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Abstract 

 
A recent trend has seen the extension of object-

oriented middleware to component-oriented middleware. 
A major advantage components offer over objects is that 
only the business logic of an application needs to be 
addressed by a programmer with support services 
required incorporated into the application at deployment 
time. This is achieved via components (business logic of 
an application), containers that host components and are 
responsible for providing the underlying middleware 
services required by components and application servers 
that host containers. Well-known examples of component 
middleware architectures are Enterprise Java Beans 
(EJBs) and the CORBA Component Model (CCM). Two 
of the many services available at deployment time in most 
component architectures are component persistence and 
atomic transactions. This paper examines, using EJBs, 
how replication for availability can be supported by 
containers so that components that are transparently 
using persistence and transactions can also be made 
highly available.  
 
Keywords: Availability, components, CORBA 
Component Model, Enterprise Java Beans, fault tolerance, 
middleware, replication, transactions 
 
1. Introduction 

Modern client-server distributed computing systems 
may be seen as implementations of an N-tier architecture. 
In a typical four tier architecture the first tier (client tier) 
consists of client applications containing browsers, with 
the remaining three tiers deployed within an enterprise 
representing the server side; the second tier (Web tier) 
consists of a Web server that receives client requests 
typically via HTTP and passes on the requests to specific 
applications residing in the third tier (business tier) that is 
capable of hosting distributed applications; the fourth tier 

(enterprise information systems tier) contains databases 
and legacy applications of the enterprise. The platform 
providing the Web tier plus business tier is usually called 
an application server.  

An application server typically deploys a variety of 
object oriented middleware services using an object 
request broker (ORB) and provides to applications a 
higher level of abstraction of component oriented 
middleware. It is worth examining here briefly why this 
higher level of abstraction has been considered necessary. 
Although object oriented middleware provides type 
checked remote invocations and standard ways of using 
commonly required services (naming, persistence, 
transactions, etc.), a problem still remains that application 
developers have to worry about application logic as well 
as technically complex ways of using a collection of 
services. For example, use of transactions on distributed 
objects requires concurrency control, persistence and the 
transaction services to be used in a particularly intricate 
manner. Component oriented middleware alleviates this 
difficulty by the use of components that are composed of 
objects, and containers that host component instances. 
Containers take on the responsibility for using the 
underlying middleware services for communication, 
persistence, transactions, security and so forth and a 
developer’s task is simplified to specifying the services 
required by components in a declarative manner. Thus, a 
major advantage components offer over objects is that 
only the business logic of an application (encoded in 
components) needs to be addressed by a developer. Well-
known examples of component middleware architectures 
include Enterprise Java Beans (EJBs) and the CORBA 
Component Model (CCM). 

In this paper we investigate how software implemented 
fault tolerance techniques can be applied to support 
component replication for high availability. We take the 
specific case of EJB components and consider strict 
consistency (that requires that the states of all available 



  

copies of replicas be kept mutually consistent). We take 
EJBs primarily because not only are they used extensively 
in industry, but also because open source implementations 
of application servers for EJBs are available for 
experimentation. However, we believe that the ideas 
presented here are of interest to the general case of 
component middleware. In particular, as EJBs are closely 
related to the language independent CCM, the ideas 
presented here can be applied to the world of CORBA 
components.  

Data as well as object replication techniques have been 
studied extensively in the literature, so our task is not to 
invent new replication techniques for components, but to 
investigate how existing techniques can be migrated to 
components. In the spirit of component middleware, we 
prefer to delegate the responsibility of replication 
management to the container (container managed 
replication). We therefore examine how replication for 
availability can be supported by containers so that 
components that are transparently using persistence and 
transactions can also be made highly available, enabling a 
transaction involving EJBs to commit despite a finite 
number of failures involving application servers (where 
computations take place) and databases (where persistent 
data is kept).  

Ours is an engineering task that poses several problems 
that require careful resolution. In order to highlight these 
problems and possible solutions, we consider three 
replication approaches, beginning with a simple approach 
into which we incrementally incorporate additional 
sophistication. To explain these approaches, consider a 
simple transaction that, in a non-redundant system, 
operates on EJBs deployed within a single container, with 
the beans storing their persistent states on a database; in 
this system, we incorporate redundancy as follows:  

(i) State replication with single application server: 
persistent state is stored on multiple databases; here 
database (but not the application server) failures can be 
masked, so the transaction will be able to commit 
provided the application server can access a copy of the 
state on a database.   

(ii) State replication with clustered application servers: 
persistent state is stored on multiple databases; multiple 
application servers are used for load sharing the total 
number of transactions in the system; an individual 
transaction has the same reliability features as case (i). 

(iii) State and computation replication with clustered 
application servers: persistent state is stored on multiple 
databases and instances of beans are replicated on the 
cluster of application servers;  this is an ideal set of server 

side availability measures as it is able to mask a finite 
number of application server and database failures. 

Existing application servers as yet do not provide any 
suppport for managing persistent state replication. This 
means that they must rely on database vendor specific 
approaches for tolerating database failures (e.g., vendor 
specific database replication technique). Computation 
replication is well supported for stateless computations, 
but not so well for stateful computations in that 
transactions are not supported. These limitations are 
examined in detail in section 2.3 of the paper.  

This paper shows how support for managing 
redundancy can be incorporated within application 
servers. We require that our solutions must be open (non-
propriety) and implementable in software. Furthermore, 
we require that our solutions be transparent to the 
component middleware. The transparency requirement 
imposes the following constraints on our solutions: (a) no 
modifications to the API (Application Programming 
Interface) between client and component; (b) no 
modifications to the API between an EJB and the 
container; and (c) no modifications to the existing 
middleware services and APIs. Given these constraints, 
the contributions of the paper are to show that approaches 
(i) and (ii) can be implemented with relative ease. We 
have implemented these approaches to validate this claim. 
However, it is not possible to implement approach (iii) 
without breaking constraint (c); we outline what 
enhancements would be necessary to the component 
middleware to support approach (iii).  

The paper is structured as follows: background 
information on EJB component middleware is presented 
is section two; replication approaches are then discussed 
in section three; section four presents performance results; 
related work is presented in section five; with concluding 
remarks in six. 

   
2.  EJBs and application servers 

In the first two sub-sections we describe the 
terminology and basic concepts of Java 2, Enterprise 
Edition (J2EE) middleware that should be sufficient for 
our purposes (for additional details, see [1]). The third 
sub-section describes availability measures currently 
provided in application servers.  
 
2.1. EJBs 

Three types of EJBs have been specified in J2EE: (1) 
Entity beans represent and manipulate persistent data of 
an application, providing an object-oriented view of data 
that is frequently stored in relational databases. (2) 



  

Session beans on the other hand do not use persistent 
data, and are instantiated on a per-client basis with an 
instance of a session bean available for use by only one 
client. A session bean may be stateless (does not maintain 
conversational state) or stateful (maintains conversational 
state). Conversational state is needed to share state 
information across multiple requests from a client. (3) 
Message driven beans provide asynchronous processing 
by acting as message listeners for Java Messaging Service 
(JMS).  

A container is responsible for hosting components and 
ensuring that middleware services are made available to 
components at run time. Containers mediate all 
client/component interactions. An entity bean can either 
manage its state explicitly on a persistent store (bean 
managed persistence) or delegate it to the container 
(container managed persistence). All EJB types may 
participate in transactions. Like persistence, transactions 
can be bean managed or container managed.  

Use of container managed persistence and transactions 
are strongly recommended for entity beans.  Below we 
describe how this particular combination works, as we 
will be assuming this combination for our replication 
schemes.  

 
2.2 Transactional EJB applications 

The main elements required for supporting 
transactional EJB applications deployed in an application 
server are shown in figure 1. An application server 
usually manages a few containers, with each container 
hosting many (hundreds of) EJBs; only one container with 
three EJBs is shown in the figure. The application server 
is a multi-threaded application that runs in a single 
process (supported by single Java Virtual Machine). Of 
the many middleware services provided by an application 
server to its containers, we explicitly show just the 
transaction service. A transaction manager is hosted by 
the application server and assumes responsibility for 
enabling transactional access to EJBs. The transaction 
manager does not necessarily have to reside in the same 
address space as the application server, however, this is 
frequently the case in practical systems. At least one 
resource manager (persistence store) is required to 
maintain persistent state of the entity beans supported by 
the application server; we show two in the figure. In 
particular, we have shown relational database 
management systems (RDBMS) as our resource managers 
(bean X stores its state on RDMSA and bean Y does the 
same on RDMSB). We assume that resource managers 
support ACID transactions (ACID: Atomicity, 
Consistency, Isolation, Durability). 
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Figure 1 – EJB transactions. 

Communications between an RDBMS and a container 
is via a Java DataBase Connectivity (JDBC) driver, 
referred in the J2EE specification as a resource adaptor. 
A JDBC driver is primarily used for accessing relational 
databases via SQL statements. To enable a resource 
manager to participate in transactions originated in EJBs, 
a further interface is required. In J2EE architecture this 
interface is referred to as the XAResource interface 
(shown as XA in figure 1). A separation of concerns 
between transaction management via XAResource 
interface and resource manager read/write operations via 
JDBC is clearly defined. In simple terms, the transaction 
manager interoperates with the resource manager via the 
XAResource interface and the application interoperates 
with the resource manager via the JDBC driver.  

We now describe, with the aid of figure 1, a sample 
scenario of a single transaction involving three enterprise 
beans and two resource managers. A session bean 
receives a client invocation. The receiving of the client 
invocation results in the session bean starting a 
transaction, say T1, and issuing a number of invocations 
on two entity beans (X and Y). When entity beans are 
required by the session bean, first the session bean will 
have to ‘activate’ these beans via their home interfaces, 
which results in the container - we are assuming container 
managed persistence - retrieving their states from the 
appropriate resource managers for initialising the instance 
variables of X and Y. The container is responsible for 
passing the ‘transaction context’ of T1 to the JDBC 
drivers in all its interactions, which in turn ensure that the 
resource managers are kept informed of transaction starts 
and ends. In particular: (i) retrieving the persistent state of 
X (Y) from RDMSA (RDMSB) at the start of T1 will lead 
to that resource manager write locking the resource (the 
persistent state, stored as a row in a table); this prevents 
other transactions from accessing the resource until T1 
ends (commits or rolls back); and (ii) XA resources (XAA 
and XAB) ‘register’ themselves with the transaction 
manager, so that they can take part in two-phase commit.         

Once the session bean has indicated that T1 is at an 
end, the transaction manager attempts to carry out two 
phase commit to ensure all participants either commit or 



  

rollback T1. In our example, the transaction manager will 
poll RDBMSA and RDBMSB (via XAA and XAB 
respectively) to ask if they are ready to commit. If a 
RDBMSA or RDBMSB cannot commit, they inform the 
transaction manager and roll back their own part of the 
transaction. If the transaction manager receives a positive 
reply from RDBMSA and RDBMSB it informs all 
participants to commit the transaction and the modified 
states of X and Y becomes the new persistent states. 

In our example, all the beans are in the same container. 
Support for distributed transactions involving beans in 
multiple containers (on possibly distinct application 
servers) is straightforward if the transaction manager is 
built atop a CORBA transaction service (Java Transaction 
Service), since such a service can coordinate both local 
and remote XA resources. Such a transaction manager 
will also be able to coordinate a transaction that is started 
within a client and spans EJBs, provided the client is 
CORBA enabled. For this reason, in the rest of the paper, 
we need only consider the simple case of a transaction 
that, in a non redundant system, spans EJBs within a 
single container and a few resource managers. 

 
2.3. Availability measures in current application 
servers 

Commercial application servers make use of multiple 
application servers deployed over a cluster of machines 
with some specialist router hardware (see below) to mask 
server failures and rely on propriety replication 
mechanisms of database vendors for database availability  
(for example, some Oracle database products support a 
specific replication scheme). As we discuss below, these 
availability measures do not integrate properly with EJB 
initiated transactions.  

Application servers are typically deployed over a 
cluster of machines. A locally distributed cluster of 
machines (a set of machines) with the illusion of a single 
IP address and capable of working together to host a Web 
site provides a practical way of scaling up processing 
power and sharing load at a given site. Commercially 
available application server clusters rely on a specially 
designed gateway router to distribute the load using a 
mechanism known as network address translation (NAT). 
The mechanism operates by editing the IP headers of 
packets so as to change the destination address before the 
IP to host address translation is performed. Similarly, 
return packets are edited to change their source IP 
address. Such translations can be performed on a per 
session basis so that all IP packets corresponding to a 
particular session are consistently redirected. Load 
distribution can also be performed using a process group 

communication system as first suggested by the ISIS 
system [2]; a recent open source application server has 
such a mechanism [3]. The two market leaders in the 
application server space, WebSphere [4] from IBM and 
WebLogic [5] from BEA, have very similar approaches to 
clustering. They typically characterise clustering for: 

Scalability: The proposed configuration should allow the 
overall system to service a higher client load than that 
provided by the simple basic single machine 
configuration. Ideally, it should be possible to service any 
given load, simply by adding the appropriate number of 
machines. 

Load-balancing: The proposed configurations should 
ensure that each machine or server in the configuration 
processes a fair share of the overall client load that is 
being processed by the system as a whole. Furthermore, if 
the total load changes over time, the system should adapt 
itself to maintain this load-balancing property. 

Failover: If any one machine or server in the system were 
to fail for any reason, the system should continue to 
operate with the remaining servers. The load-balancing 
property should ensure that the client load gets 
redistributed to the remaining servers, each of which will 
henceforth process a proportionately slightly higher 
percentage of the total load. Transparent failover (failures 
are masked from a client, who minimally might need to 
retransmit the current request) is an ideal, but rarely 
achievable with the current technology, for the reasons to 
be outlined below. However, the important thing in 
current systems is that forward progress is possible 
eventually and in less time than would be the case if only 
a single machine were used. 

Transparent failover is easy to achieve for stateless 
sessions: any server in the cluster can service any request 
and if a client makes multiple requests in succession each 
may well be serviced by a different server. Failover 
support in this case is trivial: if a failure of the server 
occurs while it is doing work for the client then the client 
will get an exceptional response and will have to 
retransmit the request. The situation is more complicated 
for a stateful session, where the same server instance must 
be used for requests from the client, so the server failure 
will lead to loss of state. The approach adopted in 
commercial systems to avoid loss of state is to use the 
stateless session approach with a twist: the stateful session 
bean is required to serialize its state to a datastore at the 
end of each client request and for the subsequent bean 
instance in the other server to deserialize the state before 
servicing the new request (obviously the servers must 
have access to the same datastore). The replication of the 
datastore is assumed to be the domain of the datastore 



  

itself. This way, some of the functionality available for 
stateless sessions can be regained. However, even in this 
case, a failure during serialization of the bean's state 
(which could result in the state being corrupted) is not 
addressed. There is a more serious limitation: transactions 
cannot be supported. if transactional access to a bean is 
used, then the same server instance must be used for 
every invocation on that bean. 

 
3. Component replication 

The three approaches mentioned at the start of the 
paper will be considered in some detail in this section. We 
will nevertheless highlight only the essential aspects of 
our designs, glossing over minute details of replica 
management. We begin by stating the main assumptions. 
We will assume that an application server either works as 
specified or simply stops working (crash). After a crash, a 
server is repaired within a finite amount of time and made 
active again. We assume that resource managers support 
ACID transactions. As stated earlier, in this paper we 
consider availability measures for session and entity 
beans and consider strict consistency. 

  
3.1. State replication with single server 

By replicating state (resource managers) an application 
server may continue to make forward progress as long as 
a resource manager replica is correctly functioning and 
reachable by the application server. We consider how 
state replication may be incorporated in the scheme 
shown in figure 1 and use ‘available copies’ approach to 
data replication (‘read from any, write to all’) [6] 
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Figure 2 – Replication of state. 

Figure 2 depicts an approach to resource manager 
replication that leaves the container, transaction managers 
internal to resource managers and the transaction manager 
of the application server undisturbed. RDBMSs A and B 
are now replicated (replicas A1, A2 and B1, B2). Proxy 
resource adaptors (JDBC driver and XAResource 
interface) have been introduced (identified by the letter P 
appended to their labels in the diagram; note that for 
clarity, not all arrowed lines indicating communication 
between proxy adaptors and their adaptors have been 
shown). The proxy resource adaptors reissue the 

operations arriving from the transaction manager and the 
container to all replica resource managers via their 
resource adaptors. 

To ensure resource manager replica states remain 
mutually consistent, the resource adaptor proxy maintains 
the receive ordering of operation invocations when 
redirecting them to the appropriate resource adaptor 
replicas. This guarantees that each resource adaptor 
replica receives operations in the same order, thus 
guaranteeing consistent locking of resources across 
resource manager replicas.  

Suppose during the execution of a transaction, say T1, 
one of the resource manager replicas say RDBMSA1.fails. 
A failure would result in JDBCA1 and/or XAA1 throwing 
an exception that is caught by JDBCAP and/or XAAP. In 
an unreplicated scheme, an exception would lead to the 
transaction manager issuing a rollback for T1. However, 
assuming RDBMSA2 is correctly functioning such 
exceptions will not be propagated to the transaction 
manager, allowing T1 to continue on RDBMSA2. In such 
a scenario the states of the RDBMSA1 and RDBMSA2 may 
deviate if T1 commits on RDBMSA2. Therefore, 
RDBMSA must be removed from the valid list of resource 
manager replicas until such a time when the states of 
RDBMSA1 and RDBMSA2 may be reconciled (possibly 
via administrative intervention during periods of system 
inactivity). Such a list of valid resource managers may be 
maintained by XAAP (as is the case for XAResources, 
XAAP is required to be persistent, with crash recovery 
procedures as required by the commit protocol). 

The outline design presented here provides a simple 
and practical way of introducing data replication into 
component middleware.   

 
3.2. State replication with clustered servers 

A single transaction manager may be used to manage 
transactions across clustered application servers. 
However, to ensure a transaction manager does not 
present a bottleneck in the system, and a single point of 
failure, we assume that application servers are replicated 
complete with transaction managers (this is the case in 
practical systems). Figure 3 depicts a scenario where a 
cluster contains two application servers (AS1 and AS2) 
that are accessing shared resource manager replicas. We 
have maintained our architecture for providing state 
replication as described in the previous subsection. Only 
the resource adaptor proxies are shown to make the 
diagram simple; further, arrowed communication lines 
between resource managers and proxies - not all such 
lines have been shown - are dashed to emphasise that the 



  

communication is actually through resource adapters and 
XAResources (that are not shown in the figure). 

The possibility of multiple transactions running on 
different application servers each accessing shared 
resource manager replicas increases the difficulty of 
ensuring resource manager replicas remain mutually 
consistent. For example, assume T1 is executing on AS1 
and T2 is executing on AS2 and both T1 and T2 require 
invocations to be issued on entity bean X. We want to 
prevent the situation that enables T1 to proceed as the 
container of AS1 manages to obtain the state of X from 
RDBMSA1 and at the same time, T2 proceeds as the 
container of AS2 manages to obtain the state of X from 
RDBMSA2. This will break the serializable property of 
transactions. To overcome this problem, a single resource 
manager replica that is the same for all application servers 
should satisfy load requests for relevant entity beans (we 
call such a resource manager a primary read resource 
manager). This will ensure that the ordering of load 
requests is serialized, causing conflicting transactions to 
block until locks are released. To ensure resource 
managers remain mutually consistent the store request 
(when an entity bean updates its persistent state in the 
resource manager) is issued to all resource manager 
replicas. 
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Figure 3 – Clustering and state replication. 

Resource adaptor proxies from different application 
servers that need to access the same resource manager 
replicas have to agree on the primary read resource 
manager. In the presence of resource manager failure (and 
a possibility of incorrect suspicion of resource manager 
failure) an agreement protocol needs to be executed 
between resource adaptor proxies, so that they have the 
same view on the primary. We can obtain this facility by 
making use of a group communications system that 
supports the abstraction of a process group (and totally 
ordered atomic multicast, which is not required in this 
particular case) [2]. In our example, all the ‘A’ proxies 
need to be in a process group, and all the ‘B’ proxies need 

to be in a process group. For the sake of simplicity, in the 
figure, we have shown all the proxies to be the member of 
a single group, as this simple arrangement will work as 
well.  

Furthermore, the identification of the primary read 
resource manager needs to be available to an application 
server after a restart. This may be achieved by allowing a 
resource adaptor proxy of the newly restarted application 
server to gain the identity of the primary read resource 
manager from existing application servers. This requires 
the list of available resource adaptor proxies to be stored 
persistently by an application server. This type of 
persistent data may be stored within the XA element of a 
proxy resource adaptor. 

The outline design presented here provides a practical 
way of introducing data replication for transactional EJB 
applications into a cluster of servers. 

 
3.3. State and computation replication with 
clustered application servers 

We now consider what is involved in masking 
application server failures. Since state replication can be 
incorporated transaparently in a cluster as discussed 
earlier, we can examine masking of application server 
failures independent of state replication. We need the 
ability to replicate containers on distinct application 
servers (with distinct transaction managers) and ensure 
the states of EJBs in container replicas and transactional 
states within the respective transaction managers are 
mutually consistent.  One way of doing this would be to 
use the process group approach, and manage the replicas 
using active or passive replication techniques. 
Unfortunately, there are pitfalls: 

Active replication: application servers are intrinsically 
multi-threaded and even working in a homogeneous 
application server environment (i.e., where application 
server replicas are copies of the same implementation) it 
is almost impossible to ensure that the same invocation 
received at container replicas will be dealt with 
identically. When using heterogeneous application 
servers, issues such as thread pooling add more 
complications. 

Passive replication: when using primary-copy replication, 
it is theoretically possible in a homogenous environment 
to checkpoint the state of a container (e.g., at transaction 
commit time) such that a backup can take over in the 
event of primary failure: it is assumed that an application 
server implementation can create the checkpoint in such a 
format that another instance of the same implementation 
can later read it in. In a heterogeneous environment, such 



  

state check-pointing requires intimate knowledge of the 
different internal and external state formats of the 
application server implementations involved. Most 
vendors do not make this kind of information publicly 
available (and especially not to competitors). 
Unfortunately, at present there is no open standard for 
defining state transfer between application server 
implementations, so any solution would be application 
server specific. 

The same issues arise for replication of transaction 
managers. Although all transaction managers will have 
the concept of a transaction log (the persistent entity into 
which information about transactions is kept such that 
transactions may be completed in the event of recovery 
after failures), there is no open standard available for 
initialising a transaction manager from a checkpointed 
log, so state transfer mechanisms between transaction 
managers will be transaction manager specific.  

Ideally, we would like a snapshot of the container (or 
possibly the application server) state to be taken such that 
another (potentially heterogeneous implementation) could 
take this snapshot and reconstitute the environment at the 
point it was originally taken. In order to do this, standard 
interfaces need to be defined (and used) by all compliant 
application server implementations. There is an attempt to 
address some of this in JSR 117 (J2EE APIs for 
Continuous Availability), which is developing the notion 
of a Field Replaceable Unit (FRU): an FRU is a 
collection of modules that can be deployed independently 
of other application modules that may be part of (for 
example) an application server [7]. The definer of an FRU 
is responsible for ensuring that state transfer between 
implementations is possible (by defining the format of an 
externalised state and specifying how this is created and 
can be used to initialise another FRU). This work is at an 
early stage. 

 
4. Experiment and results 

Experiments were carried out to determine the 
performance of our system over a single LAN. We 
consider the figures presented here as initial 
investigations into the performance of our system, further 
work is required to identify the performance of replicated 
state during a number of failure scenarios (e.g., 
application failure, resource manager failure). Javagroups 
[23] was used as the group communication sub-system in 
our clustered experiments. 

 

4.1 Implementation and setup 
Four experiments were carried out (configuration 

described in figure 4) to determine the performance of the 
clustered (using JBoss clustering) and non-clustered 
approaches with and without state replication: 

1. Single application server with no replication - To 
enable comparative analysis of the performance figures, 
an initial experiment was carried out using a single 
resource manager without state replication (figure 4.i). 

2. Single application server with state replication – 
Experiment 1 was repeated, with replica resource 
managers accessed by our resource adaptor proxy (figure 
4.ii). 

3. Clustered application server with no replication – Two 
application servers constituted the application server 
cluster with a single resource manager providing 
persistent storage (figure 4.iii). 

4. Clustered application server with state replication – 
We repeated experiment 1 with replica resource managers 
accessed by resource adaptor proxies from each of the 
application servers (figure 4.iv).  

The application server used was JBoss 3.2.0 with each 
application server deployed on a Pentium III 1000 MHz 
PC with 512MB of RAM running Redhat Linux 7.2. The 
resource manager used was Oracle 9i release 2 (9.2.0.1.0) 
[20] with each resource manager deployed on a Pentium 
III 600 MHz PC with 512MB of RAM running Windows 
2000. The client was deployed on a Pentium III 1000 
MHz PC with 512MB of RAM running Redhat Linux 7.2. 
The LAN used for the experiments was a 100 Mbit 
Ethernet. Figure 4 describes the different configurations 
used in our experiments. 
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Figure 4 – Experimental setup 

ECperf [21] was used as the demonstration application 
in our experiments. For the purposes of our experiments 
we now provide a brief description of ECperf. ECperf is a 
benchmark application provided by Sun Microsystems to 
enable vendors to measure the performance of their J2EE 
products. ECperf presents a demonstration application 



  

that provides a realistic approximation to what may be 
expected in a real-world scenario via a system that 
represents manufacturing, supply chain and customer 
order management. ECperf is particularly suited to 
modelling “Just in Time” manufacturing concepts, with 
goals of maximum efficiency coupled with minimum 
inventories. Therefore, the type and frequency of client 
orders has a direct impact on the manufacturing process 
which in turn influences stock ordering. The system is 
implemented using EJB components and deployed on a 
single application server (commonly described as the 
system under test (SUT)). In simple terms, an order entry 
application manages customer orders (e.g., accepting and 
changing orders) and a manufacturing application models 
the manufacturing of products associated to customer 
orders. The manufacturing application may issue requests 
for stock items to a supplier. The supplier is implemented 
as an emulator (deployed in a java enabled web server). In 
our configuration the supplier emulator is deployed on the 
same machine as the application server (when using the 
clustered approach only one of the application servers 
needs to run the supplier emulator). The client machine 
runs the ECperf driver. The driver may represent a 
number of clients and assumes responsibility for issuing 
appropriate requests to generate transactions within the 
order entry and manufacturing applications.     

The ECperf driver was configured to run each 
experiment with 9 different injection rates (1 though 9 
inclusive). At each of these increments a record of the 
overall throughput (transactions per minute) for both 
order entry and manufacturing applications is taken. The 
injection rate relates to the order entry and manufacturer 
requests generated per second. Due to the complexity of 
the system the relationship between injection rate and 
resulted transactions is not straightforward. 

4.2 Performance results 

Figure 5 presents three graphs that describe the 
throughput of the ECperf applications; figure 5(i) 
identifies the throughput for the entry order system, figure 
5(ii) identifies throughput for the manufacturing 
application and figure 5(iii) identifies the cumulative 
throughput of the ECperf system (entry order and 
manufacturing combined).  

On first inspection we can see that the introduction of 
replicated resource managers lowers the throughput of 
clustered and non-clustered configurations when injection 
rates rise above 2 (figure 5(iii)). However, there is a 
difference when comparing order entry and 
manufacturing applications. The manufacturing 
application does not suffer the same degree of 
performance slowdown as the order entry application 

when state replication is introduced. This observation is 
particularly prominent when clustered application servers 
are used. The reason for this is not obvious. However, 
such a difference may reflect the nature of the different 
application types and the types of transactions used by 
each application. The dependency on a resource manager 
coupled with the supplier emulator (which is not 
replicated) for manufacturing is such that the impact of 
replication is not as prevalent for manufacturing as order 
entry. 
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Figure 5 – Performance figures. 
The performance benefit associated with clustering is 

shown by our experiments as higher injection rates result 
in a lowering of transaction throughput for single 
application server scenarios (indicating application server 
overload). The introduction of clustering prevents such a 



  

slowdown. The slowdown experienced by the single 
server is most visible in the manufacturing application 
(where injection rates of over 5 reduce transaction 
throughput significantly). However, when state 
replication is introduced the single server does not 
experience such a slowdown in performance, indicating 
that saturation of the system has not yet been reached. In 
fact, the transaction throughput of the clustered approach 
with replication is similar to that of a single application 
server without state replication in the manufacturing 
application when the injection rate is 9.  

The experiments show that clustering of application 
servers benefits systems that incorporate our state 
replication scheme. Clustering of application servers 
using state replication outperform single application 
servers that use state replication by approximately 25%. 
This is the most important observation, as state replication 
does not negate the benefits of scalability associated to 
the clustered approach to system deployment. 

5. Related work 
Replicated data management techniques that go hand 

in hand with transactions have been discussed in [6].  
Object replication using process group communication, 
originally developed in the ISIS system [2], has been 
studied extensively [8,9]. The Eternal system [10] offers 
replicated, non-persistent CORBA objects. A complete 
fault tolerance framework for CORBA objects (FT-
CORBA) is presented in [11]. 

Existing standards relating to object group approaches 
to replication, such as [11], have not considered the issue 
of integrating transactions and persistence. When using 
group communications to support active replication 
schemes there is an expectation that all replicas exhibit 
deterministic behaviour. However, as discussed in 3.3 this 
approach is not appropriate for guaranteeing replica states 
remain mutually consistent when considering multi-
threaded J2EE application servers. A passive approach to 
replication in J2EE environments has been developed [3] 
in an attempt to enable a client session that consists of 
multiple client requests to continue processing on a 
backup application server when the primary fails without 
the need to abort the whole client session. There are two 
shortcomings to this scheme: (1) only stateful session 
beans are considered; (2) client invocations that make use 
of this scheme may not benefit from transactions. The 
limitations of this scheme reflect the difficulties 
associated to passive replication in J2EE as discussed 
earlier in 3.3.  

The Arjuna system supported replication of 
transactional persistent objects [12, 13, 14]. The use of 

transactions and group communication for supporting 
persistent object replication is investigated in [15]. The 
replication approach presented in section 3.2 is based on 
the approach discussed in [15].  

An approach to integrating replication and transactions 
suitable for n-tier systems has been proposed [22]. The 
authors base their solution on combining FT-CORBA and 
the CORBA Object Transaction Service (OTS). Nested 
transactions are a key feature of their protocol, allowing 
transactions to be rolled back in part and restarted on 
backup servers. However, applying such an approach in 
J2EE will be problematic as only flat transactions are 
supported by the J2EE specification at the moment. 
Additionally, the problems associated with transaction 
manager replication (as discussed earlier in 3.3) are not 
addressed. 

A classification of database replication techniques has 
been presented that suggests group communications can 
be utilised in the support of eager (strong consistency) 
replication protocols [16]. Traditionally, lazy replication 
schemes are favoured by commercial products because 
the communication overheads of eager schemes compared 
to lazy schemes is significant. However, the 
inconsistencies across database replicas that may result 
from lazy schemes (not an issues in eager schemes) 
coupled with promising initial results of integrating group 
communication into replica database schemes identify 
eager schemes as a viable choice in the future [17]. Group 
communication based mechanisms that allow new 
members of a database replica group to retrieve current 
state information from existing database replicas are 
discussed in [18]. Within the context of the study 
presented here, a drawback of these approaches is the 
need to integrate a group communications sub-system into 
the database architecture, making such schemes difficult 
to work with existing commercial databases. A second 
drawback is that the transaction model assumed is not 
distributed (a transaction can not span multiple 
databases). To overcome the first drawback, a middleware 
layer has been proposed that provides the required 
functionality to enable a more seamless integration of 
group communication based eager replication schemes 
into existing commercial databases [19]. If the second 
drawback can be removed, then these approaches will be 
very suitable for supporting state replication.  

6. Concluding remarks 
In this paper we have examined how for the case of 

EJB component middleware, replication for availability 
can be supported by containers. We have shown that 
whereas persistent state replication can be incorporated 



  

transparently, the same is not yet possible for application 
servers. Enhancements required for enabling this have 
been pointed out and explained. We have demonstrated 
our approach to state replication in the clustered and non-
clustered application server environments via a series of 
experiments using a well known benchmarking software 
tool for J2EE. Our experiments show that there is a 
significant overhead in implementing state replication. 
However, our experiments do indicate that clustering with 
state replication still provides a more scalable solution 
than a non-clustered approach to application server 
deployment. Future work will concentrate on the 
development of state and computation replication with 
clustered application servers (described in 3.3) and further 
experiments to determine the benefit of our system in the 
presence of failures. 
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