolerant distributed computing (Tech. Rep., UMI
Order Number TR86-744). Ithaca, NY: Cornell University.

Bobrow, D. G., Gabriel, R. P., & White, J. L. (1991). CLOS in context: The shape of the design
space. Communications of the ACM, 34(9), 28-38.

Carlsson, C., & Hagsand, O. (1993). DIVE: A platform for multiuser virtual environments.
Computers and Graphics, 17, 663-669.

Carpenter, A. (2003, June 11). Applying risk analysis to play-balance RPGs. Gamasutra. Retrieved
June 24, 2009, from http://www.gamasutra.com/features/20030611/carpenter_01.shtml

Chiba, S. (1995, October). A metaobject protocol for c++. In Proceedings of the 10th ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) (pp. 285-299), Austin, TX.

CNet. (2006). World of warcraft battles server problems. Retrieved September 2, 2008, from http://
news.com.com/World+of+Warcraft+battles+server+problems/2100-1043_3-6063990.html

EA. (2008). Medal of honour: Airborne assault. Retrieved September 2, 2008, from
http://www.ea.com/moh/airborne/

Fabre, J. C., & Perennou, T. (1998). A metaobject architecture for fault-tolerant distributed
systems: The FRIENDS approach. IEEE Transactions on Computers, 47, 78-95.

Fay, D. (2003, April). An architecture for distributed applications on the Internet: Overview
of Microsoft’s .NET platform. Paper presented at the International Parallel and Distributed
Processing Symposium (IPDPS’03) PP90a, Nice, France.

Fong, G. (2006). Adapting COTS games for military experimentation. Simulation & Gaming,
37, 452-465.

JBoss. (2008). JBoss Drools project. Retrieved September 2, 2008, from http://www.jboss.
org/drools

Kushner, D. (2005). Engineering everquest. IEEE Spectrum Magazine, 42(7), 34-39.
Linden. (2007). Linden Lab, security and second life. Retrieved September 2, 2008, from

http://blog.secondlife.com/2006/10/09/security-and-second-life
Linden. (2008). Second life. Retrieved September 2, 2008, from http://secondlife.com/

22		 Simulation & Gaming XX(X)

LoTR. (2008). Lord of the rings online. Retrieved September 2, 2008, from http://moria.lotro.com/
Lu, F., Parkin, S. E., & Morgan, G. (2006, October). Load balancing for massively multiplayer

online games. Paper presented at NETGAMES 2006, ACM SIGCOMM, Singapore.
Lucas Arts. (2008). Trials of Obi-Wan. Retrieved September 10, 2008, from http://starwarsgal-

axies.station.sony.com/trialsofobiwan
Miller, D. C. (1996, March). The DOD high level architecture and the next generation of

DIS. Paper presented at the Workshop on Standards for the Interoperability of Distributed
Simulations, Orlando, FL.

Minson, R., & Theodoropoulos, G. (2008, May). Push-pull interest management for vir-
tual worlds. In Proceedings of the 11th IEEE Symposium on Object Oriented Real-Time
Distributed Computing (ISORC), IEEE Computer Society (pp. 189-194), Orlando, FL.

Morgan, G., Lu, F., & Storey, K. (2005, April). Interest management middleware for networked
games. In Proceedings of the I3D 2005 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (pp. 57-63), Washington, DC.

Noy, A., Raban, D., & Ravid, G. (2006). Testing social theories in computer-mediated com-
munication through gaming and simulation. Simulation & Gaming, 37, 174-194.

Okanda, P., & Blair, G. S. (2003). The role of structural reflection in distributed virtual reality.
In Proceedings of the VRST 2003 (pp. 140-149), Osaka, Japan.

Object Management Group. (2000b). Trading object service specification, OMG (Object
Management Group) technical specification. Retrieved September 2, 2008, from
http://www.omg.org/docs/formal/00-06-27.pdf

Object Management Group. (2008). Retrieved September 2, 2008, from Object Management
Group’s CORBA Website: http://www.corba.org/

Oracle. (2007). Oracle business rules: Technical overview (An Oracle white paper).
Retrieved September 2, 2008, from http://www.oracle.com/technology/products/ias/
business_rules/index.html

Postal, J. (Ed.). (1981). Internet protocol: DARPA Internet program protocol specification
(RFC 791). Arlington, VA: USC/Information Sciences Institute.

Powel, E. T., Mellon, L., Watson, J. F., & Tarbox, G. H. (1996). Joint precision strike dem-
onstration (JPSD) simulations architecture. In Proceedings of the 14th Workshop on
Standards for the Interoperability of Distributed Simulations (pp. 807-810), Orlando, FL.

Prakash, E., Brindle, G., Jones, K., Zhou, S., Chaudhari, N., & Wong, K. (in press). Advances
in game technology: Software, models and intelligence. Simulation & Gaming.

Roccetti, M., Ferretti, S., & Palazzi, C. E. (2008, May). The brave new world of multiplayer
online games: Synchronization issues with smart solutions. In Proceedings of the 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC), IEEE
Computer Society (pp. 587-592), Orlando, FL.

Rivard, F. (1996, April). Smalltalk: A reflective language. In G. Kiczales (Ed.), Proceedings of
Reflection’96 (pp. 21-38), San Francisco.

Rivières, J., Smith B. C., 1984. The implementation of procedurally reflective languages,
In Proceedings of the 1984 ACM Symposium on LISP and Functional Programming,
(pp. 331-347), Austin, TX.

Morgan	 23

Shaikh, A., Sahu, S., Rosu, M.-C., Shea, M., & Saha, D. (2006). On demand platform for
online games. IBM Systems Journal, 45, 7-19.

Sharp, C. (2004). IBM middleware to enable new business models in the online games indus-
try. Retrieved May 5, 2004, from http://www-106.ibm.com/developerworks/webservices/
library/ws-intgame

Sun. (2008a). Java 2 platform, enterprise edition (J2EE) overview. Retrieved September 2,
2008, from http://java.sun.com/j2ee/overview.html

Sun. (2008b). Sun Microsystems “Project Darkstar.” Retrieved September 2, 2008, from
http://www.projectdarkstar.com/

UDDI. (2000). UDDI technical white paper. Retrieved September 2, 2008, from http://www.
uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

Waldo, J. (2008). Scaling in games & virtual worlds. ACM Queue—Game Development, 6(7),
10-16.

Welch, I., & Stroud, R. (2002). From Dalang to Kava the evolution of a reflective Java exten-
sion. In Proceedings of the 16th European Conference on Object-Oriented Programming
(ECOOP 2002), No. 2374, Lecture Notes in Computer Science (pp. 205-230), Malaga,
Spain.

Wetherall, D., & Lindblad, C. J. (1995, July). Extending Tcl for dynamic object-oriented pro-
gramming. Paper presented at the Tcl/Tk Workshop ’95, Toronto, Ontario, Canada.

White, W., Koch, C., Gehrke, J., & Demers, A. (2008). Better scripts, better games. ACM
Queue—Game Development, 6(7), 18-25.

WoW. (2008). World of warcraft. Retrieved September 2, 2008, from http://www.worldofwar-
craft.com

XNA. (2008). XNA Creators Club. Retrieved September 2, 2008, from http://creators.xna.com/
Zenke, M. (2008, June/July). Land of fire: The rise of the tiny MMO. Game Developer

Magazine, 15(6), 7-11.
Zhu, L., & Morgan, G. (2008, November). Runtime evolution for online gaming: A case study

using JBoss and Drools. Paper presented at the Game Design and Technology Workshop,
Liverpool, UK.

Bio

Graham Morgan is a faculty member at Newcastle University, where he leads research and
teaching in the area of video games. He has published many articles about video gaming
and enjoys participating in the academic community: conference keynotes, chairing confer-
ences, program committees, and journal editorials. Many of his past students are now
employed in the video games industry. Most recently, he spent 2008 to 2009 at George
Mason University (the United States) helping them create their first video game degree.
Contact: graham.morgan@ncl.ac.uk.

