

Component Replication in Distributed Systems: a Case study using Enterprise

Java Beans

Achmad I. Kistijantoro, Graham Morgan, Santosh

K. Shrivastava

School of Computing Science, Newcastle
University, Newcastle upon Tyne, UK

{A.I.kistijantoro, Graham.Morgan,
Santosh.Shrivastava}@newcastle.ac.uk

Mark C. Little

Arjuna Technologies Ltd., Newcastle upon Tyne,
UK

Mark.Little@arjuna.com

Abstract

A recent trend has seen the extension of object-

oriented middleware to component-oriented middleware.
A major advantage components offer over objects is that
only the business logic of an application needs to be
addressed by a programmer with support services
required incorporated into the application at deployment
time. This is achieved via components (business logic of
an application), containers that host components and are
responsible for providing the underlying middleware
services required by components and application servers
that host containers. Well-known examples of component
middleware architectures are Enterprise Java Beans
(EJBs) and the CORBA Component Model (CCM). Two
of the many services available at deployment time in most
component architectures are component persistence and
atomic transactions. This paper examines, using EJBs,
how replication for availability can be supported by
containers so that components that are transparently
using persistence and transactions can also be made
highly available.

Keywords: Availability, components, CORBA
Component Model, Enterprise Java Beans, fault tolerance,
middleware, replication, transactions

1. Introduction

Modern client-server distributed computing systems
may be seen as implementations of an N-tier architecture.
In a typical four tier architecture the first tier (client tier)
consists of client applications containing browsers, with
the remaining three tiers deployed within an enterprise
representing the server side; the second tier (Web tier)
consists of a Web server that receives client requests
typically via HTTP and passes on the requests to specific
applications residing in the third tier (business tier) that is
capable of hosting distributed applications; the fourth tier

(enterprise information systems tier) contains databases
and legacy applications of the enterprise. The platform
providing the Web tier plus business tier is usually called
an application server.

An application server typically deploys a variety of
object oriented middleware services using an object
request broker (ORB) and provides to applications a
higher level of abstraction of component oriented
middleware. It is worth examining here briefly why this
higher level of abstraction has been considered necessary.
Although object oriented middleware provides type
checked remote invocations and standard ways of using
commonly required services (naming, persistence,
transactions, etc.), a problem still remains that application
developers have to worry about application logic as well
as technically complex ways of using a collection of
services. For example, use of transactions on distributed
objects requires concurrency control, persistence and the
transaction services to be used in a particularly intricate
manner. Component oriented middleware alleviates this
difficulty by the use of components that are composed of
objects, and containers that host component instances.
Containers take on the responsibility for using the
underlying middleware services for communication,
persistence, transactions, security and so forth and a
developer’s task is simplified to specifying the services
required by components in a declarative manner. Thus, a
major advantage components offer over objects is that
only the business logic of an application (encoded in
components) needs to be addressed by a developer. Well-
known examples of component middleware architectures
include Enterprise Java Beans (EJBs) and the CORBA
Component Model (CCM).

In this paper we investigate how software implemented
fault tolerance techniques can be applied to support
component replication for high availability. We take the
specific case of EJB components and consider strict
consistency (that requires that the states of all available

copies of replicas be kept mutually consistent). We take
EJBs primarily because not only are they used extensively
in industry, but also because open source implementations
of application servers for EJBs are available for
experimentation. However, we believe that the ideas
presented here are of interest to the general case of
component middleware. In particular, as EJBs are closely
related to the language independent CCM, the ideas
presented here can be applied to the world of CORBA
components.

Data as well as object replication techniques have been
studied extensively in the literature, so our task is not to
invent new replication techniques for components, but to
investigate how existing techniques can be migrated to
components. In the spirit of component middleware, we
prefer to delegate the responsibility of replication
management to the container (container managed
replication). We therefore examine how replication for
availability can be supported by containers so that
components that are transparently using persistence and
transactions can also be made highly available, enabling a
transaction involving EJBs to commit despite a finite
number of failures involving application servers (where
computations take place) and databases (where persistent
data is kept).

Ours is an engineering task that poses several problems
that require careful resolution. In order to highlight these
problems and possible solutions, we consider three
replication approaches, beginning with a simple approach
into which we incrementally incorporate additional
sophistication. To explain these approaches, consider a
simple transaction that, in a non-redundant system,
operates on EJBs deployed within a single container, with
the beans storing their persistent states on a database; in
this system, we incorporate redundancy as follows:

(i) State replication with single application server:
persistent state is stored on multiple databases; here
database (but not the application server) failures can be
masked, so the transaction will be able to commit
provided the application server can access a copy of the
state on a database.

(ii) State replication with clustered application servers:
persistent state is stored on multiple databases; multiple
application servers are used for load sharing the total
number of transactions in the system; an individual
transaction has the same reliability features as case (i).

(iii) State and computation replication with clustered
application servers: persistent state is stored on multiple
databases and instances of beans are replicated on the
cluster of application servers; this is an ideal set of server

side availability measures as it is able to mask a finite
number of application server and database failures.

Existing application servers as yet do not provide any
suppport for managing persistent state replication. This
means that they must rely on database vendor specific
approaches for tolerating database failures (e.g., vendor
specific database replication technique). Computation
replication is well supported for stateless computations,
but not so well for stateful computations in that
transactions are not supported. These limitations are
examined in detail in section 2.3 of the paper.

This paper shows how support for managing
redundancy can be incorporated within application
servers. We require that our solutions must be open (non-
propriety) and implementable in software. Furthermore,
we require that our solutions be transparent to the
component middleware. The transparency requirement
imposes the following constraints on our solutions: (a) no
modifications to the API (Application Programming
Interface) between client and component; (b) no
modifications to the API between an EJB and the
container; and (c) no modifications to the existing
middleware services and APIs. Given these constraints,
the contributions of the paper are to show that approaches
(i) and (ii) can be implemented with relative ease. We
have implemented these approaches to validate this claim.
However, it is not possible to implement approach (iii)
without breaking constraint (c); we outline what
enhancements would be necessary to the component
middleware to support approach (iii).

The paper is structured as follows: background
information on EJB component middleware is presented
is section two; replication approaches are then discussed
in section three; section four presents performance results;
related work is presented in section five; with concluding
remarks in six.

2. EJBs and application servers

In the first two sub-sections we describe the
terminology and basic concepts of Java 2, Enterprise
Edition (J2EE) middleware that should be sufficient for
our purposes (for additional details, see [1]). The third
sub-section describes availability measures currently
provided in application servers.

2.1. EJBs

Three types of EJBs have been specified in J2EE: (1)
Entity beans represent and manipulate persistent data of
an application, providing an object-oriented view of data
that is frequently stored in relational databases. (2)

Session beans on the other hand do not use persistent
data, and are instantiated on a per-client basis with an
instance of a session bean available for use by only one
client. A session bean may be stateless (does not maintain
conversational state) or stateful (maintains conversational
state). Conversational state is needed to share state
information across multiple requests from a client. (3)
Message driven beans provide asynchronous processing
by acting as message listeners for Java Messaging Service
(JMS).

A container is responsible for hosting components and
ensuring that middleware services are made available to
components at run time. Containers mediate all
client/component interactions. An entity bean can either
manage its state explicitly on a persistent store (bean
managed persistence) or delegate it to the container
(container managed persistence). All EJB types may
participate in transactions. Like persistence, transactions
can be bean managed or container managed.

Use of container managed persistence and transactions
are strongly recommended for entity beans. Below we
describe how this particular combination works, as we
will be assuming this combination for our replication
schemes.

2.2 Transactional EJB applications

The main elements required for supporting
transactional EJB applications deployed in an application
server are shown in figure 1. An application server
usually manages a few containers, with each container
hosting many (hundreds of) EJBs; only one container with
three EJBs is shown in the figure. The application server
is a multi-threaded application that runs in a single
process (supported by single Java Virtual Machine). Of
the many middleware services provided by an application
server to its containers, we explicitly show just the
transaction service. A transaction manager is hosted by
the application server and assumes responsibility for
enabling transactional access to EJBs. The transaction
manager does not necessarily have to reside in the same
address space as the application server, however, this is
frequently the case in practical systems. At least one
resource manager (persistence store) is required to
maintain persistent state of the entity beans supported by
the application server; we show two in the figure. In
particular, we have shown relational database
management systems (RDBMS) as our resource managers
(bean X stores its state on RDMSA and bean Y does the
same on RDMSB). We assume that resource managers
support ACID transactions (ACID: Atomicity,
Consistency, Isolation, Durability).

container

Session

Entity Y

JDBCA

XAA

JDBCB

XAB

RDBMSAEntity X

RDBMSB

Application Server

Transaction
Manager

Client
invocation

Figure 1 – EJB transactions.

Communications between an RDBMS and a container
is via a Java DataBase Connectivity (JDBC) driver,
referred in the J2EE specification as a resource adaptor.
A JDBC driver is primarily used for accessing relational
databases via SQL statements. To enable a resource
manager to participate in transactions originated in EJBs,
a further interface is required. In J2EE architecture this
interface is referred to as the XAResource interface
(shown as XA in figure 1). A separation of concerns
between transaction management via XAResource
interface and resource manager read/write operations via
JDBC is clearly defined. In simple terms, the transaction
manager interoperates with the resource manager via the
XAResource interface and the application interoperates
with the resource manager via the JDBC driver.

We now describe, with the aid of figure 1, a sample
scenario of a single transaction involving three enterprise
beans and two resource managers. A session bean
receives a client invocation. The receiving of the client
invocation results in the session bean starting a
transaction, say T1, and issuing a number of invocations
on two entity beans (X and Y). When entity beans are
required by the session bean, first the session bean will
have to ‘activate’ these beans via their home interfaces,
which results in the container - we are assuming container
managed persistence - retrieving their states from the
appropriate resource managers for initialising the instance
variables of X and Y. The container is responsible for
passing the ‘transaction context’ of T1 to the JDBC
drivers in all its interactions, which in turn ensure that the
resource managers are kept informed of transaction starts
and ends. In particular: (i) retrieving the persistent state of
X (Y) from RDMSA (RDMSB) at the start of T1 will lead
to that resource manager write locking the resource (the
persistent state, stored as a row in a table); this prevents
other transactions from accessing the resource until T1
ends (commits or rolls back); and (ii) XA resources (XAA
and XAB) ‘register’ themselves with the transaction
manager, so that they can take part in two-phase commit.

Once the session bean has indicated that T1 is at an
end, the transaction manager attempts to carry out two
phase commit to ensure all participants either commit or

rollback T1. In our example, the transaction manager will
poll RDBMSA and RDBMSB (via XAA and XAB
respectively) to ask if they are ready to commit. If a
RDBMSA or RDBMSB cannot commit, they inform the
transaction manager and roll back their own part of the
transaction. If the transaction manager receives a positive
reply from RDBMSA and RDBMSB it informs all
participants to commit the transaction and the modified
states of X and Y becomes the new persistent states.

In our example, all the beans are in the same container.
Support for distributed transactions involving beans in
multiple containers (on possibly distinct application
servers) is straightforward if the transaction manager is
built atop a CORBA transaction service (Java Transaction
Service), since such a service can coordinate both local
and remote XA resources. Such a transaction manager
will also be able to coordinate a transaction that is started
within a client and spans EJBs, provided the client is
CORBA enabled. For this reason, in the rest of the paper,
we need only consider the simple case of a transaction
that, in a non redundant system, spans EJBs within a
single container and a few resource managers.

2.3. Availability measures in current application
servers

Commercial application servers make use of multiple
application servers deployed over a cluster of machines
with some specialist router hardware (see below) to mask
server failures and rely on propriety replication
mechanisms of database vendors for database availability
(for example, some Oracle database products support a
specific replication scheme). As we discuss below, these
availability measures do not integrate properly with EJB
initiated transactions.

Application servers are typically deployed over a
cluster of machines. A locally distributed cluster of
machines (a set of machines) with the illusion of a single
IP address and capable of working together to host a Web
site provides a practical way of scaling up processing
power and sharing load at a given site. Commercially
available application server clusters rely on a specially
designed gateway router to distribute the load using a
mechanism known as network address translation (NAT).
The mechanism operates by editing the IP headers of
packets so as to change the destination address before the
IP to host address translation is performed. Similarly,
return packets are edited to change their source IP
address. Such translations can be performed on a per
session basis so that all IP packets corresponding to a
particular session are consistently redirected. Load
distribution can also be performed using a process group

communication system as first suggested by the ISIS
system [2]; a recent open source application server has
such a mechanism [3]. The two market leaders in the
application server space, WebSphere [4] from IBM and
WebLogic [5] from BEA, have very similar approaches to
clustering. They typically characterise clustering for:

Scalability: The proposed configuration should allow the
overall system to service a higher client load than that
provided by the simple basic single machine
configuration. Ideally, it should be possible to service any
given load, simply by adding the appropriate number of
machines.

Load-balancing: The proposed configurations should
ensure that each machine or server in the configuration
processes a fair share of the overall client load that is
being processed by the system as a whole. Furthermore, if
the total load changes over time, the system should adapt
itself to maintain this load-balancing property.

Failover: If any one machine or server in the system were
to fail for any reason, the system should continue to
operate with the remaining servers. The load-balancing
property should ensure that the client load gets
redistributed to the remaining servers, each of which will
henceforth process a proportionately slightly higher
percentage of the total load. Transparent failover (failures
are masked from a client, who minimally might need to
retransmit the current request) is an ideal, but rarely
achievable with the current technology, for the reasons to
be outlined below. However, the important thing in
current systems is that forward progress is possible
eventually and in less time than would be the case if only
a single machine were used.

Transparent failover is easy to achieve for stateless
sessions: any server in the cluster can service any request
and if a client makes multiple requests in succession each
may well be serviced by a different server. Failover
support in this case is trivial: if a failure of the server
occurs while it is doing work for the client then the client
will get an exceptional response and will have to
retransmit the request. The situation is more complicated
for a stateful session, where the same server instance must
be used for requests from the client, so the server failure
will lead to loss of state. The approach adopted in
commercial systems to avoid loss of state is to use the
stateless session approach with a twist: the stateful session
bean is required to serialize its state to a datastore at the
end of each client request and for the subsequent bean
instance in the other server to deserialize the state before
servicing the new request (obviously the servers must
have access to the same datastore). The replication of the
datastore is assumed to be the domain of the datastore

itself. This way, some of the functionality available for
stateless sessions can be regained. However, even in this
case, a failure during serialization of the bean's state
(which could result in the state being corrupted) is not
addressed. There is a more serious limitation: transactions
cannot be supported. if transactional access to a bean is
used, then the same server instance must be used for
every invocation on that bean.

3. Component replication

The three approaches mentioned at the start of the
paper will be considered in some detail in this section. We
will nevertheless highlight only the essential aspects of
our designs, glossing over minute details of replica
management. We begin by stating the main assumptions.
We will assume that an application server either works as
specified or simply stops working (crash). After a crash, a
server is repaired within a finite amount of time and made
active again. We assume that resource managers support
ACID transactions. As stated earlier, in this paper we
consider availability measures for session and entity
beans and consider strict consistency.

3.1. State replication with single server

By replicating state (resource managers) an application
server may continue to make forward progress as long as
a resource manager replica is correctly functioning and
reachable by the application server. We consider how
state replication may be incorporated in the scheme
shown in figure 1 and use ‘available copies’ approach to
data replication (‘read from any, write to all’) [6]

Session

Entity Y

Transaction
Manager

JDBCA1
XAA1

JDBCB2
XAB2

RDBMSA1

Entity X

RDBMSB1

Application Server

Client
invocation

JDBCB1
XAB1

JDBCA2
XAA2

RDBMSB2

RDBMSA2
JDBCAP
XAAP

JDBCBP
XABP

Figure 2 – Replication of state.

Figure 2 depicts an approach to resource manager
replication that leaves the container, transaction managers
internal to resource managers and the transaction manager
of the application server undisturbed. RDBMSs A and B
are now replicated (replicas A1, A2 and B1, B2). Proxy
resource adaptors (JDBC driver and XAResource
interface) have been introduced (identified by the letter P
appended to their labels in the diagram; note that for
clarity, not all arrowed lines indicating communication
between proxy adaptors and their adaptors have been
shown). The proxy resource adaptors reissue the

operations arriving from the transaction manager and the
container to all replica resource managers via their
resource adaptors.

To ensure resource manager replica states remain
mutually consistent, the resource adaptor proxy maintains
the receive ordering of operation invocations when
redirecting them to the appropriate resource adaptor
replicas. This guarantees that each resource adaptor
replica receives operations in the same order, thus
guaranteeing consistent locking of resources across
resource manager replicas.

Suppose during the execution of a transaction, say T1,
one of the resource manager replicas say RDBMSA1.fails.
A failure would result in JDBCA1 and/or XAA1 throwing
an exception that is caught by JDBCAP and/or XAAP. In
an unreplicated scheme, an exception would lead to the
transaction manager issuing a rollback for T1. However,
assuming RDBMSA2 is correctly functioning such
exceptions will not be propagated to the transaction
manager, allowing T1 to continue on RDBMSA2. In such
a scenario the states of the RDBMSA1 and RDBMSA2 may
deviate if T1 commits on RDBMSA2. Therefore,
RDBMSA must be removed from the valid list of resource
manager replicas until such a time when the states of
RDBMSA1 and RDBMSA2 may be reconciled (possibly
via administrative intervention during periods of system
inactivity). Such a list of valid resource managers may be
maintained by XAAP (as is the case for XAResources,
XAAP is required to be persistent, with crash recovery
procedures as required by the commit protocol).

The outline design presented here provides a simple
and practical way of introducing data replication into
component middleware.

3.2. State replication with clustered servers

A single transaction manager may be used to manage
transactions across clustered application servers.
However, to ensure a transaction manager does not
present a bottleneck in the system, and a single point of
failure, we assume that application servers are replicated
complete with transaction managers (this is the case in
practical systems). Figure 3 depicts a scenario where a
cluster contains two application servers (AS1 and AS2)
that are accessing shared resource manager replicas. We
have maintained our architecture for providing state
replication as described in the previous subsection. Only
the resource adaptor proxies are shown to make the
diagram simple; further, arrowed communication lines
between resource managers and proxies - not all such
lines have been shown - are dashed to emphasise that the

communication is actually through resource adapters and
XAResources (that are not shown in the figure).

The possibility of multiple transactions running on
different application servers each accessing shared
resource manager replicas increases the difficulty of
ensuring resource manager replicas remain mutually
consistent. For example, assume T1 is executing on AS1
and T2 is executing on AS2 and both T1 and T2 require
invocations to be issued on entity bean X. We want to
prevent the situation that enables T1 to proceed as the
container of AS1 manages to obtain the state of X from
RDBMSA1 and at the same time, T2 proceeds as the
container of AS2 manages to obtain the state of X from
RDBMSA2. This will break the serializable property of
transactions. To overcome this problem, a single resource
manager replica that is the same for all application servers
should satisfy load requests for relevant entity beans (we
call such a resource manager a primary read resource
manager). This will ensure that the ordering of load
requests is serialized, causing conflicting transactions to
block until locks are released. To ensure resource
managers remain mutually consistent the store request
(when an entity bean updates its persistent state in the
resource manager) is issued to all resource manager
replicas.

Session

Entity Y

Transaction
Manager

RDBMSA1

Entity X

RDBMSB1

Application Server 1

Client
invocation

RDBMSB2

RDBMSA2

JDBCAP1
XAAP1

JDBCBP1
XABP1

Session

Entity Z

Transaction
Manager

Entity X

Application Server 2

Client
invocation

JDBCAP2
XAAP2

JDBCBP2
XABP2

process group

Figure 3 – Clustering and state replication.

Resource adaptor proxies from different application
servers that need to access the same resource manager
replicas have to agree on the primary read resource
manager. In the presence of resource manager failure (and
a possibility of incorrect suspicion of resource manager
failure) an agreement protocol needs to be executed
between resource adaptor proxies, so that they have the
same view on the primary. We can obtain this facility by
making use of a group communications system that
supports the abstraction of a process group (and totally
ordered atomic multicast, which is not required in this
particular case) [2]. In our example, all the ‘A’ proxies
need to be in a process group, and all the ‘B’ proxies need

to be in a process group. For the sake of simplicity, in the
figure, we have shown all the proxies to be the member of
a single group, as this simple arrangement will work as
well.

Furthermore, the identification of the primary read
resource manager needs to be available to an application
server after a restart. This may be achieved by allowing a
resource adaptor proxy of the newly restarted application
server to gain the identity of the primary read resource
manager from existing application servers. This requires
the list of available resource adaptor proxies to be stored
persistently by an application server. This type of
persistent data may be stored within the XA element of a
proxy resource adaptor.

The outline design presented here provides a practical
way of introducing data replication for transactional EJB
applications into a cluster of servers.

3.3. State and computation replication with
clustered application servers

We now consider what is involved in masking
application server failures. Since state replication can be
incorporated transaparently in a cluster as discussed
earlier, we can examine masking of application server
failures independent of state replication. We need the
ability to replicate containers on distinct application
servers (with distinct transaction managers) and ensure
the states of EJBs in container replicas and transactional
states within the respective transaction managers are
mutually consistent. One way of doing this would be to
use the process group approach, and manage the replicas
using active or passive replication techniques.
Unfortunately, there are pitfalls:

Active replication: application servers are intrinsically
multi-threaded and even working in a homogeneous
application server environment (i.e., where application
server replicas are copies of the same implementation) it
is almost impossible to ensure that the same invocation
received at container replicas will be dealt with
identically. When using heterogeneous application
servers, issues such as thread pooling add more
complications.

Passive replication: when using primary-copy replication,
it is theoretically possible in a homogenous environment
to checkpoint the state of a container (e.g., at transaction
commit time) such that a backup can take over in the
event of primary failure: it is assumed that an application
server implementation can create the checkpoint in such a
format that another instance of the same implementation
can later read it in. In a heterogeneous environment, such

state check-pointing requires intimate knowledge of the
different internal and external state formats of the
application server implementations involved. Most
vendors do not make this kind of information publicly
available (and especially not to competitors).
Unfortunately, at present there is no open standard for
defining state transfer between application server
implementations, so any solution would be application
server specific.

The same issues arise for replication of transaction
managers. Although all transaction managers will have
the concept of a transaction log (the persistent entity into
which information about transactions is kept such that
transactions may be completed in the event of recovery
after failures), there is no open standard available for
initialising a transaction manager from a checkpointed
log, so state transfer mechanisms between transaction
managers will be transaction manager specific.

Ideally, we would like a snapshot of the container (or
possibly the application server) state to be taken such that
another (potentially heterogeneous implementation) could
take this snapshot and reconstitute the environment at the
point it was originally taken. In order to do this, standard
interfaces need to be defined (and used) by all compliant
application server implementations. There is an attempt to
address some of this in JSR 117 (J2EE APIs for
Continuous Availability), which is developing the notion
of a Field Replaceable Unit (FRU): an FRU is a
collection of modules that can be deployed independently
of other application modules that may be part of (for
example) an application server [7]. The definer of an FRU
is responsible for ensuring that state transfer between
implementations is possible (by defining the format of an
externalised state and specifying how this is created and
can be used to initialise another FRU). This work is at an
early stage.

4. Experiment and results

Experiments were carried out to determine the
performance of our system over a single LAN. We
consider the figures presented here as initial
investigations into the performance of our system, further
work is required to identify the performance of replicated
state during a number of failure scenarios (e.g.,
application failure, resource manager failure). Javagroups
[23] was used as the group communication sub-system in
our clustered experiments.

4.1 Implementation and setup
Four experiments were carried out (configuration

described in figure 4) to determine the performance of the
clustered (using JBoss clustering) and non-clustered
approaches with and without state replication:

1. Single application server with no replication - To
enable comparative analysis of the performance figures,
an initial experiment was carried out using a single
resource manager without state replication (figure 4.i).

2. Single application server with state replication –
Experiment 1 was repeated, with replica resource
managers accessed by our resource adaptor proxy (figure
4.ii).

3. Clustered application server with no replication – Two
application servers constituted the application server
cluster with a single resource manager providing
persistent storage (figure 4.iii).

4. Clustered application server with state replication –
We repeated experiment 1 with replica resource managers
accessed by resource adaptor proxies from each of the
application servers (figure 4.iv).

The application server used was JBoss 3.2.0 with each
application server deployed on a Pentium III 1000 MHz
PC with 512MB of RAM running Redhat Linux 7.2. The
resource manager used was Oracle 9i release 2 (9.2.0.1.0)
[20] with each resource manager deployed on a Pentium
III 600 MHz PC with 512MB of RAM running Windows
2000. The client was deployed on a Pentium III 1000
MHz PC with 512MB of RAM running Redhat Linux 7.2.
The LAN used for the experiments was a 100 Mbit
Ethernet. Figure 4 describes the different configurations
used in our experiments.

(i) Single application server no replication
of resource managers

(ii) Single application server with
replication of resource managers (2)

(iii) Clustered application server
configuration (2) with no replication of

resource managers

(iv) Clustered application server
configuration (2) with replication of

resource managers (2)

Client

Application
Server

Resource
manager

Figure 4 – Experimental setup

ECperf [21] was used as the demonstration application
in our experiments. For the purposes of our experiments
we now provide a brief description of ECperf. ECperf is a
benchmark application provided by Sun Microsystems to
enable vendors to measure the performance of their J2EE
products. ECperf presents a demonstration application

that provides a realistic approximation to what may be
expected in a real-world scenario via a system that
represents manufacturing, supply chain and customer
order management. ECperf is particularly suited to
modelling “Just in Time” manufacturing concepts, with
goals of maximum efficiency coupled with minimum
inventories. Therefore, the type and frequency of client
orders has a direct impact on the manufacturing process
which in turn influences stock ordering. The system is
implemented using EJB components and deployed on a
single application server (commonly described as the
system under test (SUT)). In simple terms, an order entry
application manages customer orders (e.g., accepting and
changing orders) and a manufacturing application models
the manufacturing of products associated to customer
orders. The manufacturing application may issue requests
for stock items to a supplier. The supplier is implemented
as an emulator (deployed in a java enabled web server). In
our configuration the supplier emulator is deployed on the
same machine as the application server (when using the
clustered approach only one of the application servers
needs to run the supplier emulator). The client machine
runs the ECperf driver. The driver may represent a
number of clients and assumes responsibility for issuing
appropriate requests to generate transactions within the
order entry and manufacturing applications.

The ECperf driver was configured to run each
experiment with 9 different injection rates (1 though 9
inclusive). At each of these increments a record of the
overall throughput (transactions per minute) for both
order entry and manufacturing applications is taken. The
injection rate relates to the order entry and manufacturer
requests generated per second. Due to the complexity of
the system the relationship between injection rate and
resulted transactions is not straightforward.

4.2 Performance results

Figure 5 presents three graphs that describe the
throughput of the ECperf applications; figure 5(i)
identifies the throughput for the entry order system, figure
5(ii) identifies throughput for the manufacturing
application and figure 5(iii) identifies the cumulative
throughput of the ECperf system (entry order and
manufacturing combined).

On first inspection we can see that the introduction of
replicated resource managers lowers the throughput of
clustered and non-clustered configurations when injection
rates rise above 2 (figure 5(iii)). However, there is a
difference when comparing order entry and
manufacturing applications. The manufacturing
application does not suffer the same degree of
performance slowdown as the order entry application

when state replication is introduced. This observation is
particularly prominent when clustered application servers
are used. The reason for this is not obvious. However,
such a difference may reflect the nature of the different
application types and the types of transactions used by
each application. The dependency on a resource manager
coupled with the supplier emulator (which is not
replicated) for manufacturing is such that the impact of
replication is not as prevalent for manufacturing as order
entry.

Order Entry Transaction Throughput

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9

Injection Rate

Tr
an

sa
ct

io
n

pe
r

M
in

ut
e

Single without replication

Single with replication

Clustered without
replication

Clustered with
Replication

(i) Order Entry

Manufacturing Transaction Throughput

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

Injection rate

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

Single without replication

Single with replication

Clustered without
replication

Clustered with replication

(ii) Manufacturing

Overall Throughput (Order Entry &
Manufacturing Transactions)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Injection rate

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

Single without replication

Single with replication

Clustered without
replication

Clustered with replication

(iii) System (order entry &
manufacturing)

Figure 5 – Performance figures.
The performance benefit associated with clustering is

shown by our experiments as higher injection rates result
in a lowering of transaction throughput for single
application server scenarios (indicating application server
overload). The introduction of clustering prevents such a

slowdown. The slowdown experienced by the single
server is most visible in the manufacturing application
(where injection rates of over 5 reduce transaction
throughput significantly). However, when state
replication is introduced the single server does not
experience such a slowdown in performance, indicating
that saturation of the system has not yet been reached. In
fact, the transaction throughput of the clustered approach
with replication is similar to that of a single application
server without state replication in the manufacturing
application when the injection rate is 9.

The experiments show that clustering of application
servers benefits systems that incorporate our state
replication scheme. Clustering of application servers
using state replication outperform single application
servers that use state replication by approximately 25%.
This is the most important observation, as state replication
does not negate the benefits of scalability associated to
the clustered approach to system deployment.

5. Related work
Replicated data management techniques that go hand

in hand with transactions have been discussed in [6].
Object replication using process group communication,
originally developed in the ISIS system [2], has been
studied extensively [8,9]. The Eternal system [10] offers
replicated, non-persistent CORBA objects. A complete
fault tolerance framework for CORBA objects (FT-
CORBA) is presented in [11].

Existing standards relating to object group approaches
to replication, such as [11], have not considered the issue
of integrating transactions and persistence. When using
group communications to support active replication
schemes there is an expectation that all replicas exhibit
deterministic behaviour. However, as discussed in 3.3 this
approach is not appropriate for guaranteeing replica states
remain mutually consistent when considering multi-
threaded J2EE application servers. A passive approach to
replication in J2EE environments has been developed [3]
in an attempt to enable a client session that consists of
multiple client requests to continue processing on a
backup application server when the primary fails without
the need to abort the whole client session. There are two
shortcomings to this scheme: (1) only stateful session
beans are considered; (2) client invocations that make use
of this scheme may not benefit from transactions. The
limitations of this scheme reflect the difficulties
associated to passive replication in J2EE as discussed
earlier in 3.3.

The Arjuna system supported replication of
transactional persistent objects [12, 13, 14]. The use of

transactions and group communication for supporting
persistent object replication is investigated in [15]. The
replication approach presented in section 3.2 is based on
the approach discussed in [15].

An approach to integrating replication and transactions
suitable for n-tier systems has been proposed [22]. The
authors base their solution on combining FT-CORBA and
the CORBA Object Transaction Service (OTS). Nested
transactions are a key feature of their protocol, allowing
transactions to be rolled back in part and restarted on
backup servers. However, applying such an approach in
J2EE will be problematic as only flat transactions are
supported by the J2EE specification at the moment.
Additionally, the problems associated with transaction
manager replication (as discussed earlier in 3.3) are not
addressed.

A classification of database replication techniques has
been presented that suggests group communications can
be utilised in the support of eager (strong consistency)
replication protocols [16]. Traditionally, lazy replication
schemes are favoured by commercial products because
the communication overheads of eager schemes compared
to lazy schemes is significant. However, the
inconsistencies across database replicas that may result
from lazy schemes (not an issues in eager schemes)
coupled with promising initial results of integrating group
communication into replica database schemes identify
eager schemes as a viable choice in the future [17]. Group
communication based mechanisms that allow new
members of a database replica group to retrieve current
state information from existing database replicas are
discussed in [18]. Within the context of the study
presented here, a drawback of these approaches is the
need to integrate a group communications sub-system into
the database architecture, making such schemes difficult
to work with existing commercial databases. A second
drawback is that the transaction model assumed is not
distributed (a transaction can not span multiple
databases). To overcome the first drawback, a middleware
layer has been proposed that provides the required
functionality to enable a more seamless integration of
group communication based eager replication schemes
into existing commercial databases [19]. If the second
drawback can be removed, then these approaches will be
very suitable for supporting state replication.

6. Concluding remarks
In this paper we have examined how for the case of

EJB component middleware, replication for availability
can be supported by containers. We have shown that
whereas persistent state replication can be incorporated

transparently, the same is not yet possible for application
servers. Enhancements required for enabling this have
been pointed out and explained. We have demonstrated
our approach to state replication in the clustered and non-
clustered application server environments via a series of
experiments using a well known benchmarking software
tool for J2EE. Our experiments show that there is a
significant overhead in implementing state replication.
However, our experiments do indicate that clustering with
state replication still provides a more scalable solution
than a non-clustered approach to application server
deployment. Future work will concentrate on the
development of state and computation replication with
clustered application servers (described in 3.3) and further
experiments to determine the benefit of our system in the
presence of failures.

Acknowledgements
This work is part-funded by European Union under Project IST-
2001-34069: “TAPAS”; the UK DTI e-Science programme
under project “GridMist”; Kistijantoro’s work is funded by QUE
Project Batch III, Department of Informatics Engineering,
Institute of Technology Bandung, Indonesia.

7. References
[1] R. Monson-Haefel, “Enterprise Java Beans “, O’Reilly, 2001

[2] K. Birman , "The process group approach to reliable
computing", CACM , 36, 12, pp. 37-53, December 1993.

[3] JBoss application server: www.jboss.org

[4] WebSphere Scalability: WLM and Clustering, September
2000, http://ibm.com/redbooks/sg246153.pdf

[5] BEA White Paper, “Achieving Scalability and High
Availability for E-Business,
ftp://edownload:BUY_ME@ftpna2.bea.com/pub/downloads/wls
_clustering.pdf, September 2001.

[6] P.A. Bernstein et al, "Concurrency Control and Recovery in
Database Systems", Addison-Wesley, 1987.

[7] JSR 117: J2EE APIs for Continuous Availability
http://www.jcp.org/jsr/detail/117.jsp

[8] R. Guerraoui, P. Felber, B. Garbinato and K. Mazouni,
“System support for object groups”, Proceedings of the ACM
Conference on Object Oriented Programming Systems,
Languages and Applications, OOPSLA 98.

[9] P. Felber, R. Guerraoui, and A. Schiper, “The
implementation of a CORBA object group service”, Theory and
Practice of Object Systems, 4(2), 1998, pp. 93-105.

[10] L. E. Moser, P. M. Melliar-Smith and P.
Narasimhan,"Consistent Object Replication in the Eternal

System", Theory and Practice of Object Systems, vol. 4, no. 2
(1998).

[11] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan, "A
Fault Tolerance Framework for CORBA," Proceedings of the
IEEE International Symposium on Fault-Tolerant Computing,
Madison, WI (June 1999), pp. 150-157.

[12] M.C. Little and S. K. Shrivastava, "Replicated K-resilient
objects in Arjuna", Proceedings of the 1st IEEE Workshop on the
Management of Replicated Data, Houston, November 1990, pp.
53-58.

[13] M. C. Little, D. McCue and S. K. Shrivastava,
“Maintaining information about persistent replicated objects in a
distributed system”, ICDCS-13, Pittsburgh, May 1993, pp. 491-
498.

[14] M.C. Little and S K Shrivastava, “Implementing high
availability CORBA applications with Java”, IEEE Workshop
on Internet Applications, WIAPP’99, San Jose, July 1999, pp.
112-119.

[15] M. C. Little and S. K. Shrivastava, “Integrating Group
Communication with Transactions for Implementing Persistent
Replicated Objects”, Chapt. 10, Advances in Distributed
Systems, LNCS Vol. No. 1752, 2000.

[16] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G.
Alonso, “Database Replication Techniques: a Three Parameter
Classification”, Proc. of the 19th IEEE Symposium on Reliable
Distributed Systems (SRDS2000), Nürnberg, October 2000.

[17] B. Kemme & G. Alonso, “A New Approach to
Developing and Implementing Eager Database Replication
Protocols”, ACM Transactions on Database Systems (TODS),
Volume 25, No. 3, September 2000, pp 333-379.

[18] B. Kemme, A. Bartoli, O. Babaouglu, “Online
Reconfiguration in Replicated Databases Based on Group
Communication”, Proc. of the IEEE International Conference on
Dependable Systems and Networks (DSN 2001), Goteborg,
Sweden, June 2001.

[19] R. Jiménez-Peris, M. Patiño-Martínez, B. Kemme, G.
Alonso, “Improving the Scalability of Fault-Tolerant Database
Clusters: Early Results”, Proc. of the IEEE 22nd Int. Conf. on
Distributed Computing Systems, Vienna, July 2002.

[20]http://otn.oracle.com/products/oracle9i/pdf/Oracle9i_Databa
se_summary.pdf, May 2002

[21]ftp://ftp.java.sun.com/pub/spec/j2ee_ecperf/maon1rgh/ecper
f-1_1-fr-spec.pdf, April 2002

[22] P. Felber, P. Narasimhan, “Reconciling Replication and
Transactions for the End-to-End Reliability of CORBA
Applications”, Distributed Objects And Applications 2002, Oct
2002

[23] http://www.javagroups.com

